
Fast Substructure Search in Combinatorial

Library Spaces

Thomas Liphardt∗ and Thomas Sander∗

Idorsia Pharmaceuticals Ltd.

E-mail: thomas.liphardt@idorsia.com; thomas.sander@idorsia.com

Abstract

We present an efficient algorithm for substructure search in combinatorial libraries

defined by synthons, i.e. substructures with connection points. Our method improves

on existing approaches by introducing powerful heuristics and fast fingerprint screening

to quickly eliminate branches of non matching combinations of synthons. With this

we achieve typical response times of a few seconds on a standard desktop computer

for searches in large combinatorial libraries like the Enamine REAL space. We pub-

lished the Java source as part of the OpenChemLib under the BSD license, and we

implemented tools to enable substructure search in custom combinatorial libraries.

Introduction

Academic institutions and pharmaceutical companies have designed large synthetically ac-

cessible virtual combinatorial libraries,1 and commercial players offer on-demand synthesis

of individual library compounds. The size of synthetically accessible compounds has contin-

ued to grow rapidly in recent years, with suppliers like Enamine that are capable of reliably

synthesizing compounds from their Enamine REAL space,2 currently containing 30 billion

1



structures. To answer the need, more efficient algorithms for searching large combinatorial

spaces have been developed, which process reactant structures and connection rules instead

of processing all enumerated structures. In 2001 Rarey and Stahl published a method to

retrieve similar molecules based on feature tree similarity.3 In 2009 Yu and Bakken employ

a method called ’Monomer-based Similarity Searching (MoBSS)’ that calculates atom pair

descriptors from the reactant structures to locate matching combinatorial products.4 More

recent papers describe other methods for performing similarity and substructure searches in

combinatorial spaces.5,6

Recently, Schmidt, Klein and Rarey presented a fast algorithm locating similar compounds

from combinatorial libraries based on the maximum common induced substructure (MCIS).7

Library molecules are considered matches if they contain a substructure, which exactly

matches a large part of the query structure. For the special case where the MCIS size

is required to match the entire query structure, the result is equivalent to a substructure

search, therefore the algorithm can also be used to search for substructures. The problem

of computing the MCIS in general is much harder than the problem to search for a sub-

structure, but an excellent option if the goal is to locate similar compounds sharing some

substructure.

The first efficient algorithm to search for substructures in combinatorial libraries was de-

scribed by Rarey, Volkamer and Ehrlich.8,9 Rarey et al. propose to first cut the query sub-

structure into all possible sub-substructures, then to match these sub-substructure onto the

combinatorial building blocks keeping track of sub-substructure connection points. The hit

structures are then constructed from matching building blocks if the sub-substructures recon-

nection matches the query substructure. This procedure essentially reduces the substructure

search problem spanning multiple building blocks to a large number of substructure searches

in individual building blocks.

2



We rely on the same basic idea, but improve it (i) by adding a fingerprint pre-screening

step to the substructure searching to quickly remove impossible candidates, and (ii) by

providing heuristics that allow us to eliminate a large number of building block combina-

tions. These heuristics perform exceptionally well in real-world scenarios, and searches in

the Enamine REAL space (containing around 300 separate combinatorial libraries with over

1 million non-unique synthons) usually take a couple of seconds on a single thread.

While our implementation of the algorithm does not support SMARTS queries and no re-

cursive definitions of substructures, it supports a number of features to define generalized

substructures. For this, atoms and bonds can be annotated with specific query features.

These can be narrowing, like enforcing an atom or bond to be part of an aromatic ring,

require an atom to exactly carry two hydrogen atoms or a positive charge. Or they may

be broadening, allowing an atom to be either an oxygen or any halogen, or a bond to be a

single or a double bond. Our substructure search method comes with the limitation that

the query structure must not consist of multiple disjoint substructures, it is however possible

to employ so called bridged bonds (corresponding to arbitrary paths of specific length) to

connect disjoint substructures. It is noteworthy, that in comparison to most other methods,

there are no limitations on the combinatorial library itself, e.g. any kinds of bond formation,

ring closures or macrocyle formation that can be represented in a suitable way is supported.

We believe that the ability to efficiently perform substructure, similarity, and pharmacophore

searches in synthetically accessible large combinatorial spaces will contribute to make the

drug discovery process more efficient, e.g. by multiplying the possibilities for hit expansions

and scaffold hopping within pharmaceutical projects.

In order to foster easy and flexible usage of our method we provide it as open-source imple-

3



mentation in Java as part of the OpenChemLib.10 Furthermore, we believe that the algorithm

can easily be implemented for any other cheminformatics toolkit that provides substructure

search capabilities, as it is a meta algorithm that performs substructure searches on the

building blocks, which form the combinatorial library.

Methods

Fingerprints for substructure search

We denote the fingerprint of a structure s by FP(s). We can use a fingerprint to heuristically

speed up substructure search, if there is an easily verifiable property for the fingerprints of

graphs G and G′ that must hold if G′ is a subgraph of G. There are a number of binary

fingerprints with the property that if G′ is a subgraph of G, then FP(G′) ⊆ FP(G). This

property holds for various common fingerprints, e.g. path fingerprints, tree fingerprints, or

some configurations of the CSFP from Bellman and Rarey.11 Any of these can be used to

accelerate substructure search.

Query features and the fragment fingerprint of the OpenChemLib

For efficient substructure search we rely on the the fragment fingerprint from the OpenChem-

Lib. The fragment fingerprint consists of 512 bits, containing the results of 512 separate

searches for substructure features. These 512 substructure features are selected in a highly

optimized way and can eliminate a high percentage of non-matching structures. Another

key advantage of the fragment fingerprint over classic fingerprints is, that it can be used

to create fingerprints from generalized substructure searches using query features of the

OpenChemLib.

4



Superset testing using binary trees

Fingerprint filtering (i.e. superset testing of bitstrings) is a key step in the algorithm and

crucial for performance. We perform fast fingerprint filtering by first sorting the library bit-

strings into balanced binary trees. A balanced binary tree conceptually is a kd-tree generated

on a set of bitstrings B = {b1, b2, .., bn}, bi ∈ Bm. To generate a balanced binary tree, we re-

cursively split the set of bitstrings Ba by selecting a specific bit s that is balanced (i.e. occurs

similarly often as 0 and 1 in Ba) into two roughly equal subsets B1
a = {b ∈ Ba : b(s) = 1}

and B0
a = {b ∈ Ba : b(s) = 0}. We denote the resulting parent tree nodes by Ni, where s(Ni)

is the splitting bit of the node, and N0
i / N1

i denote the 0 / 1 subtrees. While constructing

the tree we keep track of the bits that are guaranteed to be 1. For the subtree rooted at Ni

we denote this value by Σ(Ni). The corresonding values for the subtrees are Σ(N0
i ) = Σ(Ni),

and Σ(N1
i ) = Σ(Ni)∪{s(Ni)}. We stop the recursive splitting when the number of bitstrings

in Ba is below a certain threshold L. We found that balancing the binary trees generally is

easily possible with the descriptors and datasets that we tested.

For testing if B contains a superset of the bitstring q we can use the procedure described in

Algorithm 1: we start at the root of the tree and omit all branches that describe a non-set bit

in a position where the query bitstring contains a set bit. This procedure is particularly fast

for processing query bitstrings that are not contained in the tree. Under the assumption that

the tree is roughly balanced, this takes O(log(n)) time, where n is the number of bitstrings

in the tree.

Combinatorial libraries defined via synthon reactions

In this work we assume that the structures in the combinatorial library are defined via

synthon reactions. A synthon is a vertex and edge labeled graph representing a chemical

structure, with additional connector vertices cx that are connected to atom vertices by a

single edge. A synthon reaction is defined by multiple sets of synthons RF1, RF2,..,RFN .

5



Algorithm 1: Algorithm for Fast Superset Testing

Input: Tree node N , query bitstring q
Output: ∃u ∈ N : u ⊇ q

1 Function testSuperset(N ,q):
2 if Σ(N) ⊇ q then
3 return true
4 end
5 if N is leaf then
6 return ∃u ∈ N : u ⊇ q
7 else
8 if q(s(N)) then
9 return testSuperset(N1, q)

10 else
11 return testSuperset(N0, q) ∨ testSuperset(N1, q)
12 end

13 end

14 End Function

All synthons in each set contain the same connector vertices (at most one per synthon and

connector type). The feasible products of the synthon reaction are described by picking one

synthon from each synthon set and then glueing together the connector vertices of the same

type, where the resulting bond types are described by the edges to the connector vertices.

We classify a synthon reaction based on the number of synthon sets, and the types of con-

nector vertices in each set. We do this in two ways, (i) by considering the labeled connector

configuration that corresponds to the set of sets of connectors in each synthon set, and (ii)

by considering the unlabeled connector configuration that corresponds to the set of number

of connector vertices in each synthon set. The simplest synthon reaction, where two syn-

thons are connected at one connector vertex type ca we classify as {{ca}, {ca}}, and as (1, 1)

in the unlabeled representation. A synthon reaction where two synthons are connected at

two connector vertex types ca and cb to close a cycle by {{ca, cb}, {ca, cb}}, or by (2, 2) in

the unlabeled representation. See Fig. 1 for examples of three different common connector

vertex patterns that we find e.g. in synthon reactions of the Enamine REAL space.

6



Practically, we encode the connector vertices in a way such that it is possible for the descrip-

tor to compute fingerprints for the fragments including the connector pair vertices. In our

implementation we use atoms of transuranium elements to represent the connector vertices.

(U),(U) (U,Np),(U),(Np) (U,Np),(Np,Pu),(U,Pu)

U
O

U
O

F

F

N
H

U

O

O

N
H

OU

O
F

F

N
H

O

U

O

U

O

N
H

Np
N
H

U

NpNNU
Np

O
F

Np

O

O

NN

O

N
N

Np

O

U

N
N

NpU

O

N
Pu

U

N
Pu

U

CF3NPu

Np

CNPu

Np

N

N
N

O

C

N

Figure 1: (A) Example for synthon reaction with one connector and connector configu-
ration {U}{U} describing four different carbamates. (B) Example for synthon reaction
with two connectors and connector configuration {U,Np}{U}{Np} describing 8 different
bisamides. (C) Example for synthon reaction with three connectors and connector configu-
ration {U,Np}{Np,Pu}{U,Np} describing eight different triazoles.

The main algorithm for substructure search

In the first step we compute all possible combinations of synthon substructures that can

yield the query substructure after synthon assembly. For c connectors this can be done

simply by considering all sets of c bonds, and for each set removing the c bonds from the

structure, trying to break it apart into multiple fragments. When removing a specific set of

bonds q from the query structure, we perform the following step for every contained bond

b1 = (xb1, yb1)

1. we attach a new vertex with label cb1 to xb1, and another new vertex also with label cb1

to yb1. We call this vertex pair the connector pair for b1. The edge label (representing

the bond type) for both new edges is similar to the edge label of the bond xb1, yb1.

2. we remove the bond xb1, yb1.

7



We denote the resulting graph by F (q), and we call the cut-inducing set of bonds q the

cut set. We say, F (q) is valid if for each connector pair the two vertices fall into different

disconnected components. The computation of all valid cut sets can be done by trying out

all possible sets of bonds of size c, this results in
∑

i=1..c

(
n
i

)
cut sets to validate, where c

is the maximum number of connector pairs used in the combinatorial library. We call the

resulting connected components in F (q) the unlabeled query synthons. Note that there may

exist more efficient methods to compute valid cut sets.

For each valid cut set q we first determine the unlabeled connector configuration of F (q)

and call it C(q). We then check for each synthon reaction R, if based on its unlabeled con-

nector configuration L(R) could contain the cut set, i.e. if we find an injective map Ψ from

the integers in C(q) to the integers in L(r), such that ∀i ∈ C(q) : Ψ(i) >= i.

We next describe the procedure required for every combination of a valid cutset F (q) and

a specific synthon reaction R. The connected components in F (q) differ from the sub-

substructures that we have to match in the synthon sets of the synthon reaction only in that

they contain unlabeled connector vertices instead of the labeled connector vertices. To find

all possible synthon substructures, we have to consider all possible labeling patterns of the

connector vertices. For a synthon reaction with x connector vertex types we end up with(‖q‖
x

)
(‖q‖!) labeled forests, because we have to consider all permutations of all connector ver-

tex subsets of size ‖q‖. The resulting forests of synthon substructures with labeled connector

vertices then describe possible substructure hits in a synthon reaction: if we find an injec-

tive map from the computed synthon substructures to synthon sets of the synthon reaction,

where these synthon sets contain synthons that contain the mapped synthon substructure,

then we have a substructure hit. The full procedure that is performed for a specific cut set

and a specific synthon reaction is summarized in Algorithm 2, where Ψ(Fi, R) denotes the

set of all injective maps from the connected components of the graph Fi to the synthon sets

8



of synthon reaction R. Please note that two important pruning steps will be explained in

the next sections.

Algorithm 2: Substructure Search in Synthon Reaction

Input: Query structure Q, Synthon reaction R, valid cut set u
Output: Set H of synthon tuples of R that contain Q after assembly

15 Function processCutSet(Q,R,u):
16 connector region heuristic for F (u) and R
17 for F ∗i ← labeled forests of F (u) do
18 largest fragment heuristic for F (u) and R
19 for (Mj = (gj → sj))← Ψ(F ∗i , R) do
20 if ∀ ti ∈ gj ∃s′ ∈Mj(ti) : ti is subgraph of s′ then
21 add sj to hits H
22 end

23 end

24 end

25 End Function

The connector region heuristic

We define the connector region of a synthon as the fragment or set of fragments that we

get by considering all atoms and bonds up to a specific distance from the connector, and

by replacing all labeled connectors by unlabeled connectors. We denote the graph resulting

from this procedure for a synthon si by γ(si). We sort all synthons of each reaction according

to their connector region with distance 3 bonds (see Fig. 2.2). We then apply this heuristic

on the unlabeled query synthon substructures resulting from a cut set. A synthon reaction

can be eliminated, if we do not find an injective mapping η from unlabeled fragments to

synthon sets, such that for all unlabeled fragments f holds: in η(f) exists a synthon with

a connector region that contains the connector region of f as subgraph. We formulate the

connector region heuristic as:

∃(Mj : gj → sj) ∈ Ψ(Fi) : ∀g′j ∈ gj : γ(g′j) is subgraph of γ(Mj(g
′
j))

9



If this condition is not satisfied, we can exclude that the fragments in F (u) could match

synthons of the synthon reaction. Because we can run this heuristic already on the unlabeled

forest F (u), we can omit a large number of cut sets without ever looking at their enumerated

labeled forests. The example shown in Fig. 2 illustrates the efficiency of the connector

heuristic, as 409 out of 411 valid decompositions can be eliminated in this way. Please note

that we can again use the method for fast superset testing in enumerated libraries to perform

the necessary substructure searches.

The largest fragment heuristic

If we find cut sets together with synthon reactions that pass the connector region heuristic

based on the unlabeled fragments, we start enumerating all labeled fragments. In a first step,

we sort the fragments by their potential to eliminate non-matching synthon reactions. We

found that sorting descending by the number of set bits in the fragment fingerprint leads to

excellent results. We take the fragment fL with the most set bits in the fragment fingerprint

and check if we find among all fragment fingerprints of labeled synthons any bitsets that

are a superset of the fragment fingerprint of fL. We found that this heuristic works very

efficiently to eliminate labeled splits that cannot be matched to any synthon reaction of the

synthon space. Please note that we can again use the method for fast superset testing to

evaluate this heuristic.

OpenChemLib query features

The OpenChemLib substructure search provides a number of mechanisms to perform ad-

vanced substructure search that goes beyond searching for a specific subgraph. These mech-

anisms are provided via so called query features. There exist broadening (i.e. relaxing) query

features on bonds and atoms, as well as narrowing (i.e. constraining) query features on bonds

and atoms. Broadening query features include the possibility to match bonds of the query

structure to different bond types, or to match atoms of the query structure to multiple atom

10



O

N
F

N

N

Query Structure

O

N
F

N
N

1. Compute all valid unlabeled decompositions

O

N
F

N
N

U

U
U

U

2304 edge sets

2. Compute connector region heuristic

O

N
F

N
N

U
U

U
U

O

N
F

N

N

U

U

U

U

O

N
F

N
N

U
U

0 matches

13 synth. rxns

5 synth. rxns

3. Enumerate labeled decompositions

O

N F

N
N

U
U

O

N F

N
N

UU
U

U

3 labeled decomp.

6 labeled decomp.

4. Compute largest fragment heuristic
For each labeled decompostion, check for all synthon
rxns compatible with O2.9, if the most complicated
fragment exists in one of the synthon sets.

O

N F

U

O

N F

Np

O

N F

Pu

5. Substructure search in synthon sets
For all maps from synthon substructures to synthon sets
that are compatible with O2.9 and O4.9, try to match synthon
substructures in the mapped synthon sets

O

N
F

N
NU

U Np
Np

No hits Found No hits

N
N

U N
N

Np N
N

Pu

Found No hits No hits

O

N F

N
N

U
U vs. matching rxns

N
NUU

U O

N
F

U vs. matching rxns

O

N F

N
N

U
U

Search for fragments in
possible synthon sets
O70 compatible maps9
O34046 substructure searches9

6 / 24 O1 split9
60 / 273 O2 split9
345 / 2007 O3 split9

Only 2 out of 411 split patterns remain after the connector
region heuristic. Only 9 out of 2448 labeled split patterns
have to be processed.

411 valid decompositions

Search for fragments in
possible synthon sets
O110 compatible maps9
O74847 substructure searches9

Figure 2: An Illustration of the different steps and heuristics used. (1.) This shows an exam-
ple for a valid decomposition, together with the total number of unlabeled decompositions
that arise for this structure. (2.) The subgraphs used for the connector region heuristic
are highlighted, for the two decompositions that result in hits, and for one out of the 409
eliminated decompositions. The heuristic eliminates over 99% of the unlabeled decompo-
sitions. (3.) For the remaining unlabeled decompositions, all labeled decompositions are
enumerated. In this example we assume that we consider synthon reactions with up to 3
different connector vertex types, therefore we get

(
1
3

)
(1!) = 3 labeled decomp. for the single

split decomposition, and
(
2
3

)
(2!) = 6 labeled decomp. for the double split case. (4.) The most

complicated fragment (measured by number of set fragment fingerprint bits) is considered
first for actual substructure search in the synthon sets (5.) Finally, matching synthons are
searched according to the maps that are compatible with all heuristics.

11



types. Narrowing query features include the possibility to prohibit further substitution on

atoms or to require atoms of the query substructure to have a specific number of (unspeci-

fied) neighbor atoms.

The OpenChemLib fragment fingerprint is compatible with all of the provided query features

and therefore can be used for the prefiltering during substructure search. When using query

features for the search in combinatorial libraries, for computing the connector region heuris-

tic we do remove all narrowing query features, as they may incorrectly filter out candidate

synthons, e.g. when one of the terminal atoms of the connector region has a query feature

that requires it to contain a specific number of neighbors.

Results

Searching the Enamine REAL Space - Some structures from Schmidt

et al.7

To illustrate the performance of our substructure search algorithm for searches in the Enam-

ine REAL Space we consider structures that were mentioned in a recent publication on

computing the IMCS in combinatorial spaces. The Enamine REAL space is the only com-

mercial space, for which we have access to a synthon representation, therefore we cannot

state any results for the WuXi AppTec GalaXi12 or OTAVA CHEMriya13 spaces. It is diffi-

cult to directly compare runtimes for our and their method for two reasons: (i) their method

in general solves a much harder problem, and (ii) their method only works under the strong

restriction that ring / non-ring edges are exclusively matched to similar edges. Regarding

(ii), it is important to stress that our method comes without any restrictions except for that

the query substructure must be connected and that it returns the exact solution to the given

substructure search problem and not in any way an approximation.

12



All benchmarks were performed on a 6 core (12 threads) Intel Core i7-7800X at 3.5 GHz

with 64 GB of RAM. All time-critical steps of the algorithm are parallelized and we always

observed near perfect scaling behavior when running the algorithm on multiple cores. The

searches were performed by using parallel computation using 8 threads. Searches in the

REAL Space can be performed with less than 4 GB of RAM, so it is feasible to run searches

locally on standard desktop computers. We first consider six queries based on the compound

G43 (a lead compound for the development of a glycosyltransferase inhibitor) that was con-

sidered in their publication (see Fig. 3 A-F). In A, we search if the exact structure exists

in the Enamine REAL Space and find two synthon reactions that describe this compound.

We observe, that this computation on a single core would take less than a second. In B,

we search for all structures containing the structure of G43 as a substructure, without any

further constraints. Here, finding the 231 synthon sets that assemble superstructures of this

compound again takes less than one second on a single core. In C, we keep the left hand side

of the compound fixed and search for all extensions, and in D we keep the right hand side

fixed and search for all substitutions of the Benzothiophene. In E, we search for all struc-

tures containing the Murcko scaffold and must be further substituted at the two indicated

atoms. Computing the 48100 synthon sets that describe matching structures takes around

ten seconds on a single core. In F, we illustrate wild card feature matching. We allow any

combination of atoms and bonds in all ring structures. we observe an extreme drop in bits

of the Fragment FP compared to the other considered structures, due to the fact that a wide

variety of different structures can match this search pattern. The low number of Fragment

FP bits illustrates that only very few specific substructure features can be deduced for this

query. The reason why the search for C takes so long (3 seconds) for this rather simple query

is due to the large number of substructure searches that have to be performed for the left

hand side of the molecule and that are not filtered by the fingerprint filtering of fragments.

This is, because for a large number of decompositions, only the single carbon atom outside

of the fixed area has to be matched against all synthons, and therefore a large number of

13



trivial substructure searches have to be performed that cannot be filtered out by fingerprint

filtering.

Searching the Enamine REAL space - A small molecule queries

benchmark

For testing and benchmarking internally we use a set of 2977 small molecule structures

collected from DrugCentral.14 We consider only compounds containing in between 12 and

32 non-H atoms, because this seems to cover most realistic substructure searches (smaller

substructures may lead to excessive amounts of results, for larger compounds it becomes

increasingly unlikely to find hits). We further exclude structures containing alkylic chains of

more than ten unsubstituted carbon atoms as this for certain molecules leads to rather long

runtimes and because we do not consider these searches as very relevant. We ran all tests on

a 6 core (12 threads) Intel Core i7-7800X at 3.5 GHz with 64 GB of RAM, and we run the

queries parallelized using 8 threads. For each structure we consider two different searches:

(a) the search for the specific structure, and (b) the search for structures containing the

compound structure as a substructure. The full list of results is included in the supplement

and can easily be reproduced using the Hyperspace software package.

For the 2997 small molecule structures, we find 261 exact hits, and 721 substructure hits

in the Enamine REAL space. On our 8 threads test setup, 90 % of the queries finished in

less than 0.5 seconds (see Fig. 4). There are a few queries that take several seconds. We

found two main reasons for longer query times. Structures that contain long alkyl chains are

problematic, as they give rise to a large number of decompositions that cannot be rejected

by the connector neighborhood heuristic. Simple structures that contain very few functional

groups can be problematic, as in certain cases they lead to unspecific synthon substructures,

resulting in large number of actual substructure searches due to the fact that fingerprint

filtering of synthons is not efficient. However, in these cases it is usually possible to signif-

14



HN

N+
HO

O

S

O

H2N

HNS

O

O

H2N

HN

N+
HO

O

S

O

O

H2N

HN

N+
HO

O

O

O

H2N

HN

N+
HO

O

S

O

OTotal Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

2
174
135
450
478
54

32210

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

231
199
132
450
478
58

32218

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

16671
3157
120
190
179
132

201876

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

48
306
108
330
437
224

58335

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

48100
1274

99
219
255
103

81720

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

13
2805

20
450

4952
9562

7533014

A B

N

NH
S

H
N

O

O

HO

O

NO

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

0
431
209
811

2463
0
0

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

2
807
150
656

4263
2517

4716791

N
N
H

H
N

O

O

HO

O

O

S

H
N

O

N

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

156044
1245

93
165
265
581

214607

N
N
H

N
H

O

O

OHOO

Total Hits
Time [ms]
FragFP Bits
Valid Splits
Split/Rxn Pairs
Labeled Splits
Substructure Searches

195
1069

98
476

3982
3709

6361906

HNS

O

C D

E F

G H

I J

Figure 3: Ten searches in the Enamine REAL Space. The orange highlighted parts of the
structures are fixed, i.e. highlighted atoms are constrained to have no additional neighbors.
Yellow highlighted bonds correspond to any bond type (single, double, triple or aromatic),
and the yellow highlighted atoms correspond to atom wild cards, i.e. any atom is allowed.
Green highlighted atoms indicate that an additional neighbor is required. Total Hits is the
number of synthon sets that create matching structures (non-unique). Time [ms] is the time
in milliseconds that this search took on our 8 core test setup. FragFP Bits is the number
of bits for the query structure in the OpenChemLib fragment fingerprint. Valid splits is
the number of splits that have to be considered. Split/Rxn Pairs is the number of pairs of
synthon reactions and cut sets that survive the connector region heuristic. Labeled splits is
the total number of labeled splits that survived the largest fragment heuristic. Substructure
Searches is the total number of substructure searches (labeled split fragments vs. synthons)
that were performed (before fingerprint filtering, usually, the very large majority of these
substructure searches will be done by fingerprint filtering).

15



icantly reduce the query time by making the query slightly more specific, e.g. by adding a

single additional atom or group, or even by adding certain query features like requiring /

excluding substitution at specific atoms.

Conclusion

The algorithm for substructure search in combinatorial libraries improves on existing al-

gorithms and seems to be at least ten to hundred times faster compared to the published

results for the only other algorithm that is able to perform substructure search in the Enam-

ine REAL space. The presented algorithms are available as open source in the software

package OCL Hyperspace as part of the OpenChemLib. In addition to the algorithms we

provide a convenient GUI to perform queries, a simple server / client infrastructure and a

plugin for the open-source cheminformatics software DataWarrior15 to access the function-

ality.

There are a number of key advantages over alternative algorithms: (i) no constraints on

how the synthons can be assembled, (ii) no internal parameters that have to be chosen, the

only optional parameter is a stop criterion preventing excessive enumeration of search results

(iii) results are returned efficiently as combinatorial hits, meaning that our algorithm can

also efficiently return very large numbers (millions) of matching substructures.

Impact on drug discovery and outlook

At Idorsia we see a dramatic impact on drug discovery in multiple ways. Search in commer-

cial combinatorial libraries using this method became a key technology for drug discovery

and is used on a daily basis through all phases of drug discovery projects. The configurable

16



101 102 103 104

Time for Query [ms]

0

50

100

150

200

250

300

350

400

ff
p
_b

it
s

has_hits
False

True

num_atoms
12

16

20

24

28

32

101 102 103 104

Time for Query [ms]

101

103

105

107

To
ta

l 
H

it
s 

(e
n
u
m

e
ra

te
d
, 
n
o
n
-u

n
iq

u
e
)

ffp_bits
80

160

240

320

400

num_atoms
12

16

20

24

28

32

<0.25 0.25-0.5 0.5-1 1-2 2-4 4-8 >8
Time [s] on eight cores

0

200

400

600

800

1000

C
o
u
n
t

Hits

No Hits

A B

C
O

H
N

N

OHO
O O

O

HO

N

OH

OO

N

N

FO

N

O

O

Cl

O

N

N
H

N

N
N

N O

F
O

FFP-Bits 42
Atoms 12
Hits 62k

FFP-Bits 197
Atoms 23
Hits 6394

FFP-Bits 266
Atoms 31
Hits 2

FFP-Bits 147
Atoms 21
Hits 795

FFP-Bits 102
Atoms 23
Hits 1671

FFP-Bits 298
Atoms 32
Hits 7

Figure 4: Summary of the results of the benchmark based on the 2997 considered structures
from DrugCentral. Please note that results are not for the specific structure, but for the
substructure including all superstructures of the query. We considered queries with in be-
tween 12 and 32 atoms, and we excluded molecules containing decyl groups (i.e. very long
alkylic chains). (A) Overview of query times. (B) Plot of query times versus the number of
enumerated hits (without checking for uniqueness of the assembled structures, only based
on matching synthons). ffp bits is the number of set bits in the fragment fingerprint. Please
note that this plot only includes queries that returned hits. (C) Plot of query times versus
set bits in the fragment fingerprint including some example structures. The color indicates
whether the query returned hits.

17



substructure queries provided by the OpenChemLib allow us, to search for very specific

classes of structures, e.g. for replacing specific parts of molecules or for scaffold hopping.

This if often used in automated workflows that integrate modeling and prediction of prop-

erties. Following up the advent of this technology, we are currently in the process of largely

automating the first phases of small molecule drug discovery projects.

The efficiency of this method allows us to search through combinatorial spaces that are

much larger than the Enamine REAL space. Therefore, we created combinatorial spaces of

structures that are synthetically easily accessible through in-house high-throughput medic-

inal chemistry via up to three steps.16 These spaces are several orders of magnitude larger

than the Enamine REAL space (depending on the specific setup in between 1012 and 1015

structures). We are just starting to explore the possibilities of advanced computational

methods in cheminformatics and computational chemistry.

Acknowledgement

The authors thank Joel Wahl and Modest von Korff for valuable input and extensive discus-

sions about the topic.

Supporting Information Available

• GitHub repository of the OCL Hyperspace project github.com/Actelion/openchemlib-

hyperspace

• CSV file containing results of the small molecules benchmark

• List of OpenChemLib IDCodes that contain the generalized substructures of the frag-

ment fingerprint.

18



References

(1) Patel, H.; Ihlenfeldt, W.-D.; Judson, P. N.; Moroz, Y. S.; Pevzner, Y.; Peach, M. L.;

Delannée, V.; Tarasova, N. I.; Nicklaus, M. C. SAVI, in silico generation of billions of

easily synthesizable compounds through expert-system type rules. Scientific data 2020,

7, 1–14.

(2) Enamine REAL Space and REAL Database. https://enamine.net/

compound-collections/real-compounds/real-space-navigator, 2022.

(3) Rarey, M.; Stahl, M. Similarity searching in large combinatorial chemistry spaces. Jour-

nal of Computer-Aided Molecular Design 2001, 15, 497–520.

(4) Yu, N.; Bakken, G. A. Efficient exploration of large combinatorial chemistry spaces

by monomer-based similarity searching. Journal of chemical information and modeling

2009, 49, 745–755.

(5) Bellmann, L.; Penner, P.; Rarey, M. Topological Similarity Search in Large Combi-

natorial Fragment Spaces. Journal of Chemical Information and Modeling 2020, 61,

238–251.

(6) Hoffmann, T.; Gastreich, M. The next level in chemical space navigation: going far

beyond enumerable compound libraries. Drug discovery today 2019, 24, 1148–1156.

(7) Schmidt, R.; Klein, R.; Rarey, M. Maximum Common Substructure Searching in Com-

binatorial Make-on-Demand Compound Spaces. Journal of Chemical Information and

Modeling 2021,

(8) Ehrlich, H.-C.; Volkamer, A.; Rarey, M. Searching for substructures in fragment spaces.

Journal of chemical information and modeling 2012, 52, 3181–3189.

(9) Ehrlich, H.-C.; Henzler, A. M.; Rarey, M. Searching for recursively defined generic

19



chemical patterns in nonenumerated fragment spaces. Journal of chemical information

and modeling 2013, 53, 1676–1688.

(10) OpenChemLib. https://github.com/actelion/openchemlib, 2022.

(11) Bellmann, L.; Penner, P.; Rarey, M. Connected Subgraph Fingerprints: Representing

Molecules Using Exhaustive Subgraph Enumeration. Journal of chemical information

and modeling 2019, 59, 4625–4635.

(12) WuXi GalaXi Space. https://www.biosolveit.de/software/galaxi, 2022.

(13) CHEMriya Make-On-Demand Space. https://www.biosolveit.de/infiniSee#

chemriya, 2022.

(14) Avram, S.; Bologa, C. G.; Holmes, J.; Bocci, G.; Wilson, T. B.; Nguyen, D.-T.; Cur-

pan, R.; Halip, L.; Bora, A.; Yang, J. J., et al. DrugCentral 2021 supports drug discovery

and repositioning. Nucleic acids research 2021, 49, D1160–D1169.

(15) DataWarrior. https://github.com/thsa/datawarrior, 2022.

(16) Wahl, J.; Sander, T. Fully Automated Creation of Virtual Chemical Fragment Spaces

Using the Open-Source Library OpenChemLib. Journal of Chemical Information and

Modeling 2022,

20


