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Abstract 
Hammett’s constants σ quantify the electron donor or electron acceptor power of a 
chemical group bonded to an aromatic ring. Their experimental values have been 
successfully used in a large variety of applications, but some of them may have 
inconsistent values or were not measured. For this reason, developing an accurate and 
consistent set of Hammett’s values is paramount. In this work, we employed the machine 
learning (ML) regression algorithms Decision Tree Regressor, the neural network 
Multilayer Perceptron Regressor, and Lasso Lars IC in a cross-validation (CV) approach 
combined with quantum chemical calculations of atomic charges to estimate theoretically 
the new Hammett’s constants σ", σ#, σ"$ , σ#$, σ#%, σ#&, σ', and σ( for 90 chemical donor 
or acceptor groups by employing different types of quantum chemical atomic charges of 
the groups as input properties. New 219 σ values, including previously unknown ones – 
46 σ#$, 35 σ#

%,&, and 11 σ(,' – are proposed. The different substituent groups were bonded 
to benzene and meta- and para-substituted benzoic acid derivatives. Among the 
investigated atomic charge methods (Mulliken, Löwdin, Hirshfeld, and ChelpG), 
Hirshfeld’s method showed the best regressions for most of the different kinds of σ 
values. For each type of Hammett constant, linear expressions depending only on the 
atomic charges of the group were obtained. Correlation coefficients (𝑅+) as high as 0.945, 
mean squared errors (MSE) as low as 0.004, and root mean square errors (RMSE) as low 
as 0.062 were found. The ML approach, in most cases, showed very close predictions to 
the original experimental values, with the values from meta- and para-substituted benzoic 
acid derivatives showing the most accurate values. A new consistent set of Hammett’s 
constants is presented, as well as simple equations for predicting new values for groups 
not included in the original set of 90. 
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1. Introduction 
 

Chemical reactions are highly complex processes whose investigation from a 
theoretical point of view can be challenging. An essential step in the attempt to model 
reactions was made by Hammett when he developed an equation from extensive 
experimental observations.1,2 Hammett’s original idea, and its later extensions, have 
provided the primary basis for quantitatively determining structure-reactivity 
relationships in physical organic chemistry.3 

 
The substituent effect is among the most critical factors affecting the chemical, 

physicochemical and biochemical properties of compounds, which are traditionally 
investigated in the context of Hammett’s theory.4 Initially developed for the ionization of 
benzoic acid derivatives in water for different substitutions at the para, meta, and ortho 
positions, the Hammett equation is a linear quantitative model describing differences in 
free energies of reactions, but which has shown itself, over the course of several decades, 
to have a much more general character. The Hammett equation assumes that the effects 
of a substituent X and the reaction conditions can be represented by the expression: 3,5–7 
 

 𝜌σ0 = log5
𝐾0
𝐾7
8 (1) 

 
where 𝐾0 is the equilibrium constant for a substituted reactant, 𝐾7 refers to the 
unsubstituted reactant where H is the hydrogen atom, 𝜌 is a reaction constant that depends 
only on the conditions of the reactions under study (temperature, solvent, etc.), and σ0, is 
a numerical constant depending only on the nature of the substituent X and its position in 
the molecule, quantifying the magnitude of the electron-donating or accepting nature of 
the substituent.7 

 
Electronic effects, such as the inductive and mesomeric effects, are the 

determinant phenomena in the substituent effect.8 Therefore, the ortho-position is 
disregarded due to steric effects. This scenario implies that the original σ values are 
complex quantities, which led to the formulation of new constants that could, e.g., 
describe the delocalization of positive and negative charges in the system. In 1957, a new 
set of parameters named σ% and σ& were suggested based on the solvolysis of substituted 
phenyldimethylcarbinyl chlorides.9 These parameters include mesomeric effects when 
the substituent is in direct conjugation with the molecule’s reaction center;10,11 however, 
it was soon realized that this new set of σ values would not apply to meta-substituted 
systems due to the impossibility of resonance between a meta-substituent and the reaction 
centers.9,12–14 As can be seen in Figure 1, there is a lack of substituent-reaction center 
resonance in meta-substituted systems, such as deprotonated benzoic acid molecules 
containing electron donors or acceptor substituents, since there is no significant partial 
charge on the carbon bonded to the carboxyl group (reaction center). For this reason, in 
this case, the parameters σ#% and σ#& were defined only for substituents on the para-
position and labeled as follows: σ#% describes groups that can stabilize positive charges 
through resonance whereas σ#& describes groups that can stabilize negative charges 
through resonance. 

 
 



 
Figure 1. Resonance structures in meta-substituted, deprotonated benzoic acid 
derivatives. “D” is an electron donor group and “A” is an electron acceptor group. 
 

Later, another set of constants was proposed since the original σ set appeared 
divided into resonance (R) and inductive (I) parts. However, when a series of 4-
substituted bicyclo[2,2,2]octane derivatives was investigated in 1953,15 it became clear 
that for substituents with a negative resonance effect (-R, negative R) – i.e., for 
substituents that withdraw electrons from the molecule by delocalization – σ" and σ( had 
(with some exceptions) approximately the same value, thus indicating that σ" had a 
significant inductive effect. As a result, the separation between R and I terms was done 
for the σ# constant according to the equation 
 

 σ# = σ( + σ' (2) 
 
Therefore, obtaining σ' values requires the correct determination of the σ# and σ( 
values.16 Moreover, different σ' values, such as σ'$ , σ'%, or σ'&, can be obtained depending 
on the kind of σ# used in Equation (2) – i.e., σ#$, σ#%, or σ#&.8 

 
In 1959, another attempt was made to propose parameters that would counteract 

the resonance effects between the substituent and the reaction center. Therefore, the σ$ 
set was created.17 This set would be defined as unbiased since it would be based on the 
idea that the resonance between a substituent X and the reaction center (e.g., the carboxyl 
in the benzoic acid derivatives) should not be considered when analyzing the resonance 
and inductive effects of the substituent on the molecular electron density.3,17 Thus, the 
unbiased set could be evaluated in three ways:16 I) phenylacetic acid ionization; II) the 
rates of substituted phenylacetate hydrolysis; or, III) statistical methods. Since, in this 
case, there is no significant direct substituent-reaction center resonance, the σ"$  constants 
have the intriguing property of being nearly identical to σ".3,16 

 
Hammett’s theory had been recently applied to different chemical problems. 

Investigations of photophysical properties of a series of 3-amide-6-hydroxy-4-methyl-2-
pyridones-5-(4-substituted phenylazo) in the presence of solvents of different polarities;18 
solute-solvent hydrogen bond energies of para-substituted benzoic acids in the presence 
of immiscible solvents;19 photophysical properties of 14 types of 2-phenylamino-1,10-
phenatrolines synthesized with different types of electron-donating and withdrawing 
substituents are some examples.20 From a theoretical standpoint, Hammett’s constants per 
se were also investigated. A representative work was carried out by Galabov and 
coworkers21 who correlated different atomic charge models of carbon atoms in mono-
substituted benzene systems with the aforementioned unbiased σ$	set, which we 
mentioned, it is based on the notion that the resonance between a substituent X and the 
reaction center should not be considered.3,17 The atomic charge methods included 
Mulliken’s,22 Natural Population analysis (NPA),23,24 Minimal Basis Set (MBS),25 Merz-



Kollman (MK),26 ChelpG,27 Hirshfeld,28 and Charge Model 5 (CM5).29 They showed that 
the Hirshfeld method provided very good regressions between the substituents’ σ$ values 
and the meta- and para-carbon atom (position in relation to the substituent). Batagin-Neto 
et al.30 used the resonance and inductive σ values (σ' and σ() of –H, –CCH, –Ph, –Me, –
CN, –F, –NO2, –NH2, –OH, and –OMe side groups to study the effects of these 
substituents on the optoelectronic properties of polypyrrole (PPy). They were able to 
correlate FMO energies and the maximum absorption wavelength (λ"<=) with the side 
groups’ parameters and thus propose a set of new PPy derivatives with potential 
application in optoelectronic devices. 

 
Since not all substituents have measurements for all values of all types of σ, efforts 

have been made to find ways to calculate these parameters. Recently, Ertl31 developed an 
approach based on semiempirical atomic charge calculations and the Leave-One-Out 
(LOO) cross-validation method.32 The author used the GFN2-xTB semiempirical method, 
the first broadly parametrized tight-binding method to include electrostatic and exchange-
correlation Hamiltonian terms beyond the monopole approximation,33 and concluded that 
three carbon atoms in the benzene would be necessary to correlate with the atomic 
charges. These are the carbons on the meta- and para-positions in relation to the 
substituent and the carbon directly attached to the substituent.31 

 
Another group employed regressive machine learning (ML) models with 

Hammett’s constants as inputs to predict energies of Frontier Molecular Orbitals (FMO) 
of tungsten-banzylidyne complexes with different ligands.34 The authors started by 
calculating, using Density Functional Theory (DFT)//B3LYP/Def2-SVP, the redox 
potentials as well as the corresponding experimental values for their complexes. The DFT 
results and the σ" and σ# values of the ligands were then used to train different regressive 
models. They have shown that their method could accurately predict FMO energies. The 
recent work of von Lilienfeld et al.35 is another interesting application: they applied 
Machine Learning (ML) to predict activation energies of SN2 reactions in non-aromatic 
molecular scaffolds based on Hammett’s original approach. 

 
Inspired on previous investigations by Galabov et al.21 and Ertl31,36 in this work, 

we use ML methods and different types of quantum chemical atomic charges to accurately 
determine the values of different Hammett’s σ constants for a set of 90 donor- and 
acceptor-substituents. ML is a computational approach that has been very useful in 
unveiling several new insights into a plethora of different chemical problems, including  
predictions of major products of Diels-Alder reactions,37 reaction yields using 
perturbation theory combined with ML,38 activation barrier energies of homogeneous 
reactions,39 and even in the atomistic simulations of energetic materials.40 Therefore, 
other ML applications to chemistry abound in different and related areas of chemistry, 
such as materials science.41–43 A recent review44 discusses the recent progress of ML 
models applied to organic photovoltaic (OPV) devices. The authors argue that the ability 
to predict the performance of OPVs from basic structural data has been demonstrated to 
be quite promising. However, for reaching a good level of prediction accuracy, a 
sufficiently large dataset with size, variety, and homogeneity is usually important,44 
although for smaller datasets, accurate data (e.g., from quantum chemical calculations) a 
careful selection input of features is crucial for obtaining good results, as recently has 
been recently showed.45 In this vein, we recently used a ML approach combined with 
carefully selected quantum chemical input features to successfully investigate molecular 
properties affecting the sensitivity, thus the safety, of explosives.46 



 
2. Computational methods 
 
2.1. Atomic charge methods 
 

Atomic charges are not directly measured because they are not quantum 
mechanical observables, but are helpful chemical constructs computable with different 
quantum chemical approaches. They can be used to describe the electron density of a 
molecule obtained with any electronic structure method (e.g., DFT), thus, to interpret 
chemical reactivity, non-covalent interactions, rates of reactions, and other properties in 
many chemical systems. Among the different methods employed to calculate atomic 
charges, the most popular include Mulliken,22 Löwdin,47,48 Hirshfeld,28 and ChelpG27 
methods, used in this work. 

 
Due to its simplicity and availability as the default output in many computational 

chemistry software packages, the Mulliken atomic charge method22 is probably the most 
used. In this method, the expansion coefficients are taken from the Hartree-Fock (HF) 
variational method, and the electronic population is separated according to the atomic 
orbital (AO) contributions. Despite its low computational cost, Mulliken charges suffer 
from two major problems: (i) the electronic density between two atoms is equally divided 
between them, regardless of the electronegativity; and (ii) the method employs a set of 
non-orthogonal basis set that can lead to undesired results.49 

 
Löwdin atomic charges47,48 are an improvement over Mulliken charges because it 

forms orthogonal basis sets by applying symmetric transformations on all orbitals, hence 
eliminating the overlap partitions which solves the aforementioned problem (ii). Löwdin 
charges also have the advantage over Mulliken charges of being less dependent on the 
size of the basis set. 

 
The Hirshfeld method 28 starts with a “promolecule” with neutral spherically 

symmetric atoms at the same coordinates of the atoms of the real molecule. In this 
technique, the molecular electron density at a given point in space is shared by the 
surrounding atoms according to the distance between that point and each atomic nucleus, 
which is considered when calculating the atomic partial charges in this approach. The 
electron density of the isolated atom at a certain distance from the nucleus, which 
corresponds to the distance between that atom’s point on the molecule and its nucleus, is 
included by weighting each atom’s contribution. Although this method is an improvement 
over Mulliken’s, there is a general agreement in the literature that the charges calculated 
using the Hirshfeld method typically are very small, close to zero.50–52 This is true, 
according to Ayers, since the weighting factor is evaluated in a way that the molecule’s 
atom is considered to be very similar to the isolated atom. Despite this particularity of the 
Hirshfeld method, recent studies have concluded that it accurately predicts 
regioselectivity in electrophilic aromatic substitution reactions, the energy of hydrogen 
bonds between methane molecules, and the charges of atoms in covalent bonds, among 
other relevant chemical properties.49 Our results here indicate also the same behavior 
concerning Hammett’s constants. 

 
Charges employing the Electrostatic Potential on a Grid (ChelpG) methods are 

based on the original Chelp program53 in which Lagrange multiplier methods are used to 
fit atom-centered points to the molecule’s electrostatic potential field, keeping the 



molecular total charge constant as a constraint in the fitting process. The major difference 
between the Chelp and ChelpG methods is that the ChelpG process uses an algorithm 
based on regularly spaced points to make point selections.49 This algorithm differs from 
the original Chelp program since it was found that it was not invariant to coordinate 
rotations and internal bond rotations, among other properties.54 
 
2.2. Quantum chemical approach 
 

All quantum chemical calculations employed the Orca package version 5.0.3.55 
The first step was to optimize the gas phase geometry of different substituted benzene 
(BZ) and meta- and para-substituted benzoic acid (m-BAX and p-BAX, respectively) 
molecules. Figure 2 shows the investigated BA and BZ systems, Table S1 lists their 
cartesian coordinates, and Table S2 collected the different experimental σ values 
available in the literature1,2,7,10,11,21,56–58 for 90 different substituents groups – 89 were the 
same groups chosen by the author in Ref.31 and, additionally, we included hydrogen as 
the 90th substituent since all σ values of this atom are taken as the reference value equal 
zero as suggested by Galabov.21 The chemical structures of the substituents can be seen 
in Figure S2 of the Supporting Information (SI). Here, we investigated the following 
Hammett’s parameters: σ", σ#, σ"$ , σ#$, σ#%, σ#&, σ', and σ(. There are also other types of 
Hammett’s constants, which are based on different reactions or reactions series; however, 
we chose these ones because they were obtained from the original set (σ" and σ#).59 
Since some of the Hammett parameters for several substituents of the dataset are, to the 
best of our knowledge, still unknown, some approximations were made. For the unknown 
σ values, the approximations made were: σ"$ = σ"3,16 for those substituents in which the 
σ"$  values were not found in the literature. Moreover, for each unknown value of σ' or 
σ(, Equation (2) was employed to determine the other constant. 

 
The functional B3LYP60 combined with the Def2-TZVP61 basis set was used for 

the optimization of the molecular geometries. Due to its low computational cost and good 
accuracy,62 the B3LYP functional is widely used in the geometrical optimization of 
organic molecular structures. Vibrational frequency calculations confirmed the nature of 
the converged structures. When imaginary frequencies were found, the TightOPT 
keyword in Orca was employed, thereby eliminating them. The converged systems were 
named BZX, m-BAX, and p-BAX, where X is the substituent and m and p refer to the 
position of the substituent X (meta or para), as shown in Figure 2. 
 

 
Figure 2. (a) meta- (m-BAX) and (b) para-Benzoic Acid (p-BAX) and (c) Benzene (BZ) 
systems. 
 

Single point calculations on the converged geometries were carried out using the 
Coulomb-attenuating method with B3LYP (CAM-B3LYP)63 exchange-correlation 
functional and the same Def2-TZVP61 basis-set. Mulliken (M), Löwdin (L), Hirshfeld 
(H), and ChelpG (CG) atomic charges were computed from these single point electronic 



densities. The values of the atomic charges 𝑞?,= (where 𝑥 = M, L, H, or CG and 𝑖 = 1 to 6 
is the number of the ring carbon atom defined in Figure 2) of all meta/para-substituted 
benzoic acid and substituted benzene systems were then subtracted by the corresponding 
charge 𝑞?,= of the unsubstituted BA and BZ, respectively (i.e., with H atoms) as suggested 
by Galabov.21 Therefore, atomic charge variations (∆𝑞?,=) are given by the following 
equations 
 

 ∆𝑞?,=
CD = 𝑞?,=EBGX",#I − 𝑞?,=(BGH) (3a) 

 ∆𝑞?,=
CN = 𝑞?,=(BOX) − 𝑞?,=(BOH) (3b) 

 
were obtained. In Equations 3, 𝑞?,=(𝐵QX",#) and 𝑞?,=(𝐵RX) represent the atomic charge 𝑥 
of carbon 𝑖 of the X-substituted m- or p-BAX and BZX systems. In contrast, 𝑞?,=(BGH) 
and 𝑞?,=(BOH) are the atomic charge 𝑥 of carbon 𝑖 of the unsubstituted BA and BZ, 
respectively. 
 
2.2. Machine learning (ML) algorithms 
 

In the ML approach we used the experimental σ values as the target feature and 
calculated the atomic charge differences defined by Equations (3) as the input features 
for training the algorithms. For a preliminary selection of the algorithms, the Lazy Predict 
tool from the Python Scikit-Learn64 was employed. Many different regression algorithms 
were evaluated employing their default hyperparameters. We then selected three of these 
algorithms, namely, the Decision Tree Regressor, Lasso Lars IC, and Multilayer 
Perceptron Regressor (MLPR), because these regressors provided satisfactory initial 
results. A brief description of these algorithms is given below. 

 
Decision Tree Regressor (DTR) – Regression and classification models can be 

constructed using Decision Trees (DT) algorithms.65,66 The DTs are made from a “root 
node” containing the input data that then the node splits into sub-nodes until it reaches 
the “leaves nodes”, i.e., the final nodes which are not split. Splitting is usually based on 
binary decisions which separates one or more classes from the remaining ones.67 DTR is 
able to find complex nonlinear relationships and make very precise predictions when 
trained by high-quality datasets, such as the present quantum chemical data. An example 
of this power of DTR algorithms is the 2017 proposition that by simulating the branching 
structure of DTs with deep neural nets enables one to explain neural network models, thus 
inheriting the advantages of parametric (the algorithm fits the dataset into a known model) 
and non-parametric models (any fitting model can be chosen depending on the pattern 
observed in the input data).68,69 

 
Lasso Lars IC (LLIC) – The Lasso Least Angle Regression (LARS) 

Irrepresentable Condition (IC) algorithm combines: (i) the Lasso method which can 
simultaneously carry out the estimation of the parameters and model selection in linear 
regression models;70,71 (ii) the LARS high-dimensional algorithm which finds the aspect 
of input features (in our case, the carbon atoms indicated  in Figure 2) which provide 
better correspondence with the target  feature (in case, the Hammett’s constants), until a 
set of the best features is obtained;72,73 and (iii) the condition which states that Lasso can 
consistently select the models if the features not included in the model are 
“irrepresentable” by the features that are in the true model.74 

 



MLP Regressor (MLPR) – The Multilayer Perceptron (MLP) is a class of feed-
forward Artificial Neural Network (ANN). MLP architecture connects the input, hidden, 
and output layers in a feed-forward way.75 As a type of supervised learning, MLP uses 
backpropagation76 (a type of gradient-descent algorithm in which predetermined error-
function values are calculated) to train the network. The values, which were reintroduced 
into the network following the computation, are used to adjust the weights of each layer’s 
neurons.75 

 
The metrics for all calculations were based on the coefficient of determination 

(𝑅+) and the Root Mean Square Error (RMSE), the former is given by 
 

 𝑅+ =
∑ (𝑂V? − 𝑂W?)X
?YZ

∑ (𝑂? − 𝑂W?)X
?YZ

 (4) 

 
while the latter can be obtained by 
 

 RMSE = [
1
𝑛^

E𝑂? − 𝑂V?I
X

?YZ

_
$.a

 (4) 

 
where 𝑛 is the total number of samples, 𝑂 is the observed value, 𝑂V is the value estimated 
by the algorithm, and 𝑂W is the mean of all values. The Mean Squared Error (MSE) is given 
by the square of the RMSE and was also used in this work. 

 
To evaluate the performance of the ML procedures, Cross-validation (CV) was 

carried out by employing the Leave-One-Out (LOO) method. LOO is a K-fold CV 
method77 where K is equal to the number of elements in the data, thus, the training set 
gets K-1 elements while the testing set gets only one element.32 The 𝑅+, MSE, and RMSE 
values related to the CV step of the methodology were named 𝑅bcc+ , MSEbcc, and 
RMSEbcc, respectively. Regressions were carried out using the cross_val_predict 
function of Scikit-learn.64 

 
Finally, based on the ML results and the benzoic acid derivative systems, new σ 

values are proposed. The ML algorithms correspond the atomic charge variations to 
different available Hammett’s constants in a linear fashion, thus generating equations that 
are able to determine new σ values of different substituent groups not included in the 
original dataset. 
 
3. Results and discussion 
 

The following discussion is divided into three parts. Firstly, the results obtained 
from the GridSearchCV algorithm that defines the best ML hyperparameters for all 
regressors and the atomic charges are presented. Secondly, the regressions between the 
best atomic charge model and the substituted benzene (BZX) systems are discussed. 
Finally, we discuss the regressions for both the meta- and para-substituted benzoic acid 
(m,p-BAX) systems employing the best model of atomic charges and, according to the 
results, we propose a new set of consistent values for the Hammett’s constants. 

 
 



3.1. Machine learning regressors and atomic charges 
 

The charge of all six carbon atoms, comprising the benzene ring in all BZX 
(similarly to Galabov’s work21) and m,p-BAX systems, were included in the dataset of the 
ML algorithms. The difference between these charges and the unsubstituted BAH and 
BZH systems are listed in the Supporting Information (SI) in Tables S3-S14. Table S15 
in the SI shows the best regressors obtained by the Lazy Prediction selection algorithm. 
As mentioned before, these are the Decision Tree Regressor, MLP Regressor, and Lasso 
Lars IC (Table S15). The best hyperparameter set for each regressor was found using the 
GridSearchCV function and are shown in Table S16. 

 
Once the best hyperparameters were found, regressions followed by CV – 

employing a LOO approach – were carried out. Table 1 below shows the errors found for 
each regression using the atomic charge models and the best hyper-parametrized 
regressors obtained from the Lazy Prediction step. Since not all Hammett’s constants are 
known for all the 90 substituents, the base number 𝑛 (i.e., the number of molecules used 
in the ML procedure) varies for each σ. For the 90 substituents used in this work, we were 
able to use 𝑛	 = 	44 (σ#$), 55 (σ#

%,&), 79 (σ(,'), and 90 (σ",# and σ"$ ). 
 
Table 1. 𝑅bcc+  values of the CV step involving the DTR, LLIC, and MLPR algorithms 
for the regressions between Mulliken, Löwdin, Hirshfeld, and ChelpG atomic charges 
and Hammett’s constants. The number of molecules used in the input data for each case 
is given by 𝑛. The color scheme represents greater (green), medium (yellow), and lower 
(red) values of 𝑅bcc+ . 

𝛔 Regressor Mulliken Löwdin Hirshfeld ChelpG 𝒏 

σ# 
DTR 0.560 0.882 0.827 -0.137 

90 LLIC 0.783 0.918 0.931 0.714 
MLPR 0.798 0.926 0.930 0.714 

σ" 
DTR 0.275 0.644 0.844 -0.018 

90 LLIC 0.541 0.856 0.878 0.758 
MLPR 0.541 0.862 0.875 0.758 

σ#$ 
DTR 0.545 0.846 0.870 -0.028 

44 LLIC 0.783 0.931 0.945 0.795 
MLPR 0.782 0.930 0.933 0.795 

σ"$  
DTR -0.060 0.639 0.785 0.123 

90 LLIC 0.505 0.864 0.885 0.734 
MLPR 0.505 0.861 0.883 0.734 

σ#% 
DTR 0.709 0.849 0.902 -0.133 

55 LLIC 0.875 0.909 0.921 0.635 
MLPR 0.868 0.907 0.931 0.635 

σ#& 
DTR 0.499 0.745 0.673 -0.093 

55 LLIC 0.562 0.743 0.742 0.635 
MLPR 0.541 0.752 0.741 0.636 

σ' 
DTR 0.668 0.768 0.822 -0.150 

79 LLIC 0.788 0.861 0.893 0.513 
MLPR 0.779 0.869 0.895 0.539 

σ( 
DTR -0.060 0.790 0.801 0.004 

79 LLIC 0.294 0.799 0.845 0.532 
MLPR 0.288 0.798 0.850 0.532 

 



From all the computed regressions using the atomic charge differences as input 
features defined by Eqs. 3, Hirshfeld’s and (to a slightly lower degree) Löwdin’s methods 
gave the best overall good agreement with the different experimental σ values of the 
substituents shown in Table S1. In Ref. 21, a similar accuracy was obtained by relating σ$ 
values with the same variations of Hirshfeld atomic charges of 20 different substituted 
benzene systems (19 of these substituents were also used in this work). The authors 
concluded that Hirshfeld charges describe well the properties of aromatic systems,21 and 
our work, in a certain sense, extends theirs. From now on, we will discuss results based 
on the Hirshfeld charges. 

 
Concerning the ML algorithms, our results indicated that the LLIC and MLPR 

give better linear correlations compared to DTR. However, LLIC was found to be slightly 
better than MLPR. We were able to achieve a coefficient of determination for the CV step 
with the LOO algorithm (𝑅bcc+ ) up to 0.945 (Table S17, LLIC), 0.895 (Table S18, LLIC), 
and 0.946 (Table S19, MLPR). The main results, discussed below, were obtained by 
regressions employing the LLIC algorithm. 
 
3.2. Benzene derivatives 
 

As mentioned before, previous works on the substituted benzene systems inspired 
this investigation.21,31,36 Therefore, we first discuss the results involving the benzene 
derivatives. When comparing Tables S17 and S18 (p- and m-BAX) with Table S19 (BZX), 
the regression error trends favor the results using the BAX derivatives in contrast with the 
BZX systems. This behavior agrees nicely with Hammett’s original work on substituted 
benzoic acids, although in this work, all the systems were modeled in gas phase, whereas 
Hammett originally performed his experiments in water at 25 ºC.1,2 The effects that a 
given substituent X would promote on either BA and BZ systems are distinct because the 
former possesses a carboxyl group which provides additional influence on the electron 
density in the benzene core. 

 
The aforementioned work by Ertl31 confirmed, however, that the benzene can still 

be used as a molecular core system to compute consistent sets of Hammett’s constants 
that can be compared with the available benzoic acid experimental results. Using 89 
different substituents, Ertl showed, by means of a CV approach employing the LOO 
algorithm, that the atomic charge of the carbon directly attached to the substituent and the 
carbon atoms on the meta- and para-positions in relation to the substituent (i.e., carbons 
2, 3, and 4 in Figure 2c, respectively) resulted in equations with the good metrics of 
𝑅bcc+ = 0.873, 𝑅mnomnpp?qX+ = 0.889, and MAE = 0.053 (σ") and 𝑅bcc+ = 0.915, 
𝑅mnomnpp?qX+ = 0.926, and MAE = 0.068 (σ#), where MAE is the Mean Absolute Error. 
Note that our results are more accurate.  

 
Another work relating atomic charges and specific carbon atoms in substituted-

benzene systems was performed by Galabov et al.,21 who concluded that the Hirshfeld 
atomic charges of the carbons in the meta- and para-positions in relation to the 
substituent’s position showed good correlation for the σ$ set of constants (𝑅+ up to 0.959), 
the only ones investigated. This is quite interesting since the suggestion of the σ$ set 
constants did not consider the resonance between the substituent and the reaction center 
when analyzing the resonance and inductive effects of the substituent on the electron 
density of the molecule.3,17 Thus, this suggests that the benzene core is a good starting 
point to determine theoretically Hammett’s constants. 



Our ML regressions using LLIC together with the CV step for the BZ derivatives 
indicated that certain carbon atoms in the benzene ring could be used as the most 
convenient references to calculate Hammett’s parameters. This, however depend on the 
type of σ value. Overall, the best regressions obtained with the BZ derivatives were those 
only for the constants σ#$ and σ#, probably due to possible resonance effects, which are 
more predominant in para-substituted derivatives (see Figure 1). 

 
Consequently, we decided to employ only the benzoic acid systems for obtaining 

a consistent set of Hammett’s parameters for the 90 substituents. The results are discussed 
in the next section. 
 
3.3. Benzoic acid derivatives 
 

Table 2 below lists the predicted values of Hammett’s constants using the Lasso 
Lars IC (LLIC) algorithm and the Hirshfeld charges because they gave the lowest errors. 
The major outliers only for the σ#& constants, namely the –NH2, –NMe2, –NEt2, and –
NHC(=O)Me groups (as will be explained shortly), were removed. Equation (2) was used 
for calculating σ'	the constants, and we employed only the meta- and para-substituted 
benzoic acid derivatives. The equations derived from the regressions used to obtain each 
type the Hammett’s constants as function of the charge differences,  listed in Table 2, are: 
 
σ# = 0.06 + 1.54∆𝑞+ + 7.83∆𝑞u + 35.51∆𝑞v + 6.46∆𝑞a (5a) 
σ#$ = 0.06 + 19.45∆𝑞v + 39.53∆𝑞a + 1.78∆𝑞w (5b) 
σ#% = −0.09 + 2.80∆𝑞+ + 74.78∆𝑞v − 17.37∆𝑞a − 6.47∆𝑞w (5c) 
σ#& = 0.25 + 38.58∆𝑞v + 17.57∆𝑞a + 2.79∆𝑞w (5d) 
σ" = 0.03 + 1.77∆𝑞Z + 4.40∆𝑞+ + 4.55∆𝑞u + 29.88∆𝑞v + 3.25∆𝑞a + 8.09∆𝑞w (5e) 
σ"$ = 0.05 + 1.27∆𝑞Z + 6.34∆𝑞+ + 3.39∆𝑞u + 35.69∆𝑞v + 0.55∆𝑞a + 8.94∆𝑞w (5f) 
σ( = 0.07 + 1.13∆𝑞Z + 5.89∆𝑞+ + 44.84∆𝑞v − 6.08∆𝑞a + 7.70∆𝑞w (5g) 
σ' = σ# − σ( (5h) 
 
Table 2. Machine-Learning-based predictions of different σ values for different 
substituent groups bonded to the benzoic acid. Values obtained using Eqs. 5 from the 
LLIC algorithm and the Hirshfeld atomic charge model. 

–X 𝛔𝒎 𝛔𝒑 𝛔𝑹 𝛔𝑰  [a] 𝛔𝒑% 𝛔𝒑&  [b] 𝛔𝒎𝟎  𝛔𝒑𝟎 
–H 0.03 0.06 -0.02 0.07 -0.09 0.25 0.05 0.06 
–Br 0.38 0.28 -0.19 0.47 0.01 0.42 0.41 0.37 
–2-pyrimidinyl 0.13 0.21 0.13 0.08 0.24 0.39 0.12 0.09 
–2-furyl 0.10 0.00 -0.14 0.15 -0.24 0.13 0.10 0.00 
–3-thienyl 0.07 0.00 -0.13 0.13 -0.23 0.12 0.07 0.01 
–2-thienyl 0.12 0.03 -0.17 0.20 -0.23 0.16 0.14 0.05 
–3-pyridyl 0.15 0.12 -0.07 0.19 -0.04 0.25 0.15 0.09 
–2-pyridyl 0.13 0.10 -0.03 0.13 0.06 0.22 0.12 -0.02 
–4-pyridyl 0.19 0.19 -0.02 0.21 0.07 0.35 0.19 0.17 
–c-C5H9 -0.03 -0.11 -0.14 0.03 -0.35 -0.02 -0.04 -0.12 
–c-C6H11 -0.03 -0.12 -0.15 0.03 -0.36 -0.03 -0.04 -0.13 
–C6H4-3-Br 0.14 0.11 -0.06 0.17 -0.06 0.26 0.14 0.12 
–C6H4-4-Br 0.12 0.09 -0.08 0.16 -0.09 0.22 0.12 0.08 
–C6H4-4-t-Bu 0.04 -0.03 -0.12 0.09 -0.25 0.09 0.04 -0.04 
–C6H4-4-Et 0.04 -0.03 -0.12 0.09 -0.25 0.09 0.04 -0.04 



–C6H4-4-Me 0.04 -0.03 -0.12 0.09 -0.25 0.09 0.04 -0.04 
–C6H4-3-Cl 0.14 0.11 -0.07 0.18 -0.06 0.24 0.14 0.09 
–C6H4-4-Cl 0.11 0.08 -0.08 0.16 -0.10 0.21 0.12 0.07 
–C6H4-3-F 0.13 0.10 -0.06 0.16 -0.07 0.24 0.13 0.09 
–C6H4-4-F 0.09 0.04 -0.10 0.14 -0.16 0.17 0.09 0.04 
–C6H4-3-NO2 0.22 0.22 -0.04 0.26 0.10 0.36 0.23 0.19 
–C6H4-4-NO2 0.23 0.25 -0.01 0.26 0.15 0.42 0.24 0.24 
–C6H4-4-OMe 0.01 -0.08 -0.14 0.07 -0.33 0.04 0.01 -0.07 
–Ph 0.07 0.01 -0.10 0.11 -0.19 0.14 0.07 0.00 
–CCH 0.33 0.29 -0.01 0.31 0.20 0.47 0.34 0.26 
–t-Bu -0.05 -0.12 -0.12 0.00 -0.35 -0.03 -0.07 -0.14 
–CF3 0.42 0.53 0.10 0.42 0.52 0.79 0.45 0.54 
–CH2Ph -0.01 -0.05 -0.10 0.05 -0.30 0.07 -0.01 -0.03 
–(CH2)2Ph 0.00 -0.11 -0.17 0.07 -0.36 -0.02 0.00 -0.12 
–n-C5H11 -0.03 -0.11 -0.15 0.04 -0.36 -0.02 -0.03 -0.11 
–n-Bu -0.03 -0.14 -0.18 0.04 -0.39 -0.06 -0.03 -0.16 
–n-Pr -0.02 -0.10 -0.14 0.05 -0.34 -0.01 -0.03 -0.10 
–(CH2)2COOH 0.07 0.03 -0.10 0.13 -0.18 0.15 0.07 0.03 
–Et -0.02 -0.09 -0.14 0.05 -0.34 0.00 -0.02 -0.10 
–CH2CH=CH2 -0.01 -0.04 -0.09 0.05 -0.24 0.05 -0.01 -0.07 
–i-Bu 0.00 -0.10 -0.15 0.05 -0.34 -0.01 -0.01 -0.12 
–CH2CN 0.22 0.23 -0.05 0.28 0.08 0.33 0.23 0.18 
–CH2C(=O)NH2 0.08 0.06 -0.07 0.13 -0.13 0.19 0.08 0.06 
–CH2NMe2 -0.01 -0.06 -0.09 0.03 -0.29 0.07 -0.01 -0.06 
–CH2NH2 0.00 -0.02 -0.09 0.06 -0.22 0.10 0.00 -0.03 
–CH2OMe -0.02 -0.08 -0.12 0.04 -0.29 -0.01 -0.02 -0.14 
–CH2OH 0.03 0.01 -0.05 0.06 -0.19 0.15 0.04 0.03 
–Me -0.02 -0.09 -0.15 0.06 -0.35 -0.01 -0.02 -0.09 
–CHPh2 0.04 -0.04 -0.14 0.10 -0.27 0.06 0.04 -0.07 
–CH=CH2 0.10 0.06 -0.06 0.12 -0.11 0.21 0.10 0.05 
–c-C3H5 -0.02 -0.16 -0.24 0.08 -0.50 -0.08 -0.01 -0.13 
–c-C4H7 -0.05 -0.14 -0.16 0.03 -0.41 -0.05 -0.05 -0.14 
–s-Bu -0.02 -0.11 -0.15 0.04 -0.35 -0.02 -0.03 -0.12 
–i-Pr -0.02 -0.10 -0.14 0.04 -0.34 -0.01 -0.03 -0.11 
–CH(Me)OH -0.02 -0.06 -0.09 0.03 -0.33 0.09 -0.02 0.01 
–CHF2 0.32 0.33 0.02 0.31 0.26 0.54 0.34 0.34 
–CHO 0.39 0.60 0.31 0.28 0.73 0.91 0.39 0.55 
–Cl 0.38 0.25 -0.22 0.48 -0.04 0.36 0.40 0.33 
–CN 0.67 0.73 0.13 0.60 0.79 0.98 0.69 0.68 
–C(=O)Ph 0.31 0.38 0.13 0.25 0.41 0.64 0.30 0.34 
–C(=O)Et 0.32 0.42 0.17 0.24 0.49 0.70 0.31 0.38 
–C(=O)Me 0.32 0.44 0.20 0.24 0.52 0.73 0.31 0.41 
–C(=O)NH2 0.32 0.37 0.09 0.28 0.32 0.65 0.31 0.42 
–C(=O)NHPh 0.35 0.39 0.06 0.33 0.31 0.67 0.35 0.46 
–C(=O)NHMe 0.28 0.32 0.06 0.25 0.23 0.59 0.28 0.37 
–C(=O)OEt 0.30 0.42 0.21 0.21 0.51 0.68 0.29 0.35 
–C(=O)OMe 0.32 0.45 0.21 0.23 0.54 0.71 0.31 0.37 
–C(=O)OH 0.38 0.54 0.25 0.28 0.67 0.81 0.38 0.45 
–F 0.40 0.17 -0.40 0.56 -0.24 0.14 0.41 0.26 
–I 0.37 0.28 -0.15 0.44 0.04 0.45 0.39 0.36 



–NEt2 -0.27 -0.75 -0.77 0.02 -1.59 -0.86 -0.27 -0.53 
–NMe2 -0.26 -0.75 -0.79 0.05 -1.58 -0.86 -0.25 -0.52 
–NH2 -0.11 -0.58 -0.76 0.18 -1.39 -0.66 -0.09 -0.34 
–NHPh -0.04 -0.48 -0.69 0.21 -1.20 -0.57 -0.03 -0.32 
–NHEt -0.20 -0.70 -0.80 0.10 -1.55 -0.81 -0.19 -0.49 
–NHMe -0.19 -0.69 -0.80 0.11 -1.55 -0.80 -0.18 -0.48 
–NHC(=O)Ph 0.17 -0.12 -0.46 0.34 -0.50 -0.19 0.17 -0.15 
–NHC(=O)Me 0.07 -0.02 -0.25 0.22 -0.46 0.00 0.08 0.08 
–NHOH 0.00 -0.34 -0.56 0.22 -0.98 -0.39 0.01 -0.21 
–NHSO2Me 0.21 -0.07 -0.52 0.44 -0.58 -0.10 0.23 0.03 
–NO2 0.72 0.87 0.23 0.64 1.05 1.09 0.73 0.78 
–OPh 0.18 -0.20 -0.54 0.34 -0.72 -0.28 0.17 -0.08 
–OCF3 0.42 0.23 -0.32 0.55 -0.17 0.24 0.42 0.32 
–OPr -0.01 -0.32 -0.56 0.24 -0.95 -0.40 0.00 -0.19 
–OEt 0.04 -0.32 -0.57 0.25 -0.94 -0.39 0.02 -0.19 
–OMe 0.06 -0.29 -0.56 0.27 -0.91 -0.36 0.05 -0.15 
–O-i-Pr 0.03 -0.35 -0.60 0.25 -0.93 -0.47 0.01 -0.25 
–OCHF2 0.38 0.13 -0.39 0.51 -0.24 0.09 0.37 0.22 
–OC(=O)Me 0.32 0.18 -0.22 0.40 -0.13 0.22 0.32 0.25 
–OH 0.14 -0.23 -0.60 0.37 -0.90 -0.27 0.14 -0.02 
–P(=O)(OH)2 0.34 0.51 0.21 0.29 0.54 0.82 0.38 0.49 
–SMe 0.07 -0.16 -0.41 0.24 -0.64 -0.07 0.10 -0.01 
–SO2Ph 0.51 0.60 0.13 0.47 0.63 0.88 0.54 0.60 
–SO2Me 0.52 0.64 0.16 0.48 0.69 0.94 0.55 0.65 
–SO2NH2 0.51 0.59 0.10 0.49 0.61 0.85 0.55 0.56 

[a] Obtained from the regressions of the m-BAX derivatives. 
[b] The values of σ#& were calculated by disregarding, during the ML procedure, the –NH2, 
–NMe2, –NEt2, and –NHC(=O)Me substituents. 
 

To perform an additional test of the predictability of Eqs. 5, we examined three 
additional substituent groups, namely –CCl3, –NHCHO, and –NHCONH2. The same 
optimization and single-point approach used for the benzoic acid systems were done for 
these substituents, as well as computing the Hirshfeld atomic charge differences. Values 
are shown in Table  below. The larger difference is for the value of σ" of the –NHCHO 
group (∆σ# = 0.22). The other results show that our ML-based equations predict quite 
accurately the values of different Hammett’s parameters for these three chemical groups, 
not present in the original set of 90. 
 
Table 3. Machine-Learning-based predictions of different σ values for the new m-BAX 
test systems. Calculations with the Lasso Lars IC algorithm. Values in parenthesis are the 
values from the literature. 

–X 𝛔𝒎 𝛔𝒑 𝛔𝑹 𝛔𝑰 𝛔𝒑% 𝛔𝒑& 𝛔𝒎𝟎  𝛔𝒑𝟎 

–CCl3 
0.32 

(0.40)a 
0.44 

(0.46)a 
0.10 

(0.00)b 
0.34 

(0.36)b 0.41 0.66 0.35 
(0.31)a 

0.45 
(0.33)a 

–NHCHO 0.14 
(0.19)a 

-0.22 
(0.00)d 

-0.33 
(-0.40)b 

0.29 
(0.33)b -0.55 0.04 0.15 

(0.19)a 
0.19 

(0.09)a 

–NHCONH2 0.13 
(-0.03)a 

-0.22 
(-0.24)c 

-0.55 
(-0.47)b 

0.32 
(0.23)b -0.84 -0.17 0.13 0.04 

a Ref. 11; b Ref. 78; c Ref. 16; d Ref. 7. 
 



The values of σ' were calculated with Equation (2) because we observed a 
dependence between this constant and both the BAX systems. This dependence is 
expected, once it was proposed that σ# has both a resonant (σ') and inductive (σ() term, 
the latter being in almost all situations equal to σ".15,16 Combining then Equations (5a) 
and (5g) with Equation (2), the errors of σ' were reduced  by using only the m- or p-BAX 
systems. These metrics can be seen in Table 4. 
 
Table 4. Regression and cross-validation errors and coefficient of determinations for the 
Equation (5h). The number of molecules used is represented by 𝑛. 
𝛔 Regressor 𝐌𝐒𝐄 𝐑𝐌𝐒𝐄 𝑹𝟐 𝐌𝐒𝐄𝑳𝑶𝑶 𝐑𝐌𝐒𝐄𝑳𝑶𝑶 𝑹𝑳𝑶𝑶𝟐  𝒏 
σ' LLIC 0.006 0.074 0.921 0.006 0.077 0.916 79 

 
The values calculated by our ML-based method (Table 2) were then compared 

with the experimental values of σ collected in Table S1. The correlation plots comparing 
the predicted and theoretical σ values for each ML algorithm are in Figure 3. The 
predictions of σ constants are in very good agreement with the experimental constants as 
can be seen by the almost linear plots in Figure 3, especially for the LLIC algorithm. The 
outliers in the plots are probably due to experimental errors in the measurement of 
Hammett’s constants. They can propagate in the calculations or  measurements of σ' 
constant, for instance, since it depends on the accuracy of the determinations of both σ# 
and σ( (likewise σ") for computing σ' = σ# − σ()8,15,16. However, considering that 
CAM-B3LYP functional using in the DFT computation of the atomic charges describe 
accurately charge-transfer (CT) effects in a molecule,63 (hyper)polarizabilities,79,80 and 
spatial molecular orbitals overlaps,81 we expect that this approach is quite suitable for 
accurately describing resonance and inductive effects in benzoic acid systems. Therefore, 
this accurate dataset provides a sound physical basis for using the ML approach for 
predicting Hammett’s parameters, as our results show. 
 



 
Figure 3. Comparisons between predicted (Table 2) and experimental (Table S1) 𝜎 values 
of all 90 substituent groups calculated from the meta- and para-substituted benzoic acid 
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derivatives using the Hirshfeld atomic charge method. Major outliers with the LLIC 
algorithm are surrounded by a green circle. 
 

The worst result of all sets is of Hammett’s constants σ#&, with 𝑅bcc+ =
0.673	(DTR), 0.742 (LLIC), and 0.741 (MLPR) (see Figure 3f and Table S17). Some of 
the substituent groups mentioned above  (–NH2, –NMe2, –NEt2, and –NHC(=O)Me) were 
the most significant outliers in this case. These substituents are electron donors, thus, 
seem not to be well represented by their σ#& values (-0.15, -0.12, -0.43, and -0.46, 
respectively, see Table S1), which are typical of electron acceptors. Given that Hammett’s 
parameters are inferred from the experiment, and thus depend on the reaction conditions, 
described by the 𝜌 parameter in Equation (1), their values can vary and eventually be 
inconsistent. Considering that the measured constants have experimental errors, it was 
suggested that some of Hammett’s parameters should be revised, considering that the 
available σ data are, in some instances, contradictory.58 Rablen and Yett58 performed G4 
Gaussian model chemistry calculations of the σ",#, σ%,&, and newly defined σ"&  constants 
based on a quantum chemical computation of Gibbs free energies of deprotonation of 
substituted benzoic acid and phenol systems. The G4 procedure is part of the Gn series82–

85 (n = 1, 2, and 3) and combines the high-level coupled-cluster singles and doubles with 
perturbative triple excitation (CCSD(T))86 correlation calculation and moderate basis-sets 
size with lower-level calculations and larger basis-sets. The G4 model was able to reach 
the outstanding mean absolute error of 0.83 kcal/mol for a data set of 454 experimental 
energies.87 Employing this model,58 the substituents –NH2, –NMe2, and –NHC(=O)Me 
could have values of σ#& equal to -1,69, -1.02, and 0.30, respectively, rather than the 
accepted -0.15, -0.12, and -0.46 (Table S1). This trend was observed in this work where 
the first two σ#& values are more negative than the experimental ones (–NH2: -0.66 and –
NMe2: -0.86) while the third constant is greater than the accepted one (–NHC(=O)Me: 
0.00) – see Table 2. This result is particularly interesting because these three predicted 
values are close to the corresponding σ# value reported in the literature, which would be 
expected for electron donating groups.15 

 
Rerunning our ML procedure with σ#& values from Rablen and Yett58 and 

disregarding the –NEt2 group, improves the deviations to MSEbcc(LLIC) = 0.056, 
RMSEbcc(LLIC) = 0.236, and 𝑅bcc+ (LLIC) = 0.807. Moreover, rerunning the ML 
algorithms without all four substituents (–NH2, –NMe2, –NEt2, and –NHC(=O)Me) 
resulted in the following improvements: MSEbcc(LLIC) = 0.036, RMSEbcc(LLIC) =
0.191, and 𝑅bcc+ (LLIC) = 0.821.	These increasingly improvements suggest, like in Ref. 
58, that revisions of some accepted σ values must be done. Consequently, we did to not 
consider the aforementioned substituent groups in our ML investigation. The result was 
Eq. 5d shown above. 
 
4. Conclusion 
 

The substituent effect is one the most important phenomena in chemistry usually 
rationalized using Hammett’s theory. Hammett’s constants (σ) are then a concise way to 
quantify the electronic effects of a given substituent. Since many of the most common 
substituents lack experimental σ values, sound theoretical approaches to predict these 
values are especially important. 

 



We used machine learning (ML)-based regressions and cross-validations (CV), 
combined with Density Functional Theory (DFT) for computing  accurate atomic charges, 
to obtain different types of σ values (σ", σ#, σ"$ , σ#$, σ#%, σ#&, σ', and σ() following an 
approach based on the original approach of Hammett by using meta/para-substituted 
benzoic acid derivatives.1,2 Using the latter, instead of benzene derivatives, predicted the 
most accurate σ values. 

 
Among the tested atomic charge methods (Mulliken, Löwdin, Hirshfeld, and 

ChelpG), Hirshfeld’s method, and in a slightly lower degree Löwdin charges, predicted 
the best set of constants as compared with the experimental σ values. These atomic charge 
methods are known to describe accurately the molecular electron distribution density, and 
our results confirm that. Therefore, we found the Hirshfeld method to be the most accurate 
approach to calculate the different types of Hammett’s constants. 

 
From ML regressions, we obtained several equations based on atomic charge 

values that allowed us compute Hammett’s the σ values with small deviations. The results 
showed a very good agreement between predicted values and the experimental data from 
literature. Furthermore, these equations can be used for predicting σ constants of other 
donor or acceptor groups only by computing their charges in benzoic systems.  

 
When using DFT-modeled benzene derivatives instead of benzoic acid systems, 

σ values could also be calculated, but the results were slightly worse when compared to 
the use of benzoic acid systems. Therefore, in this work we provide a  consistent set of 
values of different type of Hammett’s constants and simple equations to predict them for 
their chemical groups. 
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