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ABSTRACT: This work demonstrates the first successful electrochemical cycling of a redox-

active boron cluster-based material in the solid state. Specifically, we designed and synthesized an 

ether-functionalized dodecaborate cluster, B12(OCH3)12, which is the smallest redox-active 

building block in the B12(OR)12 family. This species can reversibly access four oxidation states in 

solution, ranging from a dianion to a radical cation. We show that a chemically isolated and 

characterized neutral [B12(OCH3)12]0 cluster can be utilized as a cathode active material in a PEO-

based rechargeable all-solid-state cell with a lithium metal anode. The cell exhibits an impressive 

active material utilization close to 95% at C/20 rate, a high Coulombic efficiency of 96%, and 

excellent reversibility, with only 4% capacity fade after 16 days of cycling. This work represents 

a conceptual departure in the development of redox-active components for electrochemical storage 

and serves as an entry point to a broader class of borane-based materials.  

In the past several decades, many researchers have advanced our knowledge of how 

carbon-based organic redox-active molecules can be incorporated into solid state battery 

materials.1-8 Through solubility modifications via molecular weight, the addition of 

hydrophobic/hydrophilic groups, or impregnation in porous/polymeric materials, a number of 

redox-active small molecules (e.g., carbonyls, nitroxides, imides, disulfides, etc.) have been 

observed to retain their solution-phase redox activity in the solid state. Despite these advances, the 

incorporation of other well-defined covalent-based systems into electrochemically active materials 

in the solid state has been fundamentally underexplored. For example, polyhedral boron clusters, 

which are often described as three-dimensional aromatic analogues of benzene, can exhibit well-

defined redox properties in solution, as seen for boranes ([BnHn]2-
 ; n ≤12), carboranes, and their 

numerous functionalized derivatives.9-45 Historically, a number of boron-based clusters have been 

deemed redox-inert species with wide electrochemical stability windows, prompting early studies 
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of Li2B12Cl12 and Li2B10Cl10 as novel electrolytes, first in SOCl2
23, 46 and later in ethereal solvents.47-

49 More recently, there have been extensive efforts in developing some of these clusters for solid 

state electrolyte applications.50-87 

Recent advances in boron cluster chemistry44-45, 88-98 show that judicious exopolyhedral 

modifications of these species can result in the emergence of boron-centered redox events in 

solution, which in many cases can be tunable. In particular, ether-functionalized dodecaborate 

clusters [B12(OR)12; R = alkyl, aryl] demonstrate the richest solution-based redox behavior 

exhibited by boron clusters studied to date.14, 95-97, 99-112 Due to the enhanced electronic stabilization 

provided by the ether groups, the majority of these boron clusters have access to four stable 

oxidation states in solution (Figure 1A). Their redox potentials can be tuned over a wide voltage 

range through simple modification of the electron-donating or withdrawing nature of the carbon-

based substituent (Figure 1B). Specifically, our research group has studied these clusters as redox-

active polymer dopants,113-114 photooxidants,103, 111 and electroactive species for redox-flow 

batteries.108 Surprisingly, however, there have been no reports so far demonstrating that boron 

clusters in general have the ability to undergo redox processes in the solid state.  

Due to their robustness59-60, 115 and chemical tunability, polyhedral boron clusters present a 

potentially appealing platform for translating solution-phase redox behavior into solids. In this 

work, we describe for the first time the development of a model boron cluster-based system that 

can undergo reversible redox in the solid state. As a result, we show the successful incorporation 

of redox-active B12(OCH3)12 into an electrochemical cell to demonstrate the feasibility of boron 

clusters for energy storage applications (Figure 1C). 
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Figure 1. (A) Known reversible electronic transitions of B12(OR)12 clusters (B) Redox potentials 

of two representative B12(OR)12 clusters; cyclic voltammogram of B12(O-3-methylbutyl)12 (inset) 

(C) Depiction of a solid state electrochemical cell containing B12(OR)12 in a PEO matrix. 
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From a chemical design perspective, the ideal redox-active B12(OR)12 building block for 

electrochemical storage requires access to reversible, multi-electron redox, as well as a low 

molecular weight to ensure sufficient specific capacity. Furthermore, we hypothesize that in order 

to facilitate lithiation/delithiation, the oxygen atoms on the OR groups of the B12(OR)12 species 

should be sterically accessible to allow reversible metal ion coordination. All of these criteria 

exclude the previously developed alkylated and benzylated B12(OR)12 clusters studied thus far.  

We hypothesized that the B12(OCH3)12 cluster would serve as an ideal synthetic target for 

potential incorporation into a redox-active solid state material. Hawthorne and coworkers have 

previously reported the synthesis of this cluster99 using a high-pressure reactor, starting from the 

tetrabutylammonium (TBA) salt of [B12(OH)12]2- and a large excess of methyl tosylate as a 

methylating agent. Importantly, the use of super stoichiometric amounts of methyl tosylate renders 

the purification of the final product cumbersome and reduces its overall purity. As such, we 

established a new facile microwave-assisted method to synthesize B12(OCH3)12 (Figure 2A) using 

trimethylsulfoxonium bromide (TMSO-Br), which does not produce difficult to remove 

byproducts, allowing the cluster to be easily isolated. In a typical reaction, 60 mg of 

TBA2B12(OH)12 is stirred with Hünig’s base and 100 equivalents of TMSO-Br in air for 1 hour at 

120°C in a microwave reactor, producing perfunctionalized [B12(OCH3)12]2-/1-, as judged by in situ 

11B NMR spectroscopy and mass spectrometry (SI, Figure S1-S4). Full methoxylation of all twelve 

boron vertices is confirmed when numerous peaks in the 11B NMR spectrum (indicating partial 

substitution/desymmetrization of the cluster) coalesce to a broad singlet at -17 ppm.  
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Figure 2. (A) Microwave-assisted synthesis of [B12(OCH3)12]1-/2-, followed by chemical oxidation. 

(B) 11B, 1H, and 13C NMR spectra, respectively, of [B12(OCH3)12]0 in CDCl3 (asterisk represents 

solvent) (C) Cyclic voltammogram of B12(OCH3)12 in DCM. 

Upon mixing [B12(OCH3)12]2-/1- with an aqueous solution of Ce(IV), the original 11B NMR 

signal at -17 ppm disappears, with a concomitant emergence of a new signal at 38 ppm (Figure 

2B), consistent with the formation of a neutral B12(OCH3)12 species, which immediately 

precipitates as an orange solid. This material is then subjected to a simple purification via filtration 

and solvent washes. The complete removal of cerium salts is confirmed by XPS (SI, Figure S17) 
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and electrochemical characterization of the resulting product (Figure 2C). The chemical structure 

and oxidation state assignment of B12(OCH3)12 were confirmed through multiple characterization 

methods, including solution-phase NMR spectroscopy (11B, 13C, 1H) (Figure 2B), mass 

spectrometry (SI, Figure S1 and S2), and single crystal and powder X-ray crystallography (Figure 

3). The high symmetry of the dodecaborate cluster is exemplified by the single resonance observed 

via 11B, 13C, and 1H NMR spectroscopy (Figure 2B; SI, Figure S3-S6). As determined from the 

single crystal structure, B12(OCH3)12 crystallizes in a trigonal R3" space group. Considering that the 

single crystal measurements were collected at 100 K, we performed additional X-ray diffraction 

measurements on powder samples at room temperature in order to elucidate structural features 

under more relevant ambient conditions. An ab initio structure solution was obtained via Rietveld 

refinement of experimental powder data of B12(OCH3)12. Temperature has a significant effect on 

the unit cell of B12(OCH3)12, as evident by the 0.6% lattice expansion when comparing the structure 

as determined from powder data (295 K) versus single crystal data (100 K).  Despite this, the 

structure determined via refinement of the powder data shows excellent agreement with the single 

crystal structure (Figure 3; SI, Figure S27 and Table S1-S8). In the single crystal data, the cluster 

shows average bond distances of 1.85 Å (B-B), 1.39 Å (B-O), and 1.42 Å (O-C), in line with 

observed bond distances for other B12(OR)12 clusters96-97, 104 and simulated values116 for neutral 

B12(OCH3)12. 
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Figure 3. (A) Single crystal structure of B12(OCH3)12 (non-hydrogen atoms depicted as 50% 

probability ellipsoids; hydrogens depicted as spheres) (B) Extended packing of boron clusters 

(hydrogens omitted for clarity). (C) Simulated and experimental powder diffraction patterns of 

B12(OCH3)12. 

The packing motif of B12(OCH3)12 as a powder (Figure 3B) shows ample interstitial space 

(~3 Å cavities between clusters; SI, Figure S29), suggesting the possibility of metal ion insertion. 

Furthermore, this cluster also shows access to multiple oxidation states in solution (Figure 2C), as 

well as a radical cationic state, a phenomenon recently observed102, 107 by our group for many other 

B12(OR)12 clusters. B12(OCH3)12 shows redox activity over a wide voltage window in solution, with 

half-wave potentials (E1/2) spanning a range of more than 1 V, from -0.79 V vs Fc/Fc+ (2- à 1-) up 

to +0.89 V (0 à 1+), in good agreement with previous observations of the effect of the R substituent 

on the redox potentials of B12(OR)12 clusters.96-97, 102, 107 Elucidation of the atomic-level structure 
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of B12(OCH3)12, in combination with the rich redox behavior in solution, further prompted us to 

test our original hypothesis and explore whether this material would be a viable candidate for a 

solid state electrochemical cell. 

A model solid state Li-ion cell was constructed with B12(OCH3)12 as the active cathode 

material (see SI for details), and cyclic voltammetry of the B12(OCH3)12/PEO-SPE/Li cell was 

performed (Figure 4A). PEO was chosen as the solid electrolyte owing to its high Li-ion 

conductivity at moderate temperature, flexibility, easy cell fabrication, excellent chemical 

stability, and high electrochemical stability in the potential window of interest. The cell was first 

subjected to a cathodic scan starting from its open circuit potential (OCP) of 3.4 V to 1.5 V, 

followed by an anodic sweep to 4.15 V. The lower and upper voltage limits were chosen to avoid 

contributions from lithium intercalation into carbon and oxidative decomposition of PEO, 

respectively. During the cathodic sweep (Figure 4A), significant Faradaic current flow started 

around 3.40 V to form a broad reduction peak centered around 3.30 V. During the anodic sweep, 

the corresponding oxidation peak appeared at 3.60 V. Thus, the half wave potential is roughly 3.45 

V vs. Li+/Li, in excellent agreement with the expected value for the 

[B12(OCH3)12]0/[B12(OCH3)12]1- redox couple, suggesting successful lithiation and delithiation (SI, 

Figure S24).  

The phenomenon suggested by this data is unprecedented for boron clusters in the solid 

state. Namely, that Li-ions can reversibly intercalate into the cathode during discharge, reducing 

neutral B12(OCH3)12 clusters to their monoanionic state, followed by a reversal of this process 

during charging. E1/2 remained the same in the subsequent cycles, although a gradual increase of 

the peak current in the first few cycles was noted. This data suggested a steady increase in the 

utilization of the active material with cycling due to a gradual wetting of the electrode with the 
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polymer electrolyte, as observed in PEO-based solid state cells.117 Additionally, the ratio of 

integrated charge under the reduction and oxidation peaks (i.e., Coulombic efficiency) increased 

from 78% to 95%. The lower efficiency in the initial cycle can be attributed to the formation of a 

solid electrolyte interface (SEI) on both the positive and negative electrodes. Once a stable SEI 

was formed, however, a remarkable Coulombic efficiency of 95% was achieved, signifying highly 

reversible redox behavior of the boron cluster in the solid state, a crucial prerequisite for use as a 

battery-active material. 

 

Figure 4. (A) Cyclic voltammetry of a B12(OCH3)12/PEO-SPE/Li cell at 0.1 mV s-1. (B) 

Galvanostatic cycling at C/20 rate. (C) Variation in specific capacity and Coulombic efficiency 

with cycle number. (D) Nyquist plots at 30% DOD and (E) 70% DOD. (F) Variation in series and 

charge transfer resistances with DOD during the first two discharge steps. All measurements were 

performed at 60°C. 
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To further demonstrate the utility of this boron cluster for solid state battery applications, 

galvanostatic cycling was carried out at a C/20 rate (C-rate is based on 1 e- transfer per formula 

unit). The specific capacity based on a 1 e- redox process was 53 mAh g-1. Although only 50% of 

the theoretical capacity was obtained in the first discharge, a theoretical capacity of 95% and a 

high coulombic efficiency of 96% were observed in the second cycle (Figure 4B and 4C), 

consistent with the gradual rise of peak current observed during cyclic voltammetry (Figure 4A). 

The cell also showed high cycling stability, retaining 48 mAh g-1 even after ~16 days of cycling 

(10 cycles at C/20 rate). The charge and discharge curves maintained similar voltage plateaus and 

sloped regions in all cycles, indicating similar reaction pathways throughout the cycling. Post-

mortem XPS of a discharged cell suggests the presence of intact B12(OCH3)12-based clusters in a 

reduced oxidation state (SI, Figure S23). Unlike traditional all-solid-state cells, which often show 

significant capacity decay in the first few cycles,118 the high interfacial stability and intimate 

contact between the boron cluster electrode and the flexible polymer solid electrolyte is primarily 

responsible for the remarkable reversibility and capacity retention. 

Electrochemical impedance spectroscopy (EIS) was carried out at different depths of 

discharge (DOD) during the first and second discharge steps to probe the variation in the internal 

resistance of the cell during cycling. Nyquist plots in the range of 100 kHz to 0.1 Hz show a 

depressed semicircle at high to medium frequency and an inclined line in the low frequency region 

(Figure 4D and 4E). The diameter of the semicircle is smaller in the second discharge at both 30% 

and 70% DOD, indicating a lowered resistance for the charge transfer process at the 

electrode/electrolyte interface. We also modeled the Nyquist plots using an equivalent circuit, 

Rs(Qdl(RctQmt)) where Rs is series resistance, Rct is charge transfer resistance, Qdl and Qmt are the 

constant phase elements representing double layer capacitance and mass transfer process, 
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respectively (Figure 4D, inset). The constant phase element (Q) substituted an ideal capacitor (C), 

in consideration of the distributed capacitive elements of the porous electrode.119 The series 

resistance (Rs) included the sum of resistance contributions from the electrolyte, current collectors, 

and electrodes. Rs = ~120 Ω at all values of DOD in the first discharge and is reduced to ~90 Ω in 

the second discharge (Figure 4F). This decrease in Rs with cycle number indicates improved 

interfacial contact and electrode wetting during cycling. Similarly, the charge transfer resistance 

(Rct) at all levels of lithiation in the second cycle is lower than that of the first cycle. For instance, 

at 50% DOD, Rct = 800 Ω in the first discharge, whereas it is only 550 Ω in the second cycle 

(Figure 4F). The lower values of both Rs and Rct in the second cycle reduce the overall internal 

resistance of the cell, leading to better utilization of the electrode and higher capacity. 

In order to probe the structure and electrochemistry of the lithiated boron cluster, which 

was presumably formed during cycling as an electrochemically derived intermediate, we 

independently synthesized the reduced cluster in the dianionic state with a lithium cation, 

Li2[B12(OCH3)12], and tested it in an identical electrochemical cell (see SI for details). The lithiated 

cluster was synthesized in good yield through a simple reduction of the neutral cluster in solution 

with methyl lithium, which proceeded to the fully reduced dianionic cluster. Solution-phase 11B, 

1H, and 7Li NMR confirmed the presence of [B12(OCH3)12]2- with lithium cations (SI, Figure S11-

13). Additionally, the reduction of the cluster from 0 to 2- could be observed via X-ray 

photoelectron spectroscopy (XPS) as a decrease of 1.0 eV in the binding energy of boron 1s 

electrons (SI, Figure S21), in excellent agreement with our previous observations of an ~0.5 eV 

shift per each one electron reduction of B12(OR)12.97, 107 Unfortunately, the cell containing 

Li2[B12(OCH3)12] showed inferior electrochemical performance compared to that using neutral 

B12(OCH3)12 (Figure S25). Attempts were made to refine the synchrotron data of Li2[B12(OCH3)12], 
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but a LiOH×H2O impurity phase was identified which precluded thorough analysis (SI, Figure 

S28). There are a number of potential reasons for the observed poor solid state cycling behavior 

and large voltage hysteresis when the chemically lithiated cluster is used as a cathode material. It 

is anticipated that the presence of the ionically and electronically insulating impurity phase could 

reduce the overall crystallinity, as well as impede the electron and Li-ion mobility in the lattice, 

leading to poor electrochemical performance.  

In conclusion, we have demonstrated the first example of a boron cluster undergoing 

reversible redox processes in the solid state. Through careful consideration of desirable properties, 

including low molecular weight, multiple redox events, and sterically accessible ether groups, a 

methoxy-functionalized boron cluster—B12(OCH3)—was identified as an ideal candidate and 

synthesized using a microwave reactor. After observing excellent electrochemical behavior in 

solution, this cluster was then incorporated into an all-solid-state Li-ion cell with a PEO solid 

electrolyte. The cell could be cycled to utilize 95% of the active material at C/20 rate, with high 

Coulombic efficiency of 96% and excellent reversibility, retaining 96% of the initial capacity even 

after 16 days of cycling. Overall, this work represents an important departure from the status quo 

in cathode material design, opening up a new class of materials for this application. The continued 

success of this approach will rely on further reducing the molecular weight of the redox-active 

boron clusters, as well as developing well-defined design rules that govern the interactions 

between the redox-active anions and cations.  
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