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ABSTRACT 

Cysteine chemoproteomics studies provide proteome-wide portraits of the ligandability or 

potential ‘druggability’ of thousands of cysteine residues. Consequently, these studies are 

enabling resources for closing the druggability gap, namely achieving pharmacological 

manipulation of ~96% of the human proteome that remains untargeted by FDA approved small 

molecules. Recent interactive dataset repositories, such as OxiMouse and SLCABPP, have 

enabled users to interface more readily with cysteine chemoproteomics studies1,2. However, these 

databases remain limited to single studies and therefore do not provide a mechanism to perform 

cross-study analyses. Here we report CysDB as a curated community-wide repository of human 

cysteine chemoproteomics data that incorporates high coverage data derived from nine studies 

generated by the Backus, Cravatt, Gygi, Wang, and Yang research groups. CysDB is a SQL 

relational database that is publicly available at https://backuslab.shinyapps.io/cysdb/ and features 

chemoproteomic measures of identification, hyperreactivity, and ligandability for 62,888 cysteines 

(24% of all cysteines the human proteome). The CysDB web application also includes annotations 

of functionality (UniProtKB/Swiss-Prot, Pfam, Panther), known druggability (FDA approved 

targets, DrugBank, ChEMBL), disease-relevance and genetic variation (ClinVar, Cancer Gene 

Census, Online Mendelian Inheritance in Man), and structural features (Protein Data Bank). 

Showcasing the utility of CysDB, here we report the discovery and enrichment of ligandable 

cysteines in undruggable classes of proteins, the observation that a subset of cysteines showed 

marked preference for specific classes of electrophiles (chloroacetamide vs acrylamide), and that 

ligandable cysteines are present in numerous undrugged disease-relevant proteins. Most 

importantly, we have designed CysDB for the incorporation of new datasets and features to 

support the continued growth of the druggable cysteinome. 

 

INTRODUCTION 

Small molecule chemical probes are useful tools for modulating protein function that can 

https://backuslab.shinyapps.io/cysdb/
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serve as leads for future medications. Therefore, ongoing efforts in the chemical biology 

community have set ambitious goals in matching every protein with a chemical probe3. 

Complicating matters, <4% of the human proteome has been pharmacologically targeted by an 

FDA approved small molecule. Cysteine chemoproteomics has emerged as an enabling 

technology that addresses this druggability gap by identifying thousands of functional and 

potentially druggable cysteines proteome-wide1-25.  Demonstrating this utility, prior cysteine 

chemoproteomic studies, including our own, have revealed a strikingly low overlap between 

proteins containing ‘ligandable’ or potentially ‘druggable’ cysteines and those that have been 

targeted by FDA approved molecules11. 

Cysteine proteomics experiments can be generally classified into four main categories: (1) 

identification, (2) measuring hyperreactivity, (3) measuring ligandability and (4) measuring redox 

state. (1) We consider identification studies as those aiming to increase coverage of cysteine 

containing peptides4-6. (2) Hyperreactivity experiments measure the intrinsic reactivity of cysteines 

towards highly electrophilic probes7-10, while (3) ligandability experiments measure the intrinsic 

ligandability or potential ‘druggability’ of cysteines using libraries of drug-like electrophilic 

molecules, natural products, and lipid derived electrophiles2,11,15-19. (4) Finally, redox protocols are 

tailored to identify redox sensitive cysteines1,20-23. 

While the overarching objectives of these studies are non-redundant, they do share 

general features, including conceptually similar workflows and, most importantly, shared targets. 

In a standard cysteine chemoproteomics experiment for example, the proteome is treated with a 

pan-cysteine reactive probe, followed by enrichment on streptavidin resin, sequence specific 

proteolysis, and tandem liquid chromatography mass spectrometry analysis (LC-MS/MS).  

Despite considerable recent advances in instrumentation, sample preparation, and data 

analysis, most cysteine chemoproteomics studies only sample a small fraction of all cysteines in 

the proteome, with the highest coverage studies sampling ~13% of all cysteines1,7,9. Reasons for 

this gap include protein abundance and restricted expression profiles, location of cysteines in very 
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long or very short tryptic peptides, which are not detected in standard trypsin digests, and 

unreactive cysteines, such as those buried in the protein core or located in structural disulfides. 

Despite these technical limitations, the cysteinome continues to grow, with the addition of multiple 

high coverage new studies in 2022 alone6,10,14.  

The availability of easily searchable cysteine databases—including Oximouse1, the 

Ligandable Cysteine Database, and previously reported Cysteinome24—has increased the 

general accessibility of these large proteomics datasets, allowing rapid queries for targets of 

interest9,12,13. However, with the exception of the Cysteinome database, which was launched in 

2016 and is no longer publicly accessible, these databases are restricted to datasets derived from 

single publications.  

To facilitate future studies aimed at global or target focused analyses of the cysteinome, 

we envisioned the establishment of a unified cysteine-focused database that would fulfill the 

following criteria. First, the database would incorporate datasets from many large scale 

cysteinomic studies and therefore enable rapid and facile inter- and intra-dataset comparisons. 

Second, the database would include information about the reactivity and ligandability of cysteines 

together with the druggability of their corresponding proteins, as indicated by availability of FDA 

approved drugs. Lastly, and most significantly, the database would integrate functional and 

structural data from the UniProtKB/Swiss-Prot, Cancer Gene Census (CGC), ClinVar, Human 

Protein Atlas (HPA), ChEMBL, DrugBank and the Protein Data Bank (PDB)26-32, to enable 

prioritization of targets for future studies. Here we present the CysDB, which is an interactive 

database that fulfills these criteria for 62,888 cysteines and 11,621 proteins. Importantly, to 

promote the continued growth of cysteine chemoproteomics, we also provide a straightforward 

route for addition of future datasets. 

 

RESULTS 
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(1) Data curation to establish a set of processed and aggregated chemoproteomics 

datasets to enable CysDB. 

Our first step towards creating CysDB was to assemble a set of publicly available datasets. 

With the overarching goal of establishing a high coverage and highly curated database of human 

chemoproteomics studies to enable cross-dataset exploration, we opted to focus on a reduced 

set of available datasets. We prioritized studies that reported high coverage datasets that 

measured one or more of the following parameters: (1) total number of cysteines identifiable by 

the pan-cysteine reactive probes, (2) measurement of cysteine intrinsic reactivity towards 

iodoacetamide alkyne (IAA, 1; Figure 1A and Figure S1) and (3) assaying cysteine ligandability 

(Figure 1A and Figure S2). In total, we collected nine datasets that fulfilled our criteria (Figure 

1B for all datasets used)2,4-11.  

Notably, all these studies rely on the same general cysteine chemoproteomic workflow: 

cells or lysates are treated with a cysteine reactive probe (Figure 1A, iodoacetamide alkyne (IAA, 

1) or an iodoacetamide desthiobiotin reagent (e.g., DBIA2 or IA-DTB8) to cap all accessible 

cysteines. Labeled proteins are subjected to enrichment on streptavidin or related resins together 

with sequence specific proteolysis followed by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). Several of our included studies7-9 further classify cysteine intrinsic reactivity and 

pinpoint hyperreactive cysteines by comparing relative cysteine labeling by two concentrations 

(10x and 1x) of cysteine enrichment handle (Figure 1A and Figure S1). Signal intensity 

differences between 100 μM and 10 μM treated proteomes are reflected by a ratio (R[high]:[low]). 

Hyperreactive cysteines are defined as those with R10:1 values < 2, indicating labeling events that 

are not concentration dependent. Most included studies provide a metric of cysteine ligandability 

or putative druggability2,4-5,8,10-11, which is generated by comparing relative labeling by equimolar 

iodoacetamide in the presence and absence of electrophilic compound, with decreased labeling 

indicative of a high occupancy labeling event (Figure 1A and Figure S2).  
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To produce a rigorously curated database, we subjected all prioritized datasets to a series 

of data processing steps tailored to the nature of the study. First, we aggregated all non-redundant 

cysteines published by all studies, using the unique identifier UniProtKBID_CYS#. For some 

studies2,4-9,11 residue positions and protein identifiers were provided in the supporting information. 

For a subset of studies, the supporting tables instead provided labeled peptide sequences and 

protein IDs7,10. To merge these two data types, we mapped each peptide to the corresponding 

canonical protein sequence using the UniProtKB reference FASTA from January 2022—this 

approach recovered nearly all cysteines, with only 37 dropped due to mismapping (Table S1), 

likely caused by differences in UniProtKB releases used in dataset search, as observed in our 

prior study9. In the event of proteomic analyses comparing cysteine labeling using different 

experimental conditions (e.g., unstimulated versus stimulated cells), we opted to incorporate only 

the datasets derived from control (no treatment) conditions, with the goal of limiting the potential 

impact of cell-state dependent differences of cysteine reactivity as a potential confounder to our 

downstream analyses. To address the many additional parameters, including data analysis 

pipeline differences, cysteines with incorrect residue numbers and peptides that match to multiple 

protein sequences (2,823 entries), we include the UniProtKB release and software used to 

process mass-spectrometry data for each dataset in Table S17,18,33–38. Aggregation of all datasets, 

including results from using multiple cell lines2,4-11, resulted in the chemoproteomic identification 

of 62,888 unique cysteines and 11,621 proteins (Figure 1C and 1D), which to our knowledge 

represents the most comprehensive cysteinome dataset reported to date.  

  Using the studies reporting measures of cysteine ligandability or labeling by electrophilic 

fragments or druglike molecules, we further stratified our dataset to generate a master set of all 

ligandable cysteines. The datasets included in our database (Figure 1A) were all prepared using 

the same general workflow where samples (lysates or cells) were treated by either a vehicle 

(DMSO) or a cysteine-reactive electrophile functionalized compound and the compound-

dependent changes in IAA or IADB reactivity assayed by LC-MS/MS analysis. Prior analyses 
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have revealed that comparable competition ratios can be calculated using either MS1 or MS2 

level quantification2,4-5,8,10-11. Therefore, we opted not to differentiate between samples analyzed 

using different quantification methods, including isotopic labeling strategy (TMT or isotopically 

enriched biotinylation reagents)2,6, label free quantification and data independent acquisition (DIA) 

based MS2 level quantification (Figure S2 for general workflow)4,8,10. The vast majority (97.2%) 

of all compounds screened were found to be functionalized with either a chloroacetamide or 

acrylamide moieties (Figure S3). A small but notable subset of compounds did however feature 

alternative electrophiles, including covalent reversible cyanoacrylamides38, fumarates, and 

activated esters—while activated esters are primarily lysine reactive our prior data indicates that 

they do also exhibit cysteine-reactivity40,41. 

All datasets included in our database relied on competition ratio cutoffs for what defines a 

cysteine as ‘ligandable.’ Generally, cysteines were categorized as liganded if they had at least 

two ratios R ≥ 4 (hit fragments) and one ratio between 0.5 and 2 (control fragments). However, 

when processing the ligandability data for each dataset, we observed manuscript-specific 

differences in either the ratio cutoff value or number of minimum unique hit fragments (1 or 2) 

required to have the associated ratio cutoff value for designating a cysteine as ligandable. For 

example, Cao et. al. 2021 implemented a slightly more permissive ratio cutoff of 3 to account for 

high field asymmetric waveform ion mobility spectrometry (FAIMS)-induced ratio-compression5. 

By comparison, Vinogradova et. al. 2020 implemented a more stringent ratio cutoff of 58. Another 

case we encountered was the inclusion of ‘ligandable’ cysteines where the unique identifier 

contained multiple modified cysteine residues, such as UniProtKBID_CYS#1_C#2. These types 

of identifiers are derived from peptide sequences simultaneously labeled with capture reagents 

at multiple cysteine residues (C1*XXXC5*) within the same sequence. Based on our experience 

with such peptides yielding noisy ratios, we opted to remove them from CysDB—a total of 2,584 

peptides were excluded due to this criteria. Otherwise, despite the differences in defining 

ligandability, we opted to retain all remaining liganded cysteines to accurately represent each 
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study’s reported findings (criteria for ligandability applied to each study is available in Table S1). 

In aggregate across all ligandability studies, a total of 43,475 unique cysteines (Table S2) had 

quantified ratios, and 9,246 unique cysteines were deemed ligandable. These cysteines were 

found in 4,404 proteins (Figure 1C and 1D).  

Next, we parsed processed data from published datasets measuring cysteine 

hyperreactivity7-9. The three hyperreactivity studies included in CysDB measured the relative IAA 

reactivity towards two concentrations of IAA (100 μM and 10 μM), where a quantitative isoTOP-

ABPP ratio (R[high]:[low]) reflects the differences in signal intensities between the 100 μM and 10 μM 

treated proteomes. Highly reactive cysteines, termed ‘hyperreactive’ residues, are identified as 

those that exhibit saturation or near-saturation of labeling at the lower IAA concentration. All three 

publications utilized the same numerical ranges to delineate cysteines into ‘high,’ ‘medium,’ and 

‘low’ reactivity subsets, with high reactivity, also termed ‘hyperreactive’ residues as those with an 

R10:1 < 2, medium reactive cysteines between R100:10 >= 2 and R10:1 < 5 and low reactivity cysteines 

R10:1 > 5. During dataset processing, we observed that Weerapana et. al. 2010 and Palafox et. al. 

2021 report median values of all the replicates for each individual measure of cysteine reactivity, 

as well as an overall mean of medians to quantify the average reactivity per cysteine. In contrast, 

Vinogradova et al. reports the average of medians across all measurements. To accommodate 

these dataset dependent differences, we opted to report the mean of median ratio values for each 

detected cysteine. In aggregate, 8,604 cysteines on 4,032 proteins were quantified by these three 

studies, which resulted in identification of 489 hyperreactive cysteines and 426 proteins containing 

hyperreactive cysteines (Figure 1C and 1D).  

Collectively across all cysteines identified through our data aggregation efforts, 14% were 

deemed ligandable and less than 1% determined to be hyperreactive. Cross-dataset comparisons 

reveal the highest overall coverage dataset was reported by Yan et. al 2021 (Figure 1E and 

Figure S4)4, where an optimized SP3-FAIMS strategy was applied to analyze the proteomes of 

seven cell lines, which in aggregate identified more than 34,000 cysteines on 9,714 proteins from 
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7 cell lines (Figure S4 and S5). A key outcome of the dataset aggregation required to build CysDB 

is an effective doubling of the size of the identified cysteinome. Collectively across all studies 

analyzed in CysDB, ~25% of all cysteines found on 57% of human proteins in UniProtKB have 

been assayed at least once by chemoproteomics (Figure 1C and 1D).  

 

(2) Establishing an SQL database with an RShiny user interface for CysDB 

With a complete, curated dataset in hand, we constructed the CysDB database and web 

user interface outlined in Figure 2A. Processed data from prioritized studies (Supplementary 

Tables listed in Table S1)2,4-11 were prepared into a standardized input format for SQL integration 

(See Table S1 for example data format and required information for future data integration to 

CysDB) and loaded into a database hosted in Google Cloud using MySQL v.8.0. (See Methods 

for more details on data preparation and processing). CysDB is a relational database composed 

of six individual tables (SI Figure S6). For public accessibility of CysDB, we developed a front-

end, user interface powered by the Shiny framework (Figure 2B). Shiny converts queries from 

remote users into visualizations and results that are displayed on a web browser. Not only does 

our web application access the Cloud CysDB, but it additionally calls from both structural and 

functional external databases, including UniProtKB, COSMIC, ClinVar and PDB26-29,32. 

One challenge we faced during our processing of the data provided in each study's 

Supplementary Tables, was one-to-one mapping of protein accessions to gene names for SQL 

querying. For gene-centric queries, not all HUGO Gene Nomenclature Committee (HGNC)42 or 

Entrez gene symbols are associated with a single protein. Gene sequences translated to the 

same protein sequence can lead to multi-mapping of various gene names to one UniProtKB 

accession9. In CysDB, we found that 16 UniProtKB entries were associated with multiple gene 

names (Table S1). To address this limitation, we included the capability to search from the main 

landing page using gene symbols, protein names or disease terms. Querying with any of these 

terms displays a table listing associated UniProtKB entries. The user then selects one of the listed 
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UniProtKB accessions for CysDB search. The CysDB RShiny interface enables the user to 

interact with cysteine chemoproteomics datasets, generate personalized figures, and download 

their results. Anywhere in the app, a user can save graphs as an image by clicking on a camera 

button at the top right corner and export query results to a CSV file by clicking a download button 

at the bottom of a table. The CysDB app includes five sections: Protein, Mutation, Enrichment, 

Compound, Statistics, and Datasets.  

First, users can visualize the CysDB data in a protein-centric manner by selecting the 

protein explorer button, which is found on the home page (Figure 3A). Search for protein of 

interest (POI) by querying a UniProtKB ID returns the ‘Protein Section,’ which is further broken up 

into three separate tabs detailing activity, structure, and function. The activity tab provides a ‘site 

map’ indicating whether any cysteines in the POI are hyperreactive or ligandable together with  

the measured reactivity, measured competition ratios and the structures of all compounds that 

ligand the POI. The structure tab provides the user with annotations of proximal active site and 

binding site residues in both linear sequence and three-dimensional space and an easily 

accessible mechanism to visualize the three-dimensional protein microenvironment of 

chemoproteomic detected cysteines, including for structures reported in the PDB. Lastly, the 

function tab reports functional annotations for the POI generated from UniProtKB Gene Ontology 

(GO), and Reactome26,43,44. 

The ‘Mutation Section’ of CysDB, which can be accessed by selecting the ‘Disease 

Explorer’ button on the homepage, provides information complementary to that presented in the 

‘Protein Explorer’ section. Query for a POI yields the aggregate number of CysDB cysteines, 

missense variants identified in ClinVar, the public repository of relationships between human 

genetic variation and phenotype, and cancer gene census (CGC) genes mapped to the POI. 

Search also generates a one-dimensional depiction of the corresponding protein sequence 

decorated with the positions of CysDB ligandable and hyperreactive cysteines alongside 

individual missense variants, sequence elements, and known ligand binding sites (Figure 3B). 
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To expedite identification of clinically relevant protein regions containing ligandable and 

hyperreactive cysteines, the Mutation Section of CysDB also provides the clinical significance for 

variants as reported by ClinVar28, the public repository of relationships between human genetic 

variation and phenotype. To further enable pinpointing of cysteines relevant to human health, 

CysDB also provides CGC annotations of tumor types associated with POI, where relevant.  

Looking beyond individual POIs, the ‘Enrichment Section’ of CysDB was built to enable 

facile visualization and analysis of the aggregated CysDB datasets. Global analyses provided 

include functional pathway, ontology, and disease enrichments of CysDB categories. By mapping 

the UniProtKB protein identifiers to Entrez gene symbols, CysDB also enables user-directed 

enrichment analysis of the ligandable and hyperreactive cysteine subsets, powered by the Enrichr 

package45,46 (Figure 3C).  

As with the dataset-wide meta-analysis provided by Enrichment Section, the ‘Compound 

section’ of CysDB provides users with a global perspective of the electrophilic compounds 

employed in the CysDB cysteine ligandability studies. This portion of CysDB includes details of 

each molecule used in the ligandability experiments, including the publication name of each 

compound, corresponding CysDB names for each corresponding compound and dataset in an 

easily downloadable table. For CysDB, we created two naming conventions for each compound, 

a ‘Group Compound Identifier’ and an ‘Individual Compound Identifier. The Group Compound 

Identifier is called “GROUP_WARHEAD_#” and is based on only on SMILES strings; the 

individual compound identifier is called “WARHEAD_#,” and is unique for each SMILES string, 

cell line and publication author combination. With these two identifiers, one can group results from 

the same molecule generated under different conditions (e.g., sample preparation protocol, cell 

lines, etc.). Before generating these two compound identifiers, we had to standardize the format 

of each SMILES strings. Consistent with previous studies47, we found that the molecular 

connectivity for a single 2D chemical structure could be written in various forms (for example, 

ethanol can be denoted as C(O)C, as well as CCO). Thus, we transformed the SMILES strings 
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extracted from each publication into 2D chemical structures and converted these 2D chemical 

structures into new SMILES strings using RDKit. Selection of a single group compound identifier 

or individual compound identifier using the provided drop down menus, affords a two-dimensional 

rendering of the chemical structure and computed properties of ‘drug-likeness,’ including the 

number of hydrogen bond donors and acceptors (Figure 3D)48-53. For this section, we created two 

separate CysDB compound identifiers to produce scatter plots showing the highest ratios 

collected for each compound.  

The final ‘Statistics Section,’ is accessible from the home page both via the 

chemoproteomics explorer button and from the left menu. The Statistics Section provides 

interested users with CysDB-wide metrics for hyperreactive and ligandable cysteine-containing 

proteins, proteins targeted by FDA approved drugs, proteins associated with cancer, and proteins 

containing missense variants. In a user-centric manner, this section also allows interested users 

to compare and contrast individual datasets including by identification of unique and overlapping 

residues and proteins.  

 

(3) Understanding the scope of the CysDB ligandable or putative ‘druggable’ proteome 

With the CysDB database established, we further parsed the data available in CysDB to 

showcase features built into CysDB and to facilitate the identification of new potential targets for 

future chemical probe development campaigns. More broadly, we also seek to highlight future 

opportunities for the cysteine chemoproteomic community. Given the aforementioned low overlap 

between FDA approved drug targets and proteins labeled by cysteine-reactive compounds for 

prior smaller cysteine chemoproteomics studies11, we next extended this analysis to CysDB. Less 

than 4% of all human proteins in UniProtKB have been targeted by FDA approved small molecules 

(Figure S7). As only 14.7% of all cysteines in CysDB were reported as likely ligandable, we next 

performed the same analysis on the subset of proteins in CysDB that contain a ligandable 

cysteine. Again, consistent with the prior reports that have demonstrated a low overlap between 
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targets of covalent compounds and FDA approved drugs, we find that 3% of proteins that contain 

one or more ligandable cysteine have been targeted by FDA approved drugs (Figure 4A). 

Broadening this analysis to a less restrictive set of compound-protein interactions, we find that 

32.5% of proteins with ligandable cysteines have been targeted by small-molecules, as reported 

by ChEMBL, DrugBank, and the FDA (Figure 4B). These findings showcase the opportunities for 

targeting undrugged proteins using cysteine-reactive chemical probes.  

Prior studies have shown that drug and putative drug targets are highly enriched for 

protein classes featuring well defined binding sites, including enzymes and receptors. Therefore, 

our next step to further characterize whether the CysDB members represent new druggable space 

was to parse the UniProtKB keyword functional annotations of all ligandable proteins in CysDB. 

Stratification of the CysDB ligandable proteins into two categories, targeted and untargeted by 

FDA approved compounds, acknowledged an enrichment for enzymes in the FDA approved 

subset (Figure 4C). In contrast, the functions of the non-FDA subset of ligandable proteins in 

CysDB span a number of important protein classes, including transcription factors (TFs), which 

are often categorized as a largely ‘undruggable’ class of proteins, with the notable exception of 

TFs with well-defined small molecule ligand binding pockets, such as nuclear hormone receptors.  

To further dissect the potential druggability of CysDB entries, we next analyzed the 

compounds that target ligandable cysteine residues. A number of different electrophilic moieties, 

often termed ‘warheads,’ have been developed, which react with cysteine residues in both 

irreversible and covalent reversible modes of labeling39,54-56. Examples of these electrophilic 

handles include compounds that react via a thiol-michael addition (e.g., irreversible modifiers such 

as acrylamide, fumarate esters, vinyl sulfonamide together with reversible modifiers such as 

cyanoacrylamide), compounds that react via SN2 (e.g., alpha-halo compounds), as well as 

compounds that react via SNAr (e.g., halogen-substituted electron deficient heterocycles such as 

chlorotriazine). As prior studies have revealed varying proteome-wide reactivity and structure-

activity relationships (SAR) for different cysteine-reactive electrophiles, we next quantified the 
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number of cysteines detected as labeled by individual electrophile chemotypes. For this analysis, 

we defined that a cysteine was labeled by one of the five warheads if the cysteine had an R >= 4 

for at least one compound (Figure 4D, Figure S8, and Figure S9)2,27-62. We find that a large 

majority of the ligandability data were acquired for samples subjected to labeling by acrylamides 

(AA) and chloroacetamide (CA)-substituted compounds across the panel of cell lines tested 

(Figure 4D and S10), with a small fraction derived from additional probes ranging from 

cyanoacrylamides to dimethylfumarate listed in Table S2. Interestingly, we find that some 

cysteines react promiscuously with both AA and CA electrophiles, whereas others show an 

electrophile preference (Figure 4E). The proteins glutathione S-transferase omega-1 (GSTO1) 

and carbonyl reductase (CBR1) exemplify the striking electrophile preference observed for some 

proteins (Figure 4F). For GSTO1, the highly ligandable cysteine (Cys 32) exhibits strong 

preference for reacting with chloroacetamide (CA)-substituted compounds (1 to 11.5 in favor of 

CA electrophiles, with respect to unique SMILES strings with the CA moiety). In contrast, cysteine 

226 of CBR1 shows marked acrylamide (AA) bias (5 to 1 in preference of AA warheads, with 

respect to unique SMILES strings with the AA moiety).  

 

(4) Characterizing CysDB proteins based on structural, activity and functional annotations  

Given the sheer scope of available chemoproteomics datasets, one of the foremost 

ongoing challenges of cysteine chemoproteomic studies is the high throughput delineation of the 

functional impact of covalent cysteine modification. While for some cysteines, such as catalytic 

nucleophiles, covalent modification will almost invariably afford a defined functional outcome, the 

impact of modifying other less well annotated cysteines, such as those in proteins or protein 

domains of unknown function, remains less clear. To encourage discovery of likely functional and 

disease-relevant cysteines, CysDB includes metrics of functionality from UniProtKB, known 

Cancer Gene Census (CGC), and genetic variants in ClinVar. These databases were chosen to 

provide measures of relevance to functional biology and human disease.  
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We first harnessed UniProtKB annotations to determine which CysDB proteins had 

functional annotations of the following active sites, binding sites, catalytic activity, disulfide bonds 

and redox potentials. Analysis concluded 1,505 CysDB proteins possess an active site, 2,961 

possess a binding site, 2,784 have experimental evidence for catalytic activity, 1,077 have 

annotated disulfide bonds and 52 have experimental evidence for redox potentials (Figure 5A). 

Comparable distribution of functional annotations was observed when stratifying the CysDB 

dataset to consider hyperreactive and ligandable proteins.  

To assess whether any CysDB cysteines were annotated as known active or binding sites, 

we parsed the UniProtKB site annotations for residue positions. This analysis uncovered that, 

while cysteine is a relatively rare amino acid (2.3% of all proteinacious amino acids are 

cysteines1), cysteine is the second most abundant binding site amino acid and the third most 

abundant active site amino acid (Figure S11 and Figure S12). Overall, CysDB reports 

identification of 1,335 (31.8%) of all known cysteine matching UniProtKB annotated binding sites 

and 288 (49%) of all known cysteine active sites (Figure 5B). Out of the 4,198 cysteine specific 

binding sites, 178 of them have been liganded by a compound in CysDB. In addition, 98 out of 

the 583 cysteine active sites have been liganded by a compound in CysDB and 41 out of the 583 

cysteine active sites were deemed hyperreactive (Figure S13).  

Next, we extended this analysis to look for cysteines ‘in or near’ annotated active or 

binding sites using protein sequences. By searching 10 amino acids upstream and downstream 

from a CysDB identified cysteine, we were able to increase the number of cysteines proximal to 

these functional sites. In total, 2,602 CysDB cysteines are near binding sites, including 396 

ligandable and 41 hyperreactive CysDB cysteines (Figure S14), and 496 CysDB cysteines are 

near active sites, including 56 ligandable and 12 hyperreactive cysteines (Figure S15).  

As the UniProtKB dataset is limited to 1D analysis, we next asked whether CysDB could 

also provide insight into the 3D microenvironment of identified cysteines, using structures reported 

in the PDB. 5,270 CysDB ID proteins are associated with an available PDB structure, which 
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represents 70% of all human genes with available crystallographic structures (Figure S16). Of 

these, 2,314 (31%) contain one or more ligandable cysteines and 279 feature at least one 

hyperreactive cysteine (Figure 5C). To confirm whether a CysDB cysteine was resolved in a PDB 

structure, we parsed the residue numbers and coordinates from PDB files. To account for 

discrepancies between UniProtKB and PDB residue numbers, residue to protein sequence 

numbering was mapped using SIFT annotations63 (Figure S16). This systematic analysis of 

residue-level mapping established that out of all the proteins with annotated binding or active 

sites, 2,684 and 1,315 proteins, respectively, are associated with PDB structures (Figure S17 

and Figure S18). Of these, 1,007 proteins have a cysteine binding site resolved in a 

corresponding structure, while 338 proteins have a cysteine active site resolved in a 

corresponding structure. In aggregate, 18,959 (30.1%) of CysDB identified cysteines are 

resolved in a corresponding crystal structure. Further inspection of this dataset revealed that 

1,212 CysDB cysteines are proximal (within 10 Angstroms) to binding site residues and 704 

CysDB cysteines are proximal to active site residues in 3D space (Figure S19 and Figure S20). 

To assist structure-guided analysis of cysteine datasets, CysDB provides users with 3D 

interactive renderings of cysteine-containing structures that include known functional annotations. 

Notably, 8,214 proteins (71%) identified by chemoproteomics do not have highly 

supported evidence in UniProtKB for binding or active sites. Therefore, we next asked whether 

the CysDB platform could provide additional information about these proteins and corresponding 

identified cysteines to further aid in delineation of functionally significant cysteines. To guide our 

platform development efforts, we tested whether the ligandable and hyperreactive cysteine-

containing protein subsets are enriched for particular structural domains and functional pathways. 

Enrichment analysis of protein family (Pfam)64 domains elucidated a 13-fold enrichment of 

liganded proteins in the DEAD/DEAH box helicase family, which is consistent with our prior 

observation of enrichment for RNA binding proteins in chemoproteomics datasets (Figure 5D)65. 



17 

Responsible for unwinding the duplex of double-stranded RNA, mutations in DEAD/DEAH 

proteins have been linked to autoimmune disease and some cancers, such as DEAD-Box 

Helicase 3 X-Linked (DDX3X) in medulloblastoma66-69. Pfam domain enrichment analysis for the 

hyperreactive cysteine subset, revealed an enrichment of thioredoxin and arginine kinase 

families. These findings are consistent with prior reports of redox enzymes featuring highly 

reactive cysteines7. Notably creatine kinase enzymes are members of the arginine kinase family 

of enzymes, which are known to have highly reactive active site cysteines7.   

We then extended these studies to Panther70 pathway analysis to assess if particular 

pathways are enriched for reactive or ligandable cysteines. We observe an enrichment of 

ligandable cysteine-containing proteins implicated in apoptosis (Figure 5E). Examples of 

ligandable cysteine-containing proteins include TP53, caspase-8, and APBB2. Given the central 

relevance in modulating cell death to treatment of numerous disorders, including cancers and 

neurodegenerative disorders, we expect that this observed notable enrichment indicates 

untapped opportunities for the development of probes targeting cell death71,72. The hyperreactive 

cysteine-containing protein set, by contrast, was distinctly enriched for proteins involved in integrin 

signaling. These findings are consistent with the aforementioned enrichment for hyperreactive 

cysteines in the thioredoxin proteins and related antioxidant systems that are critical for regulation 

of integrin abundance, secretion, and disulfide formation73,74. 

 

(5) Stratifying CysDB proteins based on disease-relevant annotations, including cancer 

association and measures of genetic variation  

Building upon our analyses of protein function, we assessed the human disease relevance 

of the CysDB proteins. Restricting our analysis to the ligandable and hyperreactive subsets, we 

analyzedwhich phenotypes were associated with CysDB proteins. Using disease annotations 

from the Online Mendelian Inheritance in Man (OMIM)75 knowledge base, ligandable cysteine-

containing proteins showed terms related to a broad range of cancers, including colorectal, breast 
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and leukemia. The hyperreactive cysteine-containing protein subset was enriched for terms 

associated with immune-relevant diseases, specifically those affecting the lymphatic system 

(Figure S25). Next, we determined how many CysDB proteins are annotated as cancer driving 

genes, as dictated by the Cancer Gene Census (CGC)27. 76% of CGC genes have been identified 

by CysDB (559/733) (Figure S28). Out of all the CGC genes, 38% are annotated as ligandable 

in CysDB, indicating untapped opportunities for the development of tailored therapies targeting 

driver mutations (Figure 6A and Table S4). These results compare favorably to the 11% of cancer 

driving genes that have been targeted by FDA approved small molecules (Figure S29 and Table 

S2). We observed a considerable difference in the number of available therapies for different 

cancers during our enrichment analysis for CysDB proteins associated with different tumor types. 

While acute myeloid leukemia (AML) genes are the most represented somatic tumor type in CGC, 

only 5% of these genes are targets of FDA approved small molecules. By contrast, 13 out of 38 

(34%) of non-small cell lung cancer (NSLC) genes have been targeted by FDA approved drugs. 

Towards addressing this therapy gap, CysDB detects most CGC genes associated with AML, 71 

out of 81 (88%) (Figure 6B). In fact, 36 of these AML genes have been liganded by a compound 

in CysDB, such as class 2 AML genes nucleophosmin 1 (NPM1) and core-binding factor subunit 

beta (CBFB). 

Genetic variants, along with wild-type genes, can contribute towards harmful disease 

phenotypes. The ClinVar28 database provides a curated set of clinical significance for over a 

million genetic variants, which are classified as either benign, pathogenic, or variants of unknown 

significance (VUS). Out of 12,858 unique UniProtKB proteins associated with ClinVar variants 

(mapped to 31,685 unique genes), 9,478 (73.7%) proteins have a missense variant (Figure S30). 

Overall, more than half of the proteins identified in CysDB have an associated ClinVar missense 

variant, of which 3,075 contain a liganded cysteine and 330 contain a hyperreactive cysteine 

(Figure 6C). Previously we reported a trend between chemoproteomic identified cysteines and 

missense pathogenicity, where chemoproteomic detected cysteine codons were predicted to be 
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more deleterious than undetected cysteine codons9.  Consistent with the ubiquity of missense 

variants in ClinVar, the most common mutation associated with CysDB ID CGC genes are 

missense mutations27. Of the CysDB ID proteins that have a ClinVar missense variant, 4,418 

proteins have a benign variant, 2,524 proteins have a pathogenic variant, and 3,333 proteins have 

a variant of unknown significance (Figure S31). The proteins with the highest number of 

pathogenic variants are Fibrillin-1 (FBN1, UniProtKB: P35555) and Low-density lipoprotein 

receptor (LDLR, UniProtKB: P01130) (Figure 6D). Mutations in FBN1 are known to frequently 

cause Marfan syndrome by destabilizing disulfide bonds of conserved cysteine residues in 

epidermal growth factor (EGF)-like domains76-78. Additionally, LDLR contains cysteine-rich 

repeats that bind lipoproteins. Loss-of-function mutations in these regions result in the disruption 

of cholesterol transport, leading to an increased risk of heart disease78,80. In addition to enabling 

human genotype-guided target prioritization, targeting variant-containing chemoproteomic 

detected proteins may also prove useful precision therapy development in a manner akin to the 

recent Gly12Cys directed KRAS compounds, including FDA approved Sotorasib81-83.  

 

DISCUSSION 

Leading groups in cysteine chemoproteomics have discovered thousands of functional 

and potentially druggable cysteines proteome-wide1-9. These studies have yielded global 

measures of the SAR of compounds that target specific cysteines together with the intrinsic 

reactivity towards promiscuous electrophilic probes. Given the functional and clinical significance 

of identification of reactive and ligandable cysteines, the development of strategies that enable 

rapid cross datasets comparisons between these studies represents an important opportunity for 

the cysteine chemoproteomics community that will enable a more comprehensive understanding 

of the cysteinome. Here we present CysDB as such a tool that unites high coverage 

chemoproteomic measures of identification, ligandability, and hyperreactivity across multiple 

studies, together with integration with relevant resources to provide metrics of functionality and 
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disease-relevance. CysDB achieves identification of an impressive 62,888 unique cysteines and 

11,621 proteins, which represents a ~100% increase in total number of identified cysteine 

residues compared to individual prior studies, with added potential for further growth as new 

datasets become available.    

As a first step to construct CysDB, we accumulated and curated a selected set of cysteine 

chemoproteomics studies, which were prioritized due to the high coverage of identified cysteines. 

During our stringent data curation, we observed study-dependent differences in conventions for 

designating a cysteine as hyperreactive and/or ligandable. To account for the potential uncertainty 

caused by a general absence of field-wide data analysis conventions, we retained all 

hyperreactive and/or liganded cysteines so as to accurately represent each study’s reported 

findings. The development of statistically rigorous conventions for the field will aid in normalizing 

future cross-dataset comparison efforts. As a first approach, in our studies we have required 

comparable ratios with low standard deviations identified across multiple biological replicates 

together with inclusion of inactive control datasets to further simplify removal of potentially 

spurious elevated ratios. For studies that rely on MS1-based quantification, so-called ‘singleton’ 

values, should be treated with an additional level of stringency, as these can prove more prone 

to yielding spurious ratios. These ratios are derived from peptides with precursor ions that have 

only been identified with either a heavy or light isotopic modification. Therefore, we followed 

general conventions for filtering singletons, by setting a maximum ratio value of log2(ratio) 

equivalent to 20 requiring identification of additional lower ratio ions. Future studies, including our 

own, will benefit significantly from harnessing advances in data acquisition and analysis to 

improve reproducibility, including imputation and data independent acquisition (DIA), as 

showcased by recent efforts by the Wang group84.       

Illustrating the utility of CysDB, we find that by combining datasets generated across 

multiple cell lines and using different labeling reagents, we substantially increased aggregate 

coverage of the cysteinome. Alongside cysteine coverage, CysDB reveals that cell line selection 
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can impact not only which cysteines are identified in proteomes derived from different cell lines 

(Figure S5), but also the hyperreactivity and ligandability of individual cysteines. We ascribe these 

differences in part to both cell state specific expression as well as the stochastic nature of data 

dependent acquisition (DDA), which is the acquisition method used to generate nearly all datasets 

analyzed.  

In its current iteration, CysDB provides a low-throughput mechanism to assess 

reproducible ligandability of cysteines across studies, including those that analyze identical 

compounds. To enable such comparisons, we grouped identical compounds shared across 

multiple publication datasets under a shared identifier, termed "Group Compound ID." The Group 

Compound ID allows users to easily visualize the reproducibility of cysteine ligandability across 

studies. The relative rarity of shared compounds used across multiple studies (25 in total in 

CysDB) remains a limitation for reproducibility analysis at the level of specific compounds. One 

notable exception to this paradigm is the recent work by Yang et al.10 that validates many 

compounds assayed by DDA using a DIA approach. We hope that future studies will consider 

inclusion of several benchmark scout fragments to stimulate efforts in assessing the 

reproducibility of ligandable ratios across studies. In addition, these cross-dataset comparisons 

revealed a marked bias towards chemoproteomic analysis of chloroacetamide and acrylamides, 

which points to largely untapped opportunities in expanding the scope of the ligandable 

cysteinome through assaying additional classes of electrophiles. 

A key feature of CysDB is the inclusion of functional and disease annotations from 

UniProtKB, CGC, and ClinVar. We expect that the centralization of the annotations should allow 

for rapid prioritization of ligandable cysteines for future studies. Showcasing the utility of cysteine 

chemoproteomics to access tough-to-drug classes of proteins, we find a considerable enrichment 

in transcription factors containing ligandable cysteines (Figure 4C). We also observe that the vast 

majority of Census driver genes contain a cysteine identified in a chemoproteomics study.  These 

findings together with our observation that a smaller but still substantial 38% of all census genes 
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contain a ligandable cysteine suggests opportunities for future studies to more comprehensively 

assess the ligandability of these genes.  

During our efforts to map annotations generated from genomics data (e.g., 

ClinVar/Census data), we encountered issues with mismapping for a subset of identifiers. While 

processing all datasets included in CysDB, we observed that a handful (16) gene names did not 

map to UniProtKB protein accession numbers in a one-to-one type of manner, during SQL 

querying; multiple HGNC or Gene Entrez symbols can be associated with a single protein 

identifier if the translated gene products are identical protein sequences26. Given the utility of a 

gene-centric search, we have incorporated such identifiers in this release of CysDB to aid future 

proteogenomic analysis. 

An ongoing goal of CysDB is to facilitate expanding the scope of the ligandable and 

potentially druggable cysteinome, particularly for functional and disease-relevant proteins. Given 

our observed bias in CysDB ligandability datasets towards chloroacetamide and acrylamide 

moieties, we expect that future expansions of the ligandable cysteinome may stem in part from 

chemoproteomic studies utilizing additional classes of electrophiles. In a similar manner, we 

expect that inclusion of datasets generated using alternatives to iodoacetamide as promiscuous 

cysteine-reactive capping agents, including for example hypervalent iodine-based probes19, 

should further increase coverage of labeled cysteines.  In this first iteration of CysDB, we have 

opted to restrict our datasets to those generated through lysate-based proteomic studies, which 

eliminates challenges associated with deconvolving changes in protein abundance from direct 

cysteine labeling. Given the importance of cell-based studies for target discovery and hit-to-lead 

optimization, we look forward to including such datasets in future releases, particularly when 

combined with bulk measures of protein abundance. In a similar manner, we look forward to 

incorporating redox proteomics datasets in subsequent iterations of CysDB, alongside 

generalized strategies to merge the diverse data formats generated by these studies. Looking 

ahead, we are enthusiastic about the continued growth of CysDB and encourage all interested 
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users to consider submission of relevant chemoproteomics datasets that comply with our 

submission format (Table S1) and that include spectral files deposited in a public data repository, 

such as Pride85.  
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STAR METHODS 

Detailed methods are provided in the online version of this paper and include the following: 

 

• KEY RESOURCES TABLE 

• LEAD CONTACT AND MATERIALS AVAILABILITY 

• METHOD DETAILS 

o Proteomics data analysis 

o CysDB database 

o CysDB web application 

• DATA AND CODE AVAILABILITY 

• ADDITIONAL RESOURCES 

o Dataset Addition to CysDB 

 

KEY RESOURCES TABLE 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Deposited Data   

CysDB This paper https://backuslab.shinyapps.io/cysdb/ 

Human proteome UniProt UP000005640 

UniProtKB/Swiss-Prot 

Fasta 

2201-release https://www.uniprot.org/ 

UniProtKB/Swiss-Prot 2209-release https://www.uniprot.org/ 

COSMIC 2209-release https://cancer.sanger.ac.uk/census 
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ClinVar 2209-release https://cancer.sanger.ac.uk/census 

Human Protein Atlas 

(HPA) 

Version 21.1 https://www.proteinatlas.org 

Enrichr Panther 2016 http://www.pantherdb.org/pathway/ 

Enrichr Pfam Domains 2019 https://pfam.xfam.org/ 

Enrichr OMIM Disease  https://www.omim.org/downloads 

Software and 

Algorithms 

  

R version 4.2.1 R project  https://www.r-project.org 

RStudio Version 

2022.07.1 

 https://rstudio.com 

ImageJ NIH https://imagej.nih.gov/ij/ 

Enrichr Accessed Sept. 2022 https://maayanlab.cloud/Enrichr/ 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Materials and data in this work can be obtained from Keriann Backus 

(kbackus@mednet.ucla.edu) upon request.  

 

METHODS DETAILS 

 

Proteomics data analysis 

Chemoproteomics data was collected from publicly accessible supplementary tables of previous 

literature2,4-11. Columns were parsed for UniProtKB protein identifiers and locations of the 

corresponding modified cysteine amino acid numbers to create a new identifier for CysDB: 

mailto:kbackus@mednet.ucla.edu
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UniProtKBID_CYS#. Any cysteine classified as ‘ligandable’ or ‘hyperreactive’ is listed in CysDB 

as ligandable or hyperreactive. Individual ligandability and reactivity ratios found from each 

publication are listed in Tables S1 and Table S2. In some cases, for the ligandability and reactivity 

datasets, publications listed ratios for peptides simultaneously modified at multiple cysteines such 

as UniProtKBID_CYS#1_CYS#2, where the ratios provided for UniProtKBID_CYS#1_CYS#2 

differed from UniProtKBID_CYS#1. Thus, ratios for peptides modified at multiple cysteines were 

not included in further analyses.  

 

Compounds found in ligandability studies were stratified according to their cell line and 

chemotype. Unique identifiers for each compound were constructed based on their chemotype 

within the five categories: acrylamide, bromoacetamide, chloroacetamide, dimethyl fumarate 

(dmf) and others, such as ACRYL_#. Unique group identification numbers were constructed for 

compounds based on their chemotype and SMILES string, such as GROUP_ACRYL_# 

Publication names for each compound and CysDB names are provided in Table S2.  

 

In the event amino acid numbers were not provided by the author, python scripts (available on 

GitHub) were utilized to map the listed peptide sequences to the canonical protein sequences of 

the 2201-release UniProtKB human fasta reference file, as this release is the only version saved 

in the UniProtKB archive for future mapping. Cysteines from unmatched peptides were removed 

prior to subsequent analyses. To inspect the extent of mismapped identifiers in CysDB, we 

collected peptides mapped to multiple proteins or peptides labeled at multiple cysteine sites from 

each publication (Table S1). Peptides labeled at multiple cysteines were dropped from our 

ligandability and hyperreactivity data aggregation.  

 

Cancer Gene Census (CGC) website reports were downloaded Sept. 2022 and mapped to CysDB 

data using UniProtKB accessions. Due to frequent UniProtKB updates, Gene symbols reported 
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in the Cancer Gene Census were mapped to gene names in UniProtKB to identify the updated 

UniProtKB codes (2209-release). 

 

CysDB database 

CysDB was created as a relational database using MySQL v.8.0. Overall, the database contains 

six tables and is hosted on Google Cloud. The major parent tables, ‘Datasets’ and ‘Identifiers’, 

were further broken down into child tables, such as ‘Ligandable’, ‘Reactive’, ‘Compound’ and 

‘Warheads’ (Figure S6).  The Datasets table contains information specific to each of the nine 

publications, while the Identifiers table contains information specific to each modified cysteine or 

protein identifier. Columns within Datasets and Identifiers include binary results for the following 

three categories: identified, hyperreactive and ligandable. However, individual competition ratios 

are listed in the Ligandable table and individual reactivity ratios are listed in the Reactive table. 

Calculated molecular properties for ‘drug-likeness’ were acquired using RDKit45 and are stored 

in the ‘Compounds’ table. This table also contains the CysDB compound identifier mapped to their 

associated publication abbreviation or designated name. Group compound identifiers 

(“GROUP_WARHEAD_#”) were defined by unique standardized SMILES strings and individual 

compound identifiers (“WARHEAD_#”) were defined by unique standardized SMILES string, cell 

line and publication author combinations. Finally, the warhead table holds chemotype 

classifications for each compound. The five chemotype classifications were as follows: 

acrylamide, bromoacetamide, chloroacetamide, dimethyl fumarate and other. 

 

CysDB web application 

The CysDB web application was developed using the Shiny R package 

(https://shiny.rstudio.com/). Schematics of protein sequence chains, domains and motifs on the 

CysDB web server are constructed using the drawProteins R package 

(https://github.com/brennanpincardiff/drawProteins). Interactive viewing of PDB crystal structures 
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is performed using NGLViewR (https://github.com/nglviewer/nglview). Protein protein interaction 

networks are accessed via the STRING database (https://string-db.org/). Gene set library 

enrichment analyses are provided with the Enrichr R package (https://maayanlab.cloud/Enrichr/) 

and ontology enrichment plots are produced with the gprofiler2 R package 

(https://biit.cs.ut.ee/gprofiler/gost). All plots are generated with the ggplot2 and plotly 

(https://plotly.com/r/) R libraries.  

 

DATA AND CODE AVAILABILITY 

The dataset and source code are available at https://github.com/lmboat/cysdb_app. 

 

ADDITIONAL RESOURCES 

The CysDB dataset is provided as an interactive web resource at 

https://backuslab.shinyapps.io/cysdb/. 

 

Dataset Addition to CysDB Guidelines 

Email submission materials to cysteineomedb@gmail.com with the following information: copy of 

publication, supplementary information, additional details for data filtering and note the version of 

UniProt used to obtain protein accessions. Proteins must be identified through UniProtKB 

accessions. Please use the format, UniProtKBID_CYS#, to indicate which residues have been 

labeled. For ligandability experiments using a variety of electrophiles, inclusion of SMILES strings 

and criteria for ‘ligandability’ classification is required (ex. R >= 4 for at least n number of 

compounds). Table templates and additional information for submission requests can be found in 

Table S1. 

 

Significance 

https://github.com/lmboat/cysdb_app
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Chemoproteomics has emerged as highly enabling technology capable of pinpointing functional 

and potentially druggable cysteine residues proteome-wide. While many cysteine 

chemoproteomic datasets are now available, the overlap and reproducibility between studies 

remains unknown due to a lack of mechanisms for data integration. Here we report CysDB, a 

comprehensive database of cysteine chemoproteomics data that facilitates rapid discovery of the 

reactivity, ligandability, potential therapeutic relevance for 62,888 cysteines and 11,621 proteins. 

By including available data from multiple published studies together with annotations of function, 

disease relevance, and structural information, CysDB represents an unparalleled resource for 

understanding the scope and functional significance of the cysteinome. Given the emerging value 

of cysteine-reactive molecules as clinical candidates and chemical probes, CysDB also provides 

a resource for ongoing and future electrophilic probe development campaigns.   

 

Acknowledgements 

This study was supported by a Beckman Young Investigator Award (K.M.B.), DOD-Advanced 

Research Projects Agency (DARPA) D19AP00041 (K.M.B.), and NIGMS System and Integrative 

Biology 5T32GM008185‐33 (L.M.B.). We thank all members of the Backus lab for helpful 

suggestions. We thank S. Forli and J. Eberhardt for helpful suggestions.  

 

Author Contributions 

L.M.B., D.K.S. and K.M.B. conceived of the project. L.M.B. and M.F.P performed data analysis. 

L.M.B wrote software and created the database. D.K.S. provided technical advice. L.M.B. and 

K.M.B. wrote the manuscript. 

 

Conflicts of Interest 

The authors declare no financial or commercial conflict of interest. 

 



30 

REFERENCES 

(1) Xiao, H.; Jedrychowski, M. P.; Schweppe, D. K.; Huttlin, E. L.; Yu, Q.; Heppner, D. E.; 

Chouchani, E. T. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during 

Aging. Cell 2020, 180 (5), 968–983. 

(2) Kuljanin, M.; Mitchell, D. C.; Schweppe, D. K.; Gikandi, A. S.; Nusinow, D. P.; Bulloch, N. 

J.; Vinogradova, E. V.; Wilson, D. L.; Kool, E. T.; Mancias, J. D.; Cravatt, B. F.; Gygi, S. P. 

Reimagining High-Throughput Profiling of Reactive Cysteines for Cell-Based Screening of Large 

Electrophile Libraries. Nat. Biotechnol. 2021, 39 (5), 630–641. 

(3) Müller, S.; Ackloo, S.; Al Chawaf, A.; Al-Lazikani, B.; Antolin, A.; Baell, J. B.; Arrowsmith, 

C. H. Target 2035–Update on the Quest for a Probe for Every Protein. RSC Med. Chem. 2022, 

13 (1), 13–21. 

(4) Yan, T.; Desai, H. S.; Boatner, L. M.; Yen, S. L.; Cao, J.; Palafox, M. F.; Jami-Alahmadi, 

Y.; Backus, K. SP3‐FAIMS Chemoproteomics for High Coverage Profiling of the Human 

Cysteinome. ChemBioChem 2021. 

(5) Cao, J.; Boatner, L. M.; Desai, H. S.; Burton, N. R.; Armenta, E.; Chan, N. J.; Castellón, 

J. O.; Backus, K. M. Multiplexed CuAAC Suzuki-Miyaura Labeling for Tandem Activity-Based 

Chemoproteomic Profiling. Anal. Chem. 2021, 93 (4), 2610–2618. 

https://doi.org/10.1021/acs.analchem.0c04726. 

(6) Li, Z.; Liu, K.; Xu, P.; Yang, J. Benchmarking Cleavable Biotin Tags for Peptide-Centric 

Chemoproteomics. J. Proteome Res. 2022, 21 (5), 1349–1358. 

https://doi.org/10.1021/acs.jproteome.2c00174. 

(7) Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B. D.; 

Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Quantitative Reactivity Profiling Predicts 

Functional Cysteines in Proteomes. Nature 2010, 468 (7325), 790–797. 

https://doi.org/10.1038/nature09472. 

(8) Vinogradova, E. V.; Zhang, X.; Remillard, D.; Lazar, D. C.; Suciu, R. M.; Wang, Y.; Bianco, 

G.; Yamashita, Y.; Crowley, V. M.; Schafroth, M. A.; Yokoyama, M.; Konrad, D. B.; Lum, K. M.; 

Simon, G. M.; Kemper, E. K.; Lazear, M. R.; Yin, S.; Blewett, M. M.; Dix, M. M.; Cravatt, B. F. An 

Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 2020, 

182 (4), 1009-1026 29. 

(9) Palafox, M. F.; Desai, H. S.; Arboleda, V. A.; Backus, K. M. From Chemoproteomic‐

detected Amino Acids to Genomic Coordinates: Insights into Precise Multi‐omic Data Integration. 

Mol. Syst. Biol. 2021, 17 (2). https://doi.org/10.15252/msb.20209840. 

(10) Yang, F.; Jia, G.; Guo, J.; Liu, Y.; Wang, C. Quantitative Chemoproteomic Profiling with 

Data-Independent Acquisition-Based Mass Spectrometry. J. Am. Chem. Soc. 2022, 144 (2), 901–

911. https://doi.org/10.1021/jacs.1c11053. 

(11) Backus, K. M.; Correia, B. E.; Lum, K. M.; Forli, S.; Horning, B. D.; González-Páez, G. E.; 

Chatterjee, S.; Lanning, B. R.; Teijaro, J. R.; Olson, A. J.; Wolan, D. W.; Cravatt, B. F. Proteome-

wide covalent ligand discovery in native biological systems. Nature 2016, 534 (7608), 570–574. 

(12) Bar-Peled, L.; Kemper, E. K.; Suciu, R. M.; Vinogradova, E. V.; Backus, K. M.; Horning, 

B. D.; Cravatt, B. F. Chemical proteomics identifies druggable vulnerabilities in a genetically 

defined cancer. Cell 2017, 171 (3), 696–709. 



31 

(13) Backus, K. M. Applications of Reactive Cysteine Profiling; Activity-Based Protein Profiling, 

2018. 

(14) Abegg, D.; Frei, R.; Cerato, L.; Prasad Hari, D.; Wang, C.; Waser, J.; Adibekian, A. 

Proteome‐wide Profiling of Targets of Cysteine Reactive Small Molecules by Using Ethynyl 

Benziodoxolone Reagents. Angew. Chem. 2015, 127 (37), 11002–11007. 

(15) Kulkarni, R. A.; Bak, D. W.; Wei, D.; Bergholtz, S. E.; Briney, C. A.; Shrimp, J. H.; Meier, 

J. L. A chemoproteomic portrait of the oncometabolite fumarate. Nat. Chem. Biol. 2019, 15 (4), 

391–400. 

(16) Grossman, E. A.; Ward, C. C.; Spradlin, J. N.; Bateman, L. A.; Huffman, T. R.; Miyamoto, 

D. K.; Nomura, D. K. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-

Cancer Natural Products. Cell Chem. Biol. 2017, 24 (11), 1368–1376. 

(17) Tian, C.; Sun, R.; Liu, K.; Fu, L.; Liu, X.; Zhou, W.; Yang, J. Multiplexed Thiol Reactivity 

Profiling for Target Discovery of Electrophilic Natural Products. Cell Chem. Biol. 2017, 24 (11), 

1416–1427. 

(18) Wang, C.; Weerapana, E.; Blewett, M. M.; Cravatt, B. F. A Chemoproteomic Platform to 

Quantitatively Map Targets of Lipid-Derived Electrophiles. Nat. Methods 2014, 11 (1), 79–85. 

(19) Abegg, D.; Tomanik, M.; Qiu, N.; Pechalrieu, D.; Shuster, A.; Commare, B.; Adibekian, A. 

Chemoproteomic Profiling by Cysteine Fluoroalkylation Reveals Myrocin G as an Inhibitor of the 

Nonhomologous End Joining DNA Repair Pathway. J. Am. Chem. Soc. 2021, 143 (48), 20332–

20342. 

(20) Fu, L.; Li, Z.; Liu, K.; Tian, C.; He, J.; He, J.; He, F.; Xu, P.; Yang, J. A Quantitative Thiol 

Reactivity Profiling Platform to Analyze Redox and Electrophile Reactive Cysteine Proteomes. 

Nat. Protoc. 2020, 15 (9), 2891–2919. https://doi.org/10.1038/s41596-020-0352-2. 

(21) Desai, H. S.; Yan, T.; Yu, F.; Sun, A. W.; Villanueva, M.; Nesvizhskii, A. I.; Backus, K. M. 

SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State–Dependent 

Redox-Sensitive Cysteines. Mol. Cell. Proteomics 2022, 21 (4), 100218. 

(22) Shi, Y.; Fu, L.; Yang, J.; Carroll, K. S. Wittig Reagents for Chemoselective Sulfenic Acid 

Ligation Enables Global Site Stoichiometry Analysis and Redox-Controlled Mitochondrial 

Targeting. Nat. Chem. 2021, 13 (11), 1140–1150. 

(23) Mnatsakanyan, R.; Markoutsa, S.; Walbrunn, K.; Roos, A.; Verhelst, S. H.; Zahedi, R. P. 

Proteome-Wide Detection of S-Nitrosylation Targets and Motifs Using Bioorthogonal Cleavable-

Linker-Based Enrichment and Switch Technique. Nat. Commun. 2019, 10 (1), 1–12. 

(24) Wu, S.; Luo, H.; Wang, H.; Zhao, W.; Hu, Q.; Yang, Y. Cysteinome: The First 

Comprehensive Database for Proteins with Targetable Cysteine and Their Covalent Inhibitors. 

Biochem. Biophys. Res. Commun. 2016, 478 (3), 1268–1273. 

(25) Yan, T.; Palmer, A. B.; Geiszler, D. J.; Polasky, D. A.; Boatner, L. M.; Burton, N. R.; 

Armenta, E.; Nesvizhskii, A. I.; Backus, K. M. Enhancing Cysteine Chemoproteomic Coverage 

through Systematic Assessment of Click Chemistry Product Fragmentation. Anal. Chem. 2022, 

94 (9), 3800–3810. https://doi.org/10.1021/acs.analchem.1c04402. 

(26) Consortium, U. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 

47 (D1), 506–515. 

(27) Sondka, Z.; Bamford, S.; Cole, C. G.; Ward, S. A.; Dunham, I.; Forbes, S. A. The COSMIC 

Cancer Gene Census: Describing Genetic Dysfunction across All Human Cancers. Nat. Rev. 

Cancer 2018, 18 (11), 696–705. 



32 

(28) Landrum, M. J. ClinVar: Improving Access to Variant Interpretations and Supporting 

Evidence. Nucleic Acids Res. 2018, 46 (D1), 1062–1067. 

(29) Uhlen, M. Towards a Knowledge-Based Human Protein Atlas. Nat. Biotechnol. 2010, 28 

(12), 1248–1250. 

(30) Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.; Veij, M.; Félix, E.; Leach, A. R. 

ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids Res. 2019, 47 (D1), 930–

940. 

(31) Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Wilson, M. 

DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46 

(D1), 1074–1082. 

(32) Rose, P. W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A. R.; Christie, C. H.; Burley, S. K. 

The RCSB Protein Data Bank: Integrative View of Protein, Gene and 3D Structural Information. 

Nucleic Acids Res. 2016, gkw1000. 

(33) Eng, J. K.; McCormack, A. L.; Yates, J. R. An Approach to Correlate Tandem Mass 

Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass 

Spectrom. 1994, 5 (11), 976–989. https://doi.org/10.1016/1044-0305(94)80016-2. 

(34) Yu, F.; Teo, G. C.; Kong, A. T.; Haynes, S. E.; Avtonomov, D. M.; Geiszler, D. J.; 

Nesvizhskii, A. I. Identification of Modified Peptides Using Localization-Aware Open Search. Nat. 

Commun. 2020, 11 (1), 4065. https://doi.org/10.1038/s41467-020-17921-y. 

(35) Integrated Proteomics Pipeline (IP2). http://goldfish.scripps.edu/. 

(36) Xu, T.; Park, S. K.; Venable, J. D.; Wohlschlegel, J. A.; Diedrich, J. K.; Cociorva, D.; Lu, 

B.; Liao, L.; Hewel, J.; Han, X.; Wong, C. C. L.; Fonslow, B.; Delahunty, C.; Gao, Y.; Shah, H.; 

Yates, J. R. ProLuCID: An Improved SEQUEST-like Algorithm with Enhanced Sensitivity and 

Specificity. J. Proteomics 2015, 129, 16–24. https://doi.org/10.1016/j.jprot.2015.07.001. 

(37) Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu, D.; Nesvizhskii, A. I. 

MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry–Based 

Proteomics. Nat. Methods 2017, 14 (5), 513–520. https://doi.org/10.1038/nmeth.4256. 

(38) Eng, J. K.; Jahan, T. A.; Hoopmann, M. R. Comet: An Open-Source MS/MS Sequence 

Database Search Tool. PROTEOMICS 2013, 13 (1), 22–24. 

https://doi.org/10.1002/pmic.201200439. 

(39) Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.; Maglathlin, R. L.; 

Taunton, J. Reversible Targeting of Noncatalytic Cysteines with Chemically Tuned Electrophiles. 

Nat. Chem. Biol. 2012, 8 (5), 471–476. 

(40) Hacker, S. M.; Backus, K. M.; Lazear, M. R.; Forli, S.; Correia, B. E.; Cravatt, B. F. Global 

Profiling of Lysine Reactivity and Ligandability in the Human Proteome. Nat. Chem. 2017, 9 (12), 

1181–1190. 

(41) Abbasov, M. E.; Kavanagh, M. E.; Ichu, T. A.; Lazear, M. R.; Tao, Y.; Crowley, V. M.; 

Cravatt, B. F. A Proteome-Wide Atlas of Lysine-Reactive Chemistry. Nat. Chem. 2021, 13 (11), 

1081–1092. 

(42) Braschi, B.; Denny, P.; Gray, K.; Jones, T.; Seal, R.; Tweedie, S.; Bruford, E. Genenames. 

Org: The HGNC and VGNC Resources in 2019. Nucleic Acids Res. 2019, 47 (D1), 786–792. 

(43) Consortium, G. O. The Gene Ontology Resource: 20 Years and Still GOing Strong. 

Nucleic Acids Res. 2019, 47 (D1), 330–338. 



33 

(44) Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; 

D’Eustachio, P. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46 (D1), 649–

655. 

(45) Chen, E. Y.; Tan, C. M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G. V.; Clark, N. R.; 

Ma’ayan, A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool. 

BMC Bioinformatics 2013, 128 (14). 

(46) Kuleshov, M. V.; Jones, M. R.; Rouillard, A. D.; Fernandez, N. F.; Duan, Q.; Wang, Z.; 

Koplev, S.; Jenkins, S. L.; Jagodnik, K. M.; Lachmann, A.; McDermott, M. G.; Monteiro, C. D.; 

Gundersen, G. W.; Ma’ayan, A. Enrichr: a comprehensive gene set enrichment analysis web 

server 2016 update. Nucleic Acids Res. 2016, gkw377. 

(47) Schoenmaker, L.; Béquignon, O. J.; Jespers, W.; Westen, G. J. UnCorrupt SMILES: A 

Novel Approach to de Novo Design, 2022. 

(48) Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the 

Chemical Beauty of Drugs. Nat. Chem. 2012, 4 (2), 90–98. 

(49) Benet, L. Z.; Hosey, C. M.; Ursu, O.; Oprea, T. I. BDDCS, the Rule of 5 and Druggability. 

Adv. Drug Deliv. Rev. 2016, 101, 89–98. 

(50) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and 

Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and 

Development Settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. 

(51) Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in 

Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative 

and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1 (1), 55–

68. 

(52) Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A’rule of Three’for Fragment-Based Lead 

Discovery? Drug Discov. Today 2003, 8 (19), 876–877. 

(53) Landrum, G. Rdkit Documentation. Release 2013, 1 (1–79), 4. 

(54) Senkane, K.; Vinogradova, E. V.; Suciu, R. M.; Crowley, V. M.; Zaro, B. W.; Bradshaw, J. 

M.; Cravatt, B. F. The Proteome‐Wide Potential for Reversible Covalency at Cysteine. Angew. 

Chem. 2019, 131 (33), 11507–11511. 

(55) Krishnan, S.; Miller, R. M.; Tian, B.; Mullins, R. D.; Jacobson, M. P.; Taunton, J. Design of 

Reversible, Cysteine-Targeted Michael Acceptors Guided by Kinetic and Computational Analysis. 

J. Am. Chem. Soc. 2014, 136 (36), 12624–12630. 

(56) Zambaldo, C.; Vinogradova, E. V.; Qi, X.; Iaconelli, J.; Suciu, R. M.; Koh, M.; Bollong, M. 

J. 2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles. J. Am. Chem. Soc. 2020, 142 

(19), 8972–8979. 

(57) Du, X.; Guo, C.; Hansell, E.; Doyle, P. S.; Caffrey, C. R.; Holler, T. P.; Cohen, F. E. 

Synthesis and Structure− Activity Relationship Study of Potent Trypanocidal Thio Semicarbazone 

Inhibitors of the Trypanosomal Cysteine Protease Cruzain. J. Med. Chem. 2002, 45 (13), 2695–

2707. 

(58) Greenbaum, D. C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C. R.; Chibale, K. 

Synthesis and Structure− Activity Relationships of Parasiticidal Thiosemicarbazone Cysteine 

Protease Inhibitors against Plasmodium Falciparum, Trypanosoma Brucei, and Trypanosoma 

Cruzi. J. Med. Chem. 2004, 47 (12), 3212–3219. 



34 

(59) Shenai, B. R.; Lee, B. J.; Alvarez-Hernandez, A.; Chong, P. Y.; Emal, C. D.; Neitz, R. J.; 

Rosenthal, P. J. Structure-Activity Relationships for Inhibition of Cysteine Protease Activity and 

Development of Plasmodium Falciparum by Peptidyl Vinyl Sulfones. Antimicrob. Agents 

Chemother. 2003, 47 (1), 154–160. 

(60) Klüver, E.; Schulz-Maronde, S.; Scheid, S.; Meyer, B.; Forssmann, W. G.; Adermann, K. 

Structure−activity Relation of Human β-Defensin 3: Influence of Disulfide Bonds and Cysteine 

Substitution on Antimicrobial Activity and Cytotoxicity. Biochemistry 2005, 44 (28), 9804–9816. 

(61) Grzonka, Z.; Jankowska, E.; Kasprzykowski, F.; Kasprzykowska, R.; Lankiewicz, L.; 

Wiczk, W.; Grubb, A. Structural studies of cysteine proteases and their inhibitors. Acta Biochim. 

Pol. 2001, 48 (1), 1–20. 

(62) Zanon, P. R.; Yu, F.; Musacchio, P.; Lewald, L.; Zollo, M.; Krauskopf, K.; Hacker, S. M. 

Profiling the Proteome-Wide Selectivity of Diverse Electrophiles, 2021. 

(63) Dana, J. M.; Gutmanas, A.; Tyagi, N.; Qi, G.; O’Donovan, C.; Martin, M.; Velankar, S. 

SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences Resource Allows 

40-Fold Increase in Coverage of Structure-Based Annotations for Proteins. Nucleic Acids Res. 

2019, 47 (D1), 482–489. 

(64) Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G. A.; Sonnhammer, E. L.; 

Bateman, A. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49 (D1), 

412–419. 

(65) Julio, A. R.; Backus, K. M. New Approaches to Target RNA Binding Proteins. Curr. Opin. 

Chem. Biol. 2021, 62, 13–23. 

(66) Cruz, J.; Kressler, D.; Linder, P. Unwinding RNA in Saccharomyces Cerevisiae: DEAD-

Box Proteins and Related Families. Trends Biochem. Sci. 1999, 24 (5), 192–198. 

(67) Aubourg, S.; Kreis, M.; Lecharny, A. The DEAD Box RNA Helicase Family in Arabidopsis 

Thaliana. Nucleic Acids Res. 1999, 27 (2), 628–636. 

(68) Patmore, D. M.; Jassim, A.; Nathan, E.; Gilbertson, R. J.; Tahan, D.; Hoffmann, N.; 

Gilbertson, R. J. DDX3X suppresses the susceptibility of hindbrain lineages to medulloblastoma. 

Dev. Cell 2020, 54 (4), 455–470. 

(69) Andrisani, O.; Liu, Q.; Kehn, P.; Leitner, W. W.; Moon, K.; Vazquez-Maldonado, N.; Gale, 

M. Biological Functions of DEAD/DEAH-Box RNA Helicases in Health and Disease, 2022. 

(70) Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P. D. PANTHER Version 14: More 

Genomes, a New PANTHER GO-Slim and Improvements in Enrichment Analysis Tools. Nucleic 

Acids Res. 2019, 47 (D1), 419–426. 

(71) Fesik, S. W. Promoting Apoptosis as a Strategy for Cancer Drug Discovery. Nat. Rev. 

Cancer 2005, 5 (11), 876–885. 

(72) Aguilar, A.; Lu, J.; Liu, L.; Du, D.; Bernard, D.; McEachern, D.; Wang, S. Discovery of 4-

((3′ R, 4′ S, 5′ R)-6 ′′-Chloro-4′-(3-Chloro-2-Fluorophenyl)-1′-Ethyl-2 ′′-Oxodispiro [Cyclohexane-1, 

2′-Pyrrolidine-3′, 3 ′′-Indoline]-5′-Carboxamido) Bicyclo [2.2. 2] Octane-1-Carboxylic Acid (AA-

115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical 

Development. J. Med. Chem. 2017, 60 (7), 2819–2839. 

(73) Giancotti, F. G.; Ruoslahti, E. Integrin Signaling. Science 1999, 285 (5430), 1028–1033. 

(74) Cooper, J.; Giancotti, F. G.; A., S.; F., A.; Amberger, J. S.; Bocchini, C. A.; McKusick, V. 

A. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and 

Therapeutic Resistance. Cancer Cell 2019, 35 (3), 347-367 ,. 



35 

(75) Hamosh, A. Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human 

Genes and Genetic Disorders. Nucleic Acids Res. 2004, 33 (Database issue), D514–D517. 

https://doi.org/10.1093/nar/gki033. 

(76) Schrijver, I.; Liu, W.; Brenn, T.; Furthmayr, H.; Francke, U. Cysteine Substitutions in 

Epidermal Growth Factor–like Domains of Fibrillin-1: Distinct Effects on Biochemical and Clinical 

Phenotypes. Am. J. Hum. Genet. 1999, 65 (4), 1007–1020. 

(77) Russell, D. W.; Brown, M. S.; Goldstein, J. L. Different Combinations of Cysteine-Rich 

Repeats Mediate Binding of Low Density Lipoprotein Receptor to Two Different Proteins. J. Biol. 

Chem. 1989, 264 (36), 21682–21688. 

(78) Daly, N. L.; Scanlon, M. J.; Djordjevic, J. T.; Kroon, P. A.; Smith, R. Three-Dimensional 

Structure of a Cysteine-Rich Repeat from the Low-Density Lipoprotein Receptor. Proc. Natl. Acad. 

Sci. 1995, 92 (14), 6334–6338. 

(79) Esser, V.; Limbird, L. E.; Brown, M. S.; Goldstein, J. L.; Russell, D. W. Mutational Analysis 

of the Ligand Binding Domain of the Low Density Lipoprotein Receptor. J. Biol. Chem. 1988, 263 

(26), 13282–13290. 

(80) Lanman, B. A.; Allen, J. R.; Allen, J. G.; Amegadzie, A. K.; Ashton, K. S.; Booker, S. K.; 

Cee, V. J. Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid 

Tumors, 2019. 

(81) Janes, M. R.; Zhang, J.; Li, L. S.; Hansen, R.; Peters, U.; Guo, X.; Liu, Y. Targeting KRAS 

Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell 2018, 172 (3), 578–589. 

(82) Patricelli, M. P.; Janes, M. R.; Li, L. S.; Hansen, R.; Peters, U.; Kessler, L. V.; Liu, Y. 

Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive 

StateTargeting Inactive KRASG12C Suppresses Oncogenic Signaling. Cancer Discov. 2016, 6 

(3), 316–329. 

(83) Ostrem, J. M.; Peters, U.; Sos, M. L.; Wells, J. A.; Shokat, K. M. K-Ras (G12C) Inhibitors 

Allosterically Control GTP Affinity and Effector Interactions. Nature 2013, 503 (7477), 548–551. 

(84) Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Cox, J. The 

Perseus Computational Platform for Comprehensive Analysis of (Prote) Omics Data. Nat. 

Methods 2016, 13 (9), 731–740. 

(85) Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; 

Kamatchinathan, S.; Vizcaíno, J. A. The PRIDE Database Resources in 2022: A Hub for Mass 

Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), 543–552. 

 



36 

 

 

Figure 1. Dataset selection and curation for the creation of CysDB. (A) Table of all datasets 

used as input for CysDB, including which datasets were utilized in each chemoproteomic category 

(identified, hyperreactive and ligandable)2,4-11. (B) General workflows for three categories of 

chemoproteomic methods included in CysDB that use iodoacetamide alkyne (IAA, 1) or an 

iodoacetamide desthiobiotin reagent (DBIA2 or IA-DTB8, 2) to capture cysteines for: (i) high 

coverage identification of cysteine-containing peptides. (ii) quantitative profiling of intrinsic 

cysteine reactivity, and (iii) assaying cysteine ligandability using an electrophile of interest. (C-D) 

Quantification of the unique proteins (C) and cysteines (D) found in the Human UniProtKB/Swiss-

Prot database, together with the identified, ligandable, and hyperreactive chemoproteomics 

subsets in CysDB. (E) Study-specific breakdown of total number of unique cysteines, including 

those that are identified as hyperreactive and ligandable. Data available in Table S1. 
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Figure 2. Workflow to generate CysDB SQL database. (A) Data extracted from nine datasets 
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(Table S1) was transformed and loaded into a MySQL relational database on the Google Cloud 

Platform. An accompanying front-end web interface was developed using RShiny to allow for 

remote-user querying of the SQL database. (B) Home page of the CysDB app publicly available 

at https://backuslab.shinyapps.io/cysdb/.  
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Figure 3. CysDB outputs based on protein (A), disease (B), dataset (C) and cysteine-reactive 

compound wise queries (D). (A) Users can search for a protein of interest (POI) in the search bar 

on the protein page. Centered on the activity tab is a ‘site map,’ indicating which cysteines have 

been identified, liganded or hyperreactive by chemoproteomics. In addition, the activity tab allows 

users to assess the potential druggability of their POI through small-molecule binding annotations 

and heatmaps for quantitative chemoproteomic measures of hyperreactivity and ligandability. For 

a comprehensive view of the structural environment surrounding the chemoproteomic detected 

cysteines, publicly available 3D crystal structures are displayed in the structure tab. Users can 

choose which structure is shown and add customized labels. By clicking the function tab, one can 

view general information on the POI, including subcellular locations, functional pathways and 

GO/KEGG terms. (B) The disease-relevance of a POI can be explored through the mutation page. 

Proximity of chemoproteomic detected cysteines, annotated small-molecule binders and variants 

of ranging clinical significance are visualized on a one-dimensional schematic of a protein 

sequence. Chemoproteomic cysteines are colored in gold for identified, pink for ligandable and 

orange for hyperreactive, while the remaining points are variant positions. (C) Users can specify 

subsets of data available in CysDB, such as by compound chemotype or ranges of reactivity ratio, 

for pathway, ontology and disease enrichment analyses. From these dataset wise queries on the 

enrichment page, a user can then download their results as a CSV formatted table or a bar graph 

as an image. (D) Chemical structures and calculated ‘drug-likeness’ properties of compounds 

used to ligand cysteines in CysDB can be accessed from the dropdown menu in the compound 

page. 
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Figure 4. Cysteines with available ligandability data. (A) Overlap between CysDB ligandable 

(LIG) proteins and proteins targeted by FDA approved drugs. (B) Overlap between CysDB LIG 

proteins, proteins targeted by FDA approved drugs, small molecules in DrugBank and ChEMBL. 

(C) Distributions of protein functions for CysDB LIG proteins not targeted by FDA and CysDB LIG 

proteins targeted by FDA. (D) Grouped bar graph showing the number of unique ligandable 

cysteines targeted by acrylamides or chloroacetamide for each dataset (R>=4 for at least one 

compound). (E) Bar graph of the overall number of unique cysteines targeted by acrylamides or 

chloroacetamide. (F) Number of unique SMILES strings with an acrylamide and chloroacetamide 

moiety (based on the ‘Group Compound Identifier’), compounds with a ratio >= 4 for protein 

carbonyl reductase (CBR1, UniProtKB: P16512) and protein glutathione s-transferase omega-1 

(GSTO1, UniProtKB: P78417). Data available in Table S2. 
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Figure 5. Cysteines with available functional and structural annotations. (A) CysDB 

identified, ligandable and hyperreactive proteins with annotated active sites, binding sites, 

catalytic activity, disulfide bonds and redox potentials. (B) Distribution of identified cysteines in 

CysDB ID annotated as cysteine-specific binding sites or active sites (left). The total number of 

cysteines in UniProtKB annotated as binding or active sites are shown in gray. Percentage of 

proteins associated with a PDB structure and contain an identified cysteine. (C) 

Percentage of proteins associated with a PDB structure and contain a ligandable (CysDB LIG) or 
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hyperreactive (CysDB HYPERREACTIVE) cysteine. (D) Top-10 enriched protein domains from 

Pfam-term enrichment analysis of liganded (green) and hyperreactive (light blue) proteins. (E) 

Top-10 enriched pathways from Panther-term enrichment analysis of liganded (green) and 

hyperreactive (light blue) proteins. Data available in Table S3. 

 

 

 

Figure 6. Assessment of the scope of disease-relevant proteins contained in CysDB of 

biologically relevant proteins using cysteine chemoproteomics. (A) Overlap between genes 

associated with cancer by the Cancer Gene Census (CGC), genes associated with CysDB 

ligandable proteins and genes associated with CysDB hyperreactive proteins. (B) For the five 

most abundant tumor types in CGC, the number of CGC genes targeted by FDA approved drugs 

(CGC_FDA), non-FDA targeted CGC genes identified in CysDB (CysDB_ID), non-FDA targeted 

CGC genes liganded in CysDB (CysDB_LIG) and non-FDA targeted CGC genes not identified in 

CysDB (CGC_Other). (C) Overlap between unique proteins associated with ClinVar genes 
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containing missense variants (9,951 genes mapped to 9,478 proteins), CysDB ligandable proteins 

and CysDB hyperreactive proteins. (D) Top ten CysDB identified proteins with the highest number 

of benign missense variants (teal), missense variants of unknown significance (VUS) (gray) and 

pathogenic missense variants (purple). Data available in Table S4. 

 


