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We present a new collocation method for computing the vibrational spectrum of a polyatomic molecule.
Some form of quadrature or collocation is necessary when the potential energy surface does not have a simple
form that simplifies the calculation of the potential matrix elements required to do a variational calculation.
With quadrature, better accuracy is obtained by using more points than basis functions. To achieve the
same advantage with collocation, we introduce a collocation method with more points than basis functions.
Critically important, the method can be used with a large basis because it is incorporated into an iterative
eigensolver. Previous collocation methods with more points than functions were incompatible with iterative
eigensolvers. We test the new ideas by computing energy levels of molecules with as many as 6 atoms. We
use pruned bases, but expect the new method to be advantageous whenever one uses a basis for which it is
not possible to find an accurate quadrature with about as many points as there are basis functions. For our
test molecules, accurate energy levels are obtained even using non-optimal, simple, equally spaced points.

I. USING COLLOCATION TO COMPUTE A
VIBRATIONAL SPECTRUM

The development of new methods for computing vibra-
tional spectra of polyatomic molecules is an important
sub-field of chemical physics. Having a potential energy
surface (PES) with a special form that simplifies the cal-
culation of matrix elements of its basis representation
makes the calculation of vibrational spectra significantly
less costly. Popular special forms include the sum-of-
products form,1 the N-mode representation form,2 the
high-dimensional model representation form,3 and the
many-body expansion form4. For some molecules, the
most accurate available PES does have a special form.
For example, for larger molecules it is still common to
use ab initio programs to make a “force field”.5 How-
ever, for many molecules, the most accurate PES does
not have a special form, or does not have a special form
in the coordinates in which one wishes to compute the vi-
brational spectrum. In this case, when the potential is a
general function, one can fit a special form to the PES. To
avoid re-fitting the PES, it is necessary to use a method
that requires only values of the PES at points, i.e., use
quadrature or collocation. In this paper, we present a
new collocation method for computing vibrational spec-
tra.

When the PES does not have a special form, but is
some general function, it is common to use quadrature to
compute matrix elements of the potential matrix required
in a variational approach. One then solves the matrix
eigenvalue problem

HX = SXE , (1)
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where S is an overlap matrix and H = Kb +Vb, with
Kb and Vb being kinetic and potential matrices in the
chosen basis. There are many matrix eigenvalue equa-
tions in this paper. They all have the form of Eq. (1).
In Eq. (1), X is a matrix whose columns are eigenvec-
tors and E is a diagonal matrix whose diagonal elements
are eigenvalues. Frequently, one chooses coordinates and
basis functions to make it possible to calculate Kb and
S exactly. This, however, restricts the choices. Colloca-
tion is an alternative to quadrature and is also used to
solve the Schrödinger equation when the PES is a general
function.6–10 To obtain Eq. (1), one substitutes a basis
expansion of wavefunctions into the Schrödinger equa-
tion, left multiplies by a basis function and integrates.
When using collocation, one instead solves the matrix
eigenvalue problem(

B
′′
+VB

)
Z = BZE . (2)

It is obtained by substituting the same basis expansion
into the Schrödinger equation and then demanding that
the Schrödinger equation be satisfied at a set of points
called collocation points. There are as many colloca-
tion points as basis functions. In Eq. (2), Bai = ϕi(xa),

B
′′

ai = K̂ϕi(xa), where K̂ is the kinetic energy operator
(KEO), and Vab = V (xa)δab, where V (xa) is the poten-
tial evaluated at a point. ϕi is a basis function and xa, is
a collocation point. In this paper, a labels points and i
labels basis functions. In the remainder of the paper, the
meaning of B is determined by the points and functions
used to build it. In some equations B is rectangular and
in others it is square.

Collocation has advantages and disadvantages. The
most obvious advantage is that no integrals are re-
quired. It is possible to obtain accurate solutions to
the Schrödinger equation when it is not known how to
find a good quadrature for computing elements of Vb,
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(and possibly Kb and S) in Eq. (1). By good quadrature
we mean one which is accurate and has about as many
points as there are basis functions. When the basis is a
direct product of univariate bases, it is always easy to
find a quadrature that is good in this sense. When ba-
sis functions are products of multivariate functions,11,12

or otherwise optimized,13,14 it is not easy to find a good
quadrature. Collocation has no weights, and when the
basis expansion error is small, almost any collocation
points can be used. Owing to the fact that integrals
are not necessary, there is no need to choose basis func-
tions and coordinates to facilitate the calculation of ma-
trix elements (e.g. kinetic and overlap matrix elements).
This opens the door to choosing the best possible basis
functions and coordinates. To date, this advantage of
collocation has been underexploited.

The most important disadvantage of collocation is the
fact that Eq. (2) is a generalized eigenvalue problem, even
when the basis functions are orthonormal. When the ba-
sis size is small and it is possible to store B

′′
and B and

use methods of direct linear algebra, solving the general-
ized eigenvalue problem is straightforward.7 Direct prod-
uct bases are simple and general and therefore frequently
used. Unfortunately, for molecules with more than three
atoms, a direct product basis is often large enough that
it is not possible to store B

′′
and B. In that case, one

can attempt to find a smaller basis with which accurate
energy levels can also be computed. One way to do this
is to use optimised multidimensional functions.11,12,15–20

Another way to make a small basis is to start with a di-
rect product basis and prune it by retaining only basis
functions deemed to be important. Some pruned basis
methods require that the PES have a simple form.21–25

Other pruned basis methods are designed to be used with
a general PES.26–28 In both cases, when using a standard
collocation method, it is necessary to find a way to choose
a collocation point set with the same number of points
as the number of retained basis functions.

Rather than reducing the basis size, one can use a di-
rect product basis with an iterative Krylov-type eigen-
solver to obviate the need to compute and store large ma-
trices. Iterative eigensolvers make it possible to do vari-
ational calculations (S in Eq. (1) is an identity matirx)
with large basis sets.29,30 However, when using an itera-
tive eigensovler it is much harder to deal with a general-
ized eigenvalue problem. It is common to convert Eq. (2)
into a regular eigenvalue problem by left multiplying with
B−1 to obtain

B−1
(
B

′′
+VB

)
Z = ZE . (3)

To use collocation with an iterative method, one must
therefore be able to efficiently compute matrix-vector
products (MVPs) with B−1. For a multi-dimensional
problem, the basis size is large and therefore B is large.
It is not possible to compute and store B and then eval-
uate MVPs by multiplying rows of B−1 by the vector.

There is one case in which it is obviously easy to eval-
uate MVPs with B−1: when both the basis set and the

point set are direct products. If both are direct prod-
ucts then B−1 is a Kronecker product and it is simple
to do the sums required to evaluate the MVPs sequen-
tially. Unfortunately, for molecules with more than about
five atoms, a direct product basis is so large that a huge
amount of memory is required to store even vectors (no
matrices need to be computed or stored). Each vector
has about 10D elements, where D is the number of di-
mensions. About 8000 GB is required for a molecule with
6 atoms.
Basis-size reduction and iterative eigensolvers are two

tactics for dealing with large bases. There is a third
tactic that is also useful. It is possible to improve the
accuracy of energy levels computed by solving Eq. (2) by
left multiplying with BT to obtain,(

BTB
′′
+BTVB

)
Y =

(
BTB

)
YẼ . (4)

and using more points than basis functions. In this case
B and B” are matrices with fewer columns than rows.
V is a square (diagonal) matrix.9,31–35 It is also possible
to left multiply by BTW, where W is a diagonal matrix
containing weights. A collocation method using more
points than basis functions is sometimes called rectan-
gular collocation (RC). It is common to use more points
than basis functions when using a variational method and
solving (

Kex +BTWVB
)
X̂ = SexX̂Ê , (5)

where Kex and Sex exact kinetic and overlap matrices.
Eq. (5) and Eq. (4) are not equivalent. When it is possible
to represent wavefunctions as linear combinations of basis
functions, the accuracy of energies obtained from Eq. (5)
depends more sensitively on the choice of the points than
does the accuracy of energies obtained from Eq. (4).
It would be ideal to use together all three tactics for

reducing the cost of a collocation calculation: (i) basis-
size reduction, (ii) an iterative eigensolver, and (iii) more
points than basis functions (RC). See Figure 1. Hereto-
fore, only pairs of these tactics have been combined. It-
erative eigensolvers have been used in conjunction with
pruned basis sets in many papers (pale green intersec-
tion in Figure 1), see for example Refs. 8, 36–43. This
is a combination of (i) and (ii). To realize this combi-
nation it is necessary to find a way to compute MVPs
with B−1, despite the fact that B−1 is not a Kronecker
product. RC has been used (Eq. (4) has been solved) with
small optimised basis sets by using a direct eigensolver
and building matrices explicitly (pale blue intersection in
Figure 1). This works when the basis size is sufficiently
small. This is a combination of (i) and (iii).9,44–46 An it-
erative Multiconfiguration Time-Dependent Hartree ap-
proach has been used with RC (pale red intersection in
Figure 1).35 This is a combination of (ii) and (iii). In this
case, although there are more points than basis functions,
both the basis set and the point set are direct products.
In this paper, we propose a method that combines all

three tactics. At first glance, one might think this is easy.
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One merely needs to use an iterative eigensolver to solve
Eq. (4), where B and B

′′
are made from an efficient (e.g.

pruned) basis and some larger point set. However, solv-
ing Eq. (4) with an iterative eigensolver requires doing
MVPs with (BTB)−1, which is difficult. The combina-
tion of the three tactics proposed in this paper yields a
method with which it is possible to solve the Schrödinger
equation with a general potential that has the following
advantages: 1) the basis size is reduced by pruning; 2) an
efficient iterative eigensolver is used and there is no need
to compute and store large matrices; 3) energies are rel-
atively insensitive to the type of points. 3) is important.
There is no need for Gauss quadrature points47 or poten-
tial optimized discrete variable representation points48,49

or simultaneous diagonalization discrete variable repre-
sentation points50,51. Previous calculations have shown
that, using RC and a direct product basis and grid, accu-
rate results are obtained with sub-optimal points.35 In-
sensitivity to the choice of the points makes the method
robust. Collocation has advantages when it is hard to
find quadrature points (and weights) appropriate for the
basis functions one wishes to use. Smolyak quadrature
methods work best when used with harmonic basis func-
tions for which good (nested) points and weights are
known.26,52,53 One would much rather not be constrained
to using harmonic basis functions. Previous RC methods
were either incompatible with iterative eigensolvers9,46 or
used large direct product bases and grids35.

Iterative
Eigen-
solver

Points >
Functions

Nondirect
Product
basis

FIG. 1. Diagram showing three tactics for reducing the cost of
a collocation calculation. Pairs of tactics have been combined
previously. In this paper we use all three tactics.

II. BASIS SET AND POINT SET PRUNING

In this paper we use pruned bases. A pruned basis is
obtained from a direct product basis by retaining func-
tions whose indices satisfy a pruning condition, for ex-
ample,

i1 + i2 + · · ·+ iD ≤ b . (6)

Each function in the basis is a product
ϕ1
i1
(q1)ϕ

2
i2
(q2) · · ·ϕD

iD
(qD). There are Nb functions

in the basis. ic = 0, 1, . . . , nc. nc = B ∀ c. For a single
coordinate, the functions ϕc

ic
(qc) ic = 0, 1, . . . , nc are

importance ordered, i.e. if the value of ic is smaller
the function is more important. It is also possible to
implement the ideas of this paper with the more general
pruning condition,

G1(i1) +G2(i2) + · · ·+GD(iD) ≤ b , (7)

where Gc(ic) is a monotonically increasing function of
ic, and the functions Gc(ic) are optimised to reduce the
size of the basis.27 For the sake of simplicity, we present
and test everything with the simple pruning condition of
Eq. (6). The basis obtained from the pruning condition
of Eq. (6) is good for many molecules.54,55

Consider first building a collocation point set with
the same number of points as the basis defined by
the pruning condition Eq. (6). In order to efficiently
evaluate MVPs, we associate each function in the ba-
sis with a single point in D-dimensional space. To
make the collocation point set, we start by choosing
a set of points {ac = 0, ac = 1, . . . , ac = nc} for each
coordinate, c. There is a 1:1 correspondence be-
tween points and basis functions, i.e., point ac = m
is associated with function ϕc

ic=m(qc) in the 1-D ba-
sis {ϕc

ic=0(qc), ϕ
c
ic=1(qc), . . . , ϕ

c
ic=nc

(qc)}. This naturally
produces a nested set of points. The point associated
with the multi-D basis function ϕ1

i1
(q1)ϕ

2
i2
(q2) . . . ϕ

D
iD
(qD)

is the point in D-dimensional space labelled by
{a1 = i1, a2 = i2, . . . , aD = iD}. The labels of the col-
location points satisfy

a1 + a2 + · · ·+ aD ≤ b . (8)

There are as many points as basis functions.

In our calculations (see Section IV), we use a set of col-
location points larger than (or equal to) the basis defined
by Eq. (6). Its labels satisfy the condition

a1 + a2 + · · ·+ aD ≤ B , (9)

where B ≥ b. This larger set of points is linked to a larger
basis, whose functions satisfy the pruning condition,

i1 + i2 + · · ·+ iD ≤ B . (10)

The basis (point) set determined by Eq. (10) (Eq. (9)) has
NB functions (points). The functions in the basis defined
by Eq. (6) are those that we use in our calculations; the
set of those functions is a subset of the basis defined by
Eq. (10). The points in the set defined by Eq. (9) are
those that we use in our calculations; the point set is
larger than the basis set.
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III. HAMILTONIAN

In this paper, we use a simple approximate KEO in
dimensionless normal coordinates,

K̂ =
∑
c

−ωc

2

∂2

∂ q2c
, (11)

where ωc is the harmonic wavenumber for coordinate
qc. It is certainly also possible to use curvilinear inter-
nal coordinates. In curvilinear internal coordinates the
KEO can be written so that it is a sum of terms each of
which contains two, one, or zero derivatives. In each term
the derivatives are multiplied on the left by a coefficient
which in general is coordinate dependent. To use collo-
cation with a KEO in curvilinear internal coordinates,
it is necessary to evaluate the coefficients at points, but
not to do integrals (quadratures) with integrands that
involve the coefficients (a good pruned basis is necessar-
ily not a discrete variable representation (DVR) basis).
This idea was used in recent collocation calculations of
energy levels of methane.35,39

We do calculations for four molecules: P2O using the
quartic Taylor series potential of Ref. 56, CH2O using
the potential of Ref. 57, CH2NH using the potential of
Ref. 58 with the interpretation of Ref. 59, and CH3CN
using the potential of Ref. 60 with the interpretation of
Ref. 36. The P2O, CH2NH, and CH3CN potentials are
functions of normal coordinates in SOP form. The CH2O
potential is not a SOP and is a function of internal coor-
dinates. Since we use dimensionless normal coordinates,
to evaluate the CH2O potential, we transform from nor-
mal coordinates, q, to the internal coordinates of Ref. 57,
R. The CH2O potential therefore has the form V ( R(q)).

The transformation is done point by point. Using eigen-
vectors of the Cartesian force constant matrix (obtained
from eigenvectors of GF61), we obtain for each q a set of
Cartesian coordinates. From the Cartesian coordinates
we compute the internal coordinates in terms of which
the PES of 57 is defined. Products of 1-D harmonic os-
cillator functions that are functions of the dimensionless
normal coordinates are used to construct the basis.

IV. RECTANGULAR COLLOCATION WITH A
CHOPPED B−1

Our goal is to use the basis set defined by Eq. (6) and
the point set defined by Eq. (9) together with Eq. (2).

There are more points than basis functions. B
′′
and B

are rectangular NB×Nb matrices and Eq. (2) is a rectan-
gular eigenvalue problem. The most natural way to solve
it is to proceed least-squares-like and to use Eq. (4). To
solve Eq. (4) with an iterative eigensolver, it is rewritten(

BTB
)−1

(
BTB

′′
+BTVB

)
Y = YẼ . (12)

BTB is a Nb × Nb matrix. B+ =
(
BTB

)−1
BT is

called the pseudoinverse of B and written in terms of

B+, Eq. (12) is an Nb ×Nb square eigenvalue problem,

B+
(
B

′′
+VB

)
Y = YẼ . (13)

In this paper, we begin with a rectangular version of
Eq. (2), but instead of left multiplying byBT and then by
(BTB)−1, we left multiply by a matrix M. One problem
with Eq. (13) is that MVPs with B+ are costly.

To find M, we first use Eq. (2) and set up a square
calculation with the basis defined by Eq. (10) and the
grid defined by Eq. (9). We must build square NB ×NB

matrices B,B
′′
, and V.

B = CT
BBKPCB , (14)

and B
′′
= CT

B(B
′′

KP)CB. BKP is the Kro-
necker product matrix obtained when the basis
is the direct product formed from the 1-D bases
{ϕc

ic=0(qc), ϕ
c
ic=1(qc), . . . , ϕ

c
ic=nc

(qc)} and the point
set is the direct product grid formed from the points
{ac = 0, ac = 1, . . . , ac = nc}. BKP is a Kronecker
product of matrices, denoted (c)B, for each coordinate,

BKP = B(1) ⊗B(2) ⊗ · · · ⊗B(D) . (15)

CB is a chopping matrix. When the functions in the
direct product basis are ordered so that the first func-
tions are those whose indices satisfy Eq. (10), then CB is
an identity matrix with as many rows as there are func-
tions in the direct product basis and as many columns
as there are functions in the basis defined by Eq. (10).
The bottom rows of the matrix have elements that are
all zero. In this paper, a CB to the right of BKP or B

′′

KP
removes columns, i.e. basis functions; a CT

B to the left of

BKP or B
′′

KP removes rows, i.e. points. When using the

KEO of Eq. (11), B
′′

KP is a sum of Kronecker products.
Each term in the sum has one factor, due to the second
derivative in Eq. (11), that is not a B(c) matrix (see for
example Ref. 42). V is the square diagonal matrix whose
diagonal elements are values of the PES on the pruned
grid defined by Eq. (9). Using the Eq. (9) grid and the
Eq. (10) basis, Eq. (2) is a square NB × NB eigenvalue
problem[
CT

B(B
′′

KP)CB +VCT
BBKPCB

]
Z =

(
CT

BBKPCB

)
ZE

(16)

Second, start with Eq. (16) and retain only basis func-
tions that satisfy Eq. (6). This achieves our goal of using
the basis defined by Eq. (6) and the point set defined
by Eq. (9). The chopping matrix that selects only the
functions that satisfy Eq. (6) is CBC∆. Like CB, C∆ is
a rectangular identity matrix and removes (additional)
columns or functions when it is placed to the right of
CB. If in Eq. (16), we replace, CB with CBC∆, but
not CT

B with CT
∆CT

B we obtained a generalized NB ×Nb
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rectangular eigenvalue problem,

[
CT

B(B
′′

KP)CBC∆ (17)

+VCT
BBKPCBC∆

]
Ẑk =

(
CT

BBKPCBC∆

)
ẐkEk .

If elements of columns of Z (in Eq. (16)) labelled by in-
dices in the set defined by Eq. (10) and not in the set
defined by Eq. (6) are zero then: (i) Eq. (17) has exact
solutions; (ii) some Ek in Eq. (17) are exactly equal to
diagonal elements of E in Eq. (16); (iii) the elements of
columns of Z in Eq. (16) labelled by indices in the set
defined by Eq. (6) and not in the set defined by Eq. (10)

compose the columns of Ẑ in Eq. (17). In practice, we
use Eq. (17) when contributions from the excluded basis
functions to states of interest are small, but not exactly
zero, and some Ek we compute from Eq. (17) are accu-
rate even when they are not exactly equal to diagonal
elements of E. To solve this generalized eigenvalue prob-
lem, one might attempt to left multiply by the inverse of
CT

BBKPCBC∆ which is on the right side; this is impos-
sible because it is rectangular. We solve Eq. (17) by left
multiplying by

M = CT
∆

(
CT

BBKPCB

)−1

and exploiting CT
∆C∆ = I. We find the Nb × Nb eigen-

value problem,

(
MCT

BB
′′

KPCBC∆ +MVCT
BBKPCBC∆

)
Ẑk = ẐkEk .

(18)
M plays the role of a pseudoinverse. To obtain
Eq. (18) from Eq. (16), one simply left multiplies by
(CT

BBKPCB)
−1 and then chops the product of matrices

that is now on the left side. Important is that the prod-
uct is chopped and not the factors multiplied to make
the product; see for example Section IIC of Ref. 62.

Eigenvalues computed from Eq. (18) will be equal to
eigenvalues of Eq. (1) (with exact matrix elements and
the basis whose indices satisfy Eq. (6)) when an inter-
polant is exact. It must be exact for the functions ob-
tained by applying the Hamiltonian operator to all func-
tions in the basis defined by Eq. (6) and the interpolant
is made from the basis whose indices satisfy Eq. (10) and
the point set whose indices satisfy Eq. (9).

Eq. (18) can only be used if it is somehow possible to
invert the NB × NB matrix CT

BBKPCB and do MVPs
efficiently with M. To use collocation with a large point
set and a small basis, we must evaluate MVPs with the
inverse of a matrix as large as the point set. To solve
Eq. (18) with an iterative eigensolver, one must evalu-

ate MVPs with (CT
BBKPCB)

−1, CT
BB

′′

KPCBC∆, and
VCT

BBKPCBC∆.

A. MVPs with
(
CT

BBKPCB

)−1

It might appear that MVPs with (CT
BBKPCB)

−1

would be costly. There are two obvious problems: 1)
we require the inverse of a large matrix; 2) we must eval-
uate MVPs with a large matrix. Both of these problems
can be resolved by using an LU decompostion: B = LU.
L is lower triangular and U is upper triangular. Let c
be a column of coefficients representing a wavefunction
in a basis. Uc is a column of coefficients representing
the wavefunction in a ZAPPL (zero at points in previous
levels) basis.64 When ZAPPL functions were introduced,8

they were called “hierarchical functions” and what is here
U is equal to what was Ã−T in Ref. 8. LUc is a column
of coefficients representing the wavefunction on the grid.
In previous papers, we worked directly in the ZAPPL
basis and in this paper the ZAPPL basis is used only as
tool. Holzmüller and Pflüger also implicitly use ZAPPL
functions by introducing an LU decomposition and show
that efficient MVPs are possible.63 Using an LU decom-
position,(

CT
BBKPCB

)−1 =
(
CT

BLKPUKPCB

)−1
(19)

=
(
CT

BLKPCBC
T
BUKPCB

)−1
(20)

=
(
CT

BUKPCB

)−1 (
CT

BLKPCB

)−1
(21)

=
(
CT

BU
−1
KPCB

) (
CT

BL
−1
KPCB

)
. (22)

Here we use: (i) the L and U factors of a Kronecker
product matrix are themselves Kronecker products; (ii)
owing to either the lower triangularity of LKP, or the up-
per triangularity of UKP, we can insert CBC

T
B between

LKP and UKP; (iii) the inverse of a chopped triangular
matrix is the chopped inverse.41,42,64 Evaluating MVPs
with Eq. (22) is cheap because all of the factors are ei-
ther chopping matrices or Kronecker products.38 MVPs
with a Kronecker product matrix can be done by doing
sums sequentially. In previous papers,8,41,42 we solved
the Schrödinger equation in the ZAPPL basis and did
not use it as an intermediate basis as in Eq. (20). In this
paper, we use the original (here harmonic) basis because
CT

∆(CT
BLKPCB)

−1 is a matrix for which the columns
that correspond to the points in Eq. (9) and not in Eq. (8)
are zero, which negates the desired advantage of using
more points than basis functions.

B. MVPs with CT
BB

′′
KPCB

To use Eq. (18) it is also necessary to evaluate MVPs

with CT
BB

′′

KPCB. B
′′

KP =
∑

c
cB

′′
is a sum of Kronecker

product matrices and cB
′′
is the matrix

cB
′′
= B(1) ⊗ · · · ⊗ (c)B

′′
⊗ · · · ⊗B(D) . (23)

In each term, we replace (c)B
′′

with (c)L
′′ (c)U

′′
and

B(c) with L(c)U(c) so that cB
′′
is a product of a Kro-
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necker product of L factors and a Kronecker product of
U factors.63 We write,

cB
′′
= cL

′′

KP
cU

′′

KP . (24)

Between the two Kronecker products we insert
CBC∆CT

∆CT
B to reduce the cost of MVPs and the length

of intermediate vectors.

C. MVPs with VCT
BBKPCB

To use Eq. (18) it is also necessary to evaluate MVPs
withCT

BBKPCB. This is straightforward because we can
replace BKP with LKPUKP and insert CBC∆CT

∆CT
B

between LKP and UKP.

The MVPs in Subsections IVA, IVB, and IVC can all
be evaluated without storing vectors with as many ele-
ments as the direct product basis. It is possible because
in all cases a Kronecker product matrix is decomposed
with an LU factorization and CBC

T
B or CBC∆CT

∆CT
B

is inserted between the L and U factors. The insertion is
possible because the L factor is lower triangular and/or
the U factor is upper triangular. Finally, although chop-
ping matrices occur in the equations they are not con-
structed and explicitly applied to vectors. Instead, the
chopping matrices are applied by appropriately limiting
the 1-D sequential summation indices for each MVP.

V. THE MATRIX-VECTOR PRODUCT WITH A
CHOPPED KRONECKER PRODUCT OF TRIANGULAR
MATRICES

To evaluate MVPs with M = CT
∆

(
CT

BBKPCB

)−1
,

CT
BB

′′

KPCBC∆, and VCT
BBKPCBC∆, see Eq. (18), we

use Subsections IVA, IVB, and IVC and apply matri-
ces that are chopped Kronecker products of lower or up-
per triangular matrices to a vector. The MVPs can all
be evaluated without storing vectors that have more el-
ements than functions in the basis pruned with Eq. (10).
After doing LU decompositions and inserting CBC

T
B or

CBC∆CT
∆CT

B as explained in Section IV, one must eval-
uate these MVPs:

i) CT
BL

−1
KPCB

ii) CT
∆CT

BU
−1
KPCB

iii) CT
∆CT

B

(
cU

′′

KP

)
CBC∆

iv) CT
B

(
cL

′′

KP

)
CBC∆

v) CT
∆CT

BUKPCBC∆

vi) CT
BLKPCBC∆ .

MVPs with iii) & v) are done with Nb × Nb square ma-

trices; MVPs with ii), iv), & vi) are done with Nb ×NB

or NB ×Nb rectangular matrices; MVPs with i) are done
with a NB ×NB matrix.

How does the cost of the MVPs we must com-
pute in order to use more points than basis func-
tions compare with the cost of the MVPs in a square
ZAPPL calculation?38,39,41,42,63 In a square ZAPPL cal-
culation one must evaluate MVPs with CT

BL
−1
KPCB,

CT
B(

cL
′′

KP)CB, and CT
BLKPCB. The cost of all three

are identical and is denoted C. When using the KEO of
Eq. (11), the cost of the calculation is MZ(D + 2)C; MZ

is the number of required Arnoldi iterations (see Section
VII). In a ZAPPL calculation there are no U matrices.
When using more points than basis functions, the cost of
MVPs with iii) and v) is significantly less than C, at least
when B > b.64 The cost of MVPs with iv) and vi) is also
smaller.64 The cost of MVPs with i) is C. The cost of
MVPs with ii) is smaller than but close to C. Neglecting
the cost of the MVPs with iii) and v), denoting the cost
of the iv) and vi) MVPs by C<, the cost of a rectangu-
lar collocation calculation is MRC [2C+(D+1)C<], where
MRC is the number of required Arnoldi iterations. When
B ⪆ b, C< is less but not significantly less than C. For the
simple KEO of Eq. (11), it may be cheaper to replace the

product of i) and iv) with CT
BL

−1
KP(

cL
′′

KP)CBC∆ and to

exploit the fact that L−1
KP(

cL
′′

KP) is a Kronecker product
of factors many of which are identity matrices. In any
case, the cost of a rectangular calculation relative to a
square calculation decreases as D increases. Moreover,
MRC < MZ because the Nb × Nb matrix for which we
compute eigenvalues has a smaller spectral range and a
more favourable gap structure than the NB×NB ZAPPL
matrix.

As examples, we explain how to compute MVPs in
two cases. All other MVPs are evaluated using simi-
lar ideas. Consider first the MVP with the rectangular
matrix CT

BLKPCBC∆. LKP is a Kronecker product of
matrices for each of the coordinates,

LKP = L(1) ⊗ L(2) ⊗ · · · ⊗ L(D) . (25)

The MVP is done by doing sums sequentially,38

z′a1,...,aD
=

∑
t1=0

L
(1)
a1,t1 · · ·

∑
tD=0

L
(D)
aD,tDzt1,...,tD . (26)

=
∑
t1

L
(1)
a1,t1

∑
t2

L
(2)
a2,t2 . . .

∑
tD

L
(D)
aD,tDzt1,t2,...,tD︸ ︷︷ ︸

labels t1, t2, . . . , tD−1, aD︸ ︷︷ ︸
labels t1, a2, . . . , aD−1, aD︸ ︷︷ ︸

labels a1, a2, . . . , aD

(27)

The input vector z in Eq. (27) has Nb elements, as many
as there are indices in the set defined by Eq. (6). The
rightmost sum is done first and the leftmost sum is done
last. The upper limits on the sums are determined from
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the pruning conditions Eq. (6). tc labels a ZAPPL func-
tion for coordinate c. After each sum an intermediate
vector is generated. The indices of the output (z′) vec-
tor are those in the retained set whose elements satisfy
Eq. (9). z′ has length NB . Intermediate vectors may
have more elements than the input or output vectors.
For example, when computing

zDt1,t2,...,tD−1,aD
=

∑
tD=0

L
(D)
aD,tDzt1,...,tD (28)

for a fixed set of t1, t2, . . . , tD−1 values, zD may have
more elements than z because the number of possible
values of aD is larger than the number of possible values
of tD. This is a consequence of the fact that the number
of possible values of tD is determined by t1 + t2 + · · · +
tD ≤ b and therefore depends on t1, t2, . . . , tD−1 whereas
aD = 0, 1, . . . , nD = B, independent of t1, t2, . . . , tD−1.
In Ref. 38 it was shown that elements of all intermediate
vectors labelled by multi-indices not in the retained basis
can be discarded. For example, in Eq. (28) all elements
of zD that do not satisfy t1 + t2 + · · ·+ aD ≤ B can be
dropped.

Consider now the MVP with the Nb×Nb square matrix
CT

∆CT
BUKPCBC∆. We must calculate,

z′t1,...,tD =
∑
i1=0

U
(1)
t1,i1

· · ·
∑
iD=0

U
(D)
tD,iD

zi1,...,iD , (29)

where z has as only many elements are there are indices
in the set defined by Eq. (6). The rightmost intermediate
vector is

zDi1,i2,...,tD =
∑
iD=0

U
(D)
tD,iD

zi1,...,iD . (30)

For some sets of values i1, . . . , iD − 1, zD has more el-
ements than z, but the elements that do not satisfy
i1 + i2 + · · · + tD ≤ b are all zero owing to the up-
per triangularity of U(D). The same thing is true for all
the intermediate vectors.

Finally, we briefly explain how we implement Eq. (26)
and Eq. (29) on the computer. The sums are done se-
quentially and as explained in Ref. 65, using the three
loop structure suggested by Larsson et al.66. For each
sum, the input and output vectors share D − 1 indices
which together are treated as a composite index. Each
sum is done with three loops, one over the composite in-
dex, one over values of the index being summed, and one
over values of the index that replaces the summed index.
For example, in Eq. (28) the composite index includes
t1, . . . , tD−1. The remaining two loops are over tD and
aD, which in general have different ranges. The process
is repeated for each of the D sums required to evaluate a
single MVP. To do the sums over tk in Eq. (26), mapping
arrays are used because the common indices are different
for each k.

VI. BASIS FUNCTIONS AND POINTS

For every molecule and for each coordinate, we choose
basis functions and points. The 1-D basis functions are
importance ordered and each basis function is associated
with a point. For coordinate c there are nc+1 basis func-
tions and nc+1 points. The final multidimensional basis
and the final point set are obtained from the pruning
condition.

All of the molecules for which we compute energy levels
are rather rigid and harmonic basis functions are there-
fore an obvious choice. ϕc

ic
(qc) for which ic is smaller

are more important. We use the same basis functions for
all molecules and all coordinates. It is not difficult to
incorporate anharmoncity into the 1-D basis functions,
but strong coupling will make calculations more difficult
because it will require using a larger b in Eq. (6).

The choice of points is less obvious. We give results
for two types of points. The first is Leja points.67 Leja
points are nested interpolation points for a nested se-
quence of univariate basis functions. They are most often
used with polynomial bases. We use the Leja points that
correspond to harmonic basis functions.68 Leja points are
known to be good (nested) interpolation points67,69–71

and it has been shown that they are good collocation
points38,39,41,43,68. There is a natural one to one corre-
spondence between Leja points and basis functions. The
second type of points we use are equally spaced points.
We use equally spaced points to demonstrate that when
using rectangular collocation it is possible to obtain ac-
curate solutions to the Schrödinger equation without us-
ing optimal points. There is no need to use points that
would be good quadrature points. This is important be-
cause there are many situations in which it is hard to
find good quadrature points. It is hard to imagine sim-
pler or more generic points than equally spaced points.
We must establish a one to one correspondence between
points in an equally spaced set with nc + 1 points and
the basis functions, ϕc

ic
(qc), ic = 0, 1, . . . , nc. The equally

spaced points are chosen to be between limits +ℓc and
−ℓc. There is a point at both +ℓc and −ℓc. ℓc is deter-
mined so that the range includes the region in which the
wavefunctions is large. When B is odd, ac = 0 is at the
potential minimum (qc = 0). For any value of B there
are pairs of points that are equally far from the potential
minimum. We arbitrarily assign a smaller value of ac to
the negative point of each pair. ac = 1 and ac = 2 label
the points of the pair closest to the minimum; ac = 3
and ac = 4 label the points of the pair that is second
closest to the minimum; etc. An example of a large and
a small point set for a 2-D problem is shown in Figure
2. In the figure, both point sets are built from Leja for
each of the coordinates. Because the points for a single
coordinate are importance ordered, there are no points
in the corners. Most of the points in the larger set that
are not in the smaller set are around the periphery.
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FIG. 2. Example point distribution in 2-D using Leja points.
The red points are those in the small point set defined by
b = 11. The blue points are those that are added to the
b = 11 point set to obtain the B = 15 point set.

VII. RESULTS

We have done test calculations on molecules with
three, four, five, and six atoms. In all cases the eigenvalue
problem is solved with ARPACK.72 For P2O, Fig. 3 shows a
comparison of the maximum absolute error (MAE) of the

lowest 50 levels computed with b = 23 and (b+D)!
b!D! = 2600

basis functions using Eq. (18) (blue) and Eq. (13) (red)
with Leja points. It is interesting to compare the accu-
racy of equations Eq. (13) and Eq. (18) when the basis
is small enough that the calculation with Eq. (13) (with
a direct eigensolver and B = CT

BBKPCB) is possible,
which is the case for P2O. At the left of the Figure the
basis size and point set size are the same (B = b). When
using Eq. (18), as the number of points is increased by in-
creasing B in Eq. (9) from 23 to 27, the MAE decreases
substantially. This demonstrates the advantage of rect-
angular collocation: without increasing the basis size it
is possible to compute more accurate energies by using
more points. Energy errors computed with Eq. (18) de-
crease more quickly than those computed with Eq. (13)
as the size of the point set is increased. To compute er-
rors plotted in Fig. 3, we use eigenvalues of a Hamiltonian
matrix whose elements are exact.

For CH2O, Figure 4 shows absolute errors for the low-
est 50 energy levels. The basis size is 18,564, correspond-
ing to a pruning parameter of b = 12. The number of
points is increased by increasing the point pruning pa-
rameter in steps: B = 12, 14, 16, 18. Errors are cal-
culated from reference levels obtained with a huge di-
rect product discrete variable representation (DVR) basis
with 146 = 7, 529, 536 functions and an iterative eigen-
solver. Errors in the reference levels are less than 0.001
cm−1. Energy level errors decrease by approximately

2600 2800 3000 3200 3400 3600 3800 4000

Points

10−10
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10−6

10−4

10−2

100

50
 l

ev
el
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AE

 (
cm
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)

FIG. 3. Maximum absolute errors of the lowest 50 levels of
P2O. The basis size is 2,600 and the number of points is in-
creasing along the x axis. The basis pruning parameter in
Eq. (6) is b = 23 and the point pruning parameter in Eq. (9)
is B = 23, 24, 25, 26, 27. A comparison is shown between er-
rors with Eq. (18)) (blue) and Eq. (13) (red). Leja points are
used.

three orders of magnitude as the size of the point set
is increased, without increasing the basis size. In Fig-
ure 5, we compare CH2O MAEs obtained with Leja and
equally spaced points. The MAEs are similar, indicating
that simple equally spaced points work well. A major ad-
vantage of collocation is that it is not necessary to have
good quadrature points. Being able to use more points
than functions means that even super simple points can
be used to obtain accurate energies.

For CH2NH, Figure 6 shows that also for a molecule
with 5 atoms, energy level errors are reduced by increas-
ing the size of the point set. The absolute errors are with
respect to reference levels computed with the same prun-
ing condition, exact matrix elements, and the method of
Ref. 55, which is only applicable for a SOP PES. Errors
in the reference levels are less than 0.001 cm−1. Errors
are unacceptably large if the point set size equals the ba-
sis set size. If one were not able to use more points than
basis functions, one would deem the basis with 48,620
functions too small. The advantage of using more points
than functions is also clearly demonstrated in Figure 7.
All the calculations for Figure 7 were done with the same
point set using B = 12. The Figure makes it clear that
as long as the number of points is large enough, energy
errors remain acceptably small even when the basis size
is reduced. If one were forced to use as many points as
basis functions, it would be necessary to use many more
basis functions and therefore a much larger matrix.

Results for CH3CN are shown in Figure 8. Refer-
ence levels are calculating using the O expansion method
of Ref. 55 with exact matrix elements. Errors in the
reference levels are less than 0.001 cm−1. The basis
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FIG. 4. Absolute errors of the lowest 50 levels of CH2O. The basis size is 18,564 and the different colour bars correspond to
point pruning parameter values in Eq. (9) that are B = 12, 14, 16, 18. The basis pruning parameter in Eq. (6) is b = 12. For
many eigenvalues the bars for 134,596 points are so small they are not visible. Leja points are used.
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FIG. 5. A comparison of the maximum absolute er-
rors of the lowest 50 levels of CH2O computed with Leja
points (red) and equally spaced points (blue). The basis
size is 18,564. The point pruning parameter in Eq. (9) is
B = 12, 13, 14, 15, 16, 17, 18.

size is 1,352,078 (b = 11). The coloured bars are for
B = 11, 13, 15. Again, keeping the basis size constant er-
rors decrease substantially (by about two orders of mag-

nitude) as the size of the point set is increased.
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FIG. 6. Absolute errors of the lowest 50 levels of CH2NH. The basis size is 48,620 (b = 9). The point pruning parameter in
Eq. (9) is B = 9, 10, 11, 12. Leja points are used.
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FIG. 7. Absolute errors of the lowest 50 levels of CH2NH. The point set size is fixed at 293,930 (B = 12). The different bars
correspond to basis pruning parameters in Eq. (6) that are b = 12, 11, 10, 9. Leja points are used.
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FIG. 8. Absolute errors of the lowest 50 levels of CH3CN. The basis size is 1,352,078 (b = 11). The different bars correspond
to the point pruning parameters B = 11, 13, 15. Leja points are used.

VIII. CONCLUSION

With a direct product basis made from products of
univariate functions it is straightforward to solve the
Schrödinger equation for the vibration of the nuclei of a
molecule with five or fewer atoms. This is possible even
for a general PES (i.e. one that is not a SOP and not an
N-mode representation).30,73 However, for larger systems
the runtime and memory cost of a direct product calcula-
tion become prohibitive. To do calculations for systems
with 6 or more atoms one must use a better basis. It is
common to make a better basis, either by contracting or
by pruning, and this always means using basis functions
that are not product DVR functions. Using better basis
functions is not enough, because to solve the Schrödinger
equation, one must also compute matrix elements of the
Hamiltonian operator in the chosen basis. For a general
PES, this usually means evaluating integrals by quadra-
ture and using more points than basis functions. This
paper is about a collocation method with more points
than basis functions that obviates all integrals.

Quadrature is a problem because for good basis sets
it is not known how to find an accurate quadrature with
about as many points as there are functions in the ba-
sis. For example, in Ref. 74, to compute vibrational
levels of methane, 280 contracted bend functions were
used, but 0.34× 106 bend quadrature points (after com-
paction) were required. Pruning is another technique for

creating a basis smaller than a direct product basis. For
a 15-D problem with 15 functions for each coordinate
the basis obtained from the pruning condition Eq. (6) is
about 10 orders of magnitude smaller than the direct
product basis from which it is obtained. It is possible to
find good quadrature points and weights for pruned ba-
sis sets, but it is only simple for polynomial-type bases.37

In any quadrature method, the accuracy of energies de-
pends sensitively on the points. Quadrature methods do
have the advantage, compared to (direct product) DVR
calculations that one is able to use more points than ba-
sis functions. In a sense using more points enables one
to fully exploit the space spanned by the basis.

In this paper we prune to reduce the basis size and
use a rectangular collocation (RC) method with more
points than basis functions. We need at most an or-
der of magnitude more points than basis functions and
demonstrate that the method is relatively insensitive to
the choice of the points. By using more points than ba-
sis functions, we take full advantage of the space spanned
by the basis. In standard RC calculations, one converts a
rectangular eigenvalue problem into a square eigenvalue
problem by left multiplying with a pseudoinverse which
is (BTB)−1BT. In this paper we use a different pseu-
doinverse, called M. To make M, we use a big basis
(Eq. (10)) and its corresponding grid and also a small
basis (Eq. (6)) and its corresponding grid. M can only
be used if it is possible to invert and evaluate MVPs
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with the big B which in this paper is CT
BBKPCB. For a

pruned basis this is possible, as explained in Section IV.
It is much easier to invert CT

BBKPCB than to solve the
Schrödinger equation in the big basis. We are using the
big point set (Eq. (9)) and the small basis (Eq. (6)). Of
course one could use the big point set and the big basis.
Using the small basis is less costly because MVPs are less
expensive (for D = 9 and 12, if B is large enough) and
fewer MVPs are required to obtain converged eigensolu-
tions (with a small basis the spectral range the density
of states are both smaller). For similar reasons, it is
common to use more points than basis functions with
quadrature. We have used the simplest possible prun-
ing condition (Eq. (6); it might be possible to reduce the
point set and basis set sizes by using Eq. (7).

Energies computed from Eq. (18) will be exactly equal
to those obtained from a variational calculation with ex-
act matrix elements when it is possible to interpolate the
functions obtained by operating with the Hamiltonian
operator on all functions from the basis used to represent
wavefunctions (here Eq. (6). In general, b should be large
enough that wavefunctions are correctly represented but
no larger. Using a value of b larger than required, unnec-
essarily increases interpolation error.

It is clear from Figure 3 that energies obtained from
the M pseudoinverse are better than those obtained from
the standard (BTB)−1BT pseudoinverse and that theM
pseudoinverse becomes more advantageous as B becomes
larger than b. How is this possible? If we knew only the
matrix (CT

BBKPCBC∆), then it would be best to use
the standard pseudoinverse. To use theM pseudoinverse,
we evaluate MVPs with (CB

TBKPCB)
−1. Hence we are

using elements of BKP that are not in (CT
BBKPCBC∆).

Energy errors computed with Eq. (18) are smaller than
those computed with Eq. (4) because we are using more
information.

When using a variational method with a general PES,
the advantage of using more quadrature points than basis
functions is clear. By using iterative methods and doing
sums sequentially more points can be used without sig-
nificantly increasing the cost.30 The standard way to use
collocation and also take more points than basis func-
tions (see for example, Ref. 9) requires solving a gener-
alized eigenvalue problem which, when using an iterative
eigensolver, is significantly more costly. The rectangu-
lar collocation method we present should be useful for a
wide range of molecules with general PESs for which it
is possible to devise a compact basis but for which an
accurate quadrature of similar size is not known.
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