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Abstract 

The applications of flow chemistry (continuous flow reactions) in the synthesis of 

pharmaceuticals and fine chemicals require more advanced optimization algorithms to 

guide laboratory-scale and industry-scale optimization. Although several Bayesian 

Optimization (BO) frameworks have been developed, they are rarely equipped with 

state-of-the-art noise-handling acquisition functions and have not been benchmarked 

by multiple real-world continuous flow kinetic models. In this study, we developed 

FlowBO for flow chemistry, equipped with the recently-developed MOO algorithm 

qNEHVI that can better handle experimental noise and make parallel 

recommendations. Also, five kinetic models built from experimental results, including 

four series reactions, were used as benchmarks for FlowBO and two other recognized 

BO frameworks. The results show that FlowBO outperforms in all four series reaction 

cases with optimization results >99.9% for conversion and selectivity. At the same 

time, FlowBO offers a range of optimum advantages with a wide choice of 

temperature, residence time, and reactant concentration, facilitating process 

optimization for subsequent steps (i.e. separation).  
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Introduction 

Continuous flow chemistry is flourishing in the pharmaceutical industry due to 

its precise control of reaction parameters, high degree of automation, ease of 

integration, and safety of the reaction1. Optimization of flow chemistry reaction 

parameters (residence time, temperature, pressure, reactant concentration, etc.) is 

important to improve the conversion and selectivity of target products and control 

experimental costs. How to obtain the optimal reaction parameters used to be a 

complex and expensive problem. Traditionally, chemists optimized reaction 

conditions based on their own expertise and relevant literature, which was prone to 

human bias and required a lot of time to screen reaction parameters. In addition, only 

a limited number of experiments could be performed due to time and material budget 

constraints. In recent years, chemists have applied optimization algorithms to develop 

more efficient optimization methods2., including determining the optimal conditions 

for industrial processes3, predicting reaction paths4, 5, and finding derivatives of 

specific molecules6. Design of Experiments (DOE), a local optimization algorithm, 

has been found to work well in many areas of chemical synthesis7, 8, 9. However, the 

number of experiments designed by DOE increases exponentially with the number of 

factors increases. In addition, the locally optimal solutions are only superior to 

neighboring solutions and are not guaranteed to be optimal, making DOE less suitable 

for optimizing chemical reactions with more than two variables10. Therefore, it is 

important to find a non-convex global optimization method to optimize expensive 

objectives. 

Bayesian optimization (BO) is a sequential model-based approach that was 

initially developed to find optimal solutions to black box functions11-13. BO has two 

major components. The first component is the surrogate model, which is trained using 

the results of previous evaluations while making predictions for the unevaluated 

experiments. The second component is the acquisition function, which verifies the 

predictions of the agent model by evaluating the results, balancing exploitation 

(evaluating the optimal part of the solution) and exploration (evaluating the part with 
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high uncertainty) before selecting the next evaluation point to validate its conjecture. 

Various models have been proposed as surrogate functions, including Random 

Forests14, Gaussian Processes11, 15, and Bayesian Neural Networks16. BO can be 

applied to a wide range of search spaces and recommend and process multiple 

experiments in parallel, which makes it well-suited for the optimization of chemical 

reactions17-19. Deshwal et al. applied BO to the screening of nanoporous materials, 

comparing it systematically with evolutionary search and one-time supervised 

machine learning20. Doyle group optimized the Mitsunobu and defluorination 

oxidation reactions and found BO outperformed human decision-making in terms of 

average optimization efficiency and consistency3. Lapkin group developed the 

Summit platform, which compared seven different optimization strategies and 

demonstrated the efficiency of BO21.  

When optimizing chemical reactions, one often encounters the difficulty of 

optimizing not only one but multiple objectives. For example, selectivity and 

conversion in a chemical reaction are competing objectives, and it is difficult to find a 

point where both are maximized. Optimization of one of the objectives means a 

detrimental effect on the other, and the best solution for such competing objectives is 

usually to find a compromise between the two. Many studies have reported algorithms 

for multi-objective optimization (MOO) such as Thompson Sampling Efficient 

Multi-objective (TS-EMO)22, 23, Expected Hypervolume Improvement (EHVI)24, and 

Noisy Expected Hypervolume Improvement (NEHVI)25. Some studies have applied 

these algorithms to chemical reactions. Lapkin et al. applied TSEMO to the 

multi-objective optimization of the SnAr reaction optimizing space-time yield (STY) 

and E factor (ratio of total waste to product), and an N-benzylation reaction to 

optimize STY and impurity yield26. Vlachos et al. developed an open-source BO 

framework, NEXTorch, and applied it to optimize the conversion of fructose to 

5-hydroxymethylfurfural27.  

Although there are many BO algorithms for MOO, most methods do not take 

into account the effect of noise on observations25. For example, in the laboratory, 

environmental factors such as temperature and air pressure, as well as instrument 
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stability and other errors, can have an impact on observations, and a good 

noise-handling method can significantly improve the optimization performance. In 

addition, few existing BO frameworks have been benchmarked21 by kinetic modeling, 

an recognized method for optimizing flow chemistry experiments. In this study, we 

presented FlowBO, a BO framework specifically designed for flow chemistry. 

FlowBO is equipped with a recently developed noise-handling acquisition function. It 

also supports parallel recommendations of experiments and offers both 

single-objective optimization (SOO) and MOO. In addition, we simulated the 

experimental results with five kinetic models, which also serve as a benchmark to 

compare FlowBO with other existing BO frameworks.  

 

Methods 

FlowBO, a flow chemistry Bayesian optimization (BO) framework. FlowBO 

was implemented in a modular way based on the open-source framework BoTorch28. 

The flowchart of FlowBO is shown in Figure 1. The user first determines the relevant 

parameters (range of decision variables, number of iterations, etc.) and optimization 

objectives. The initial experimental data collected by the LHS, an efficient method for 

sampling from multiple distributions29, is used to initialize FlowBO by training the 

surrogate model for the first time. After the trade-off between exploration and 

development, the acquisition function will propose new experimental points for new 

experiments. And then the experimental dataset will be extended and the surrogate 

model will be updated. Subsequently, the process continues iteratively until the 

maximum number of iterations is reached. Finally, the visualization module is 

invoked to present the experimental results in graphical form. 
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Figure 1. Flow chart of FlowBO multi-objective optimization 

 

Surrogate model: Gaussian Process (GP). The Gaussian Process is known to 

perform well at locating optimal solutions, generating accurate surrogate models, and 

effectively using information gathered from a priori experiments11. A common class 

of covariance functions is the Mat𝑒́rn class30. 

𝐤(𝐱, 𝐱′): = 𝛔𝐟
𝟐 𝟐𝟏−𝐯

𝚪(𝐯)
(√𝟐𝐯𝐫)𝐯𝐊𝐯(√𝟐𝐯𝐫)                 (1) 

Where 𝜎𝑓
2 is the output variance，r is a weighted Euclidean distance, 𝑣 is 

non-negative parameters,  𝐾𝑣  is the modified Bessel function,  Γ is the gamma 

function 

Acquisition functions and Multi-objective optimization (MOO). The new 

sampling points obtained from the acquisition function are used to plot the Pareto 

front. The Pareto front is a solution to a multi-objective optimization problem that 

shows the best compromise between competing objectives. Expected hypervolume 

improvement (EHVI) 31 is an extension of the expected improvement (EI)32 

acquisition function to the MOO setup. qEHVI [Eq. (2)] and Noisy expected 

hypervolume improvement (NEHVI) [Eq. (3)] are a new MOO algorithm based on 

EHVI. qEHVI is an exact computation of the joint EHVI of q new candidate points, 

whose limitations are the assumption of noiseless observations and limited use in 

high-dimensional target space. NEHVI is a hypervolume-maximizing BO in noisy 

and noiseless environments that performs well in large-batch environments and is 
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capable of evaluating noisy objectives in a highly parallel fashion25. 

α𝑞𝐸𝐻𝑉𝐼(𝒳𝑐𝑎𝑛𝑑) = 𝔼[𝐻𝑉𝐼(𝑓(𝒳𝑐𝑎𝑛𝑑))]                   (2) 

𝛼̂𝑞𝑁𝐸𝐻𝑉𝐼(𝒳𝑐𝑎𝑛𝑑) =
1

𝑁
∑ 𝐻𝑉𝐼(𝑓(𝑁

𝑡=1 𝒳𝑐𝑎𝑛𝑑)|𝑃𝑡)            (3) 

Where 𝒳𝑐𝑎𝑛𝑑  is the candidate sample, HVI is the hypervolume improvement，𝑃𝑡 

is the pareto frontier, 𝑓 is the Black-box objective function, 𝑓 is the sampling 

function, N is the number of samples.  

TSEMO is an algorithm for approximating Pareto sets with a small number of 

functionally-valued approximations. It extends the Thompson sampling (TS) method 

from multi-armed bandit communities to continuous multi-objective optimization. It 

is defined as: 

minimize𝒙∈𝓧⊆ℝ𝒅𝑮(𝐱) = [g𝟏(𝐱), g𝟐(𝐱)，… , g𝒎(𝐱)]       (4) 

Where 𝒳 is the design space, 𝐱 is the decision vector and G is a vector of m 

scalar objectives gi (x) to be minimized. 

Single-objective optimization(SOO). qNEI (noisy expected improvement)33 is 

an extension of the EI and is ideal for high noise settings. Its equation is: 

qNEI(x; 𝒟)  = 𝔼[(max 𝑔(𝜉) − max 𝑔(𝜉𝑜𝑏𝑠))+ |𝒟]          (5) 

Where 𝒟  is the data collected,ξ is a hyperparameter, g is the Black-box 

objective function. 

Generation of experimental data. Since our group has been developing kinetic 

models extensively over the last five years, we have accumulated a number of kinetic 

models of flow chemistry reactions that are based on and validated by a large number 

of experimental results34-36. Therefore, in this study, we used four of our models as 

well as one model from the Jensen group37 to simulate the experimental results. Under 

the new reaction conditions recommended by the acquisition function, the conversion 

and selectivity of these experiments are calculated by solving the integral of the 

kinetic models by the SciPy package (https://scipy.org/, accessed February 8th, 2023). 

On the other hand, our FlowBO is also suitable for situations where no kinetic 

model is available and manual experiments must be performed. In this case, after 

outputting a new set of experimental conditions, the FlowBO framework can pause 

https://scipy.org/
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and wait for the user to input new experimental results. 

 

Results 

We performed the multi-objective optimization (MOO) of conversion and 

selectivity and the single-objective (SOO) optimization of yield for each of the five 

cases to demonstrate the basic process and functionality of FlowBO. The kinetic 

model of each reaction was used as an objective function to calculate the experimental 

results. An error of ±3% was added to the calculated concentrations to simulate the 

error that would occur under real experiments. In addition, to further validate the 

reliability of FlowBO in MOO, we compared FlowBO with two recognized BO 

frameworks including NEXTorch27 and Summit-TSEMO (TSEMO model 

implemented in the Summit framework), with the same number of LHS samples and 

BO iterations. Furthermore, FlowBO has a visualization module to plot the Pareto 

front of the optimization results and a time module to calculate the optimization time. 

For MOO, the procedure shown in Figure 1 was followed for each case, with an 

initial 15 instances of experimental conditions obtained through LHS, followed by 15 

iterations of BO with 4 parallel recommendations per iteration. The same procedure 

was repeated on NEXTorch and Summit-TSEMO, using the same number of initial 

experiments and iterations. The three optimal results and their corresponding 

experimental conditions suggested by each platform were presented for each case.  

To demonstrate the advantage of MOO over SOO, we combined conversion and 

selectivity into yield and performed SOO using FlowBO with qNEI as the acquisition 

function, using the same four decision variables as for MOO. Unlike the MOO 

strategy proposed in Figure 1, SOO did not require LHS but started with a random set 

of experimental conditions, and 20 iterations were performed with 1 recommendation 

per iteration. Although the optimization target for SOO was the yield, the 

corresponding conversion and selectivity were computed to compare with the MOOs. 

A full record of the optimization data for the four models, including the value of 

decision variables and optimization objectives, was provided in the Supplemental 
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Information (S.I.). 

 

Case 1：Grignard Addition to Esters 

The kinetic model of Case 1 was developed by the Jensen group37 (Scheme 1). 

The addition reaction of Phthalide 1 and 4-fluorophenylmagnesium bromide 2 

produces the desired product, the mono-addition product 4, and the by-product 

di-addition product 5. The kinetic equation was established assuming that ketone 4 

was in a pseudo-steady state.  

 

Scheme 1. Grignard Addition to Esters 

Equations 6-10 outlined four differential equations of reaction kinetics 

containing four reaction constants ki. The decision variables and their ranges were 

temperature (-30-0°C), residence time (1-3600s), the concentration of Phthalide 1 

(0.01-1 mol/l), and the concentration of 4-fluorophenylmagnesium bromide 2 

concentration (0.01-1 mol/l). The MOO objectives were the conversion and selectivity 

of the target product 4 among the four decision variables. 

d[𝐶1]

𝑑
= −k1[ 𝐶1][𝐶2]                    (6) 

d[𝐶2]

𝑑
= −k1[ 𝐶1][𝐶2] − 𝑘𝑐[ 𝐶3][𝐶2]        (7) 

d[𝐶3]

𝑑
= k1[ 𝐶1][𝐶2] − 𝑘𝑐[ 𝐶3][ 𝐶2]         (8) 

d[𝐶5]

𝑑
= k𝑐[ 𝐶3][𝐶2]                     (9) 

k𝑐 =
𝑘3𝑘2

𝑘−2
                            (10) 

All three MOO models showed similar Pareto fronts (Figure 2). However, only 

FlowBO and NEXTorch found conditions where both conversion and selectivity were 

higher than 99.9% (Table 1). In addition, although the Top-3 suggestions of FlowBO 

and NEXTorch gave similar optimization results, FlowBO provided a more flexible 

choice of decision variables. For example, the second optimal result of FlowBO 
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(Iteration 59) is significantly different from the first optimal result (Iteration 10) in 

temperature, residence time, and concentrations. In contrast, no significant differences 

were observed for the first two optimal results of NEXTorch, except for residence 

time. One possible reason was that FlowBO has a higher propensity to explore 

(preferring to search in unexplored regions) since the complete optimization record 

shows that FlowBO and TSEMO have wider search ranges than NEXTorch for all 

four decision variables (Figure S1 and S2).  

In terms of search efficiency, FlowBO achieved a Top-1 result with the smallest 

number of iterations (10) compared to NEXTorch (55) and Summit-TSEMO (34) 

(Table 1). The computational time for the whole optimization is shown at the end of 

the results section, together with the computational time of the other cases. 

 

a 

 

b 

 

c 

 

d 

 
Figure 2. Case 1 optimization results of MOO using a) FlowBO, b) NEXTorch, and c) 

Summit-TSEMO, with the color bar showing number of iterations, and of SOO using d) FlowBO 

with black solid lines showing the cumulative best-observed yield and grey dots showing other 

experiments. 
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Table 1. Decision variables and objectives values of Case 1, with three best conditions 

recommended by FlowBO (multiple), NEXTorch, Summit-TSEMO, and FlowBO (single). 

Suggested 

by 

Iteration 

round 

Residence 

time (s) 

Temperature 

(℃) 

Conc. of 1 

(mol/l) 

Conc. of 2 

(mol/l) 
Conversion Selectivity 

FlowBO 

(MOO) 
10 829.0 -27.98 0.7088 0.9588 0.9999 0.9999 

59 1649 -18.76 0.5676 0.5800 0.9999 0.9980 

14 1199 -30.00 0.5281 0.8917 0.9999 0.9772 

NEXTorch 55 967.1 -30 0.5853 0.7597 0.9999 0.9999 

20 1307 -30 0.5262 0.7903 0.9999 0.9902 

21 1001 -30 0.541 0.6823 0.9999 0.9761 

Summit- 

TSEMO 
34 1182 -1.761 0.1528 0.1310 0.9999 0.9898 

42 1414 -30.00 0.3939 0.3811 0.9999 0.9595 

47 2607 -22.45 0.2329 0.2857 0.9909 0.9684 

FlowBO 

(SOO) 
10 2882 -30.00 0.9999 0.997 0.9999 0.9999 

7 2255 -19.73 0.8125 0.8283 0.9420 0.9720 

11 3600 -18.43 0.9999 0.9999 0.9505 0.9407 

 

On the other hand, FlowBO-SOO output much higher residence times and 

concentrations than MOO at optimal values of the objectives similar to MOO. 

Interestingly, like all MOOs, FlowBO-SOO also found that the lowest temperature in 

the limit range (-30°C) favors higher selectivity. 

 

Case 2. Condensation amidation of piperazine with benzoic acid 

The kinetic model of Case 2 developed by our group in 202136 is the acylation of 

benzoic acid 6, piperazine 7, and 2-(7-azabenzotriazole)-N,N,N',N'- 

tetramethyluronium hexafluorophosphate (HATU) to give the target product 

1-benzoylpiperazine 8 and the by-product N,N'-dibenzoylpiperazine 9.  

 

Scheme 2. condensation amidation of piperazine with benzoic acid 

Equations 11-12 have 2 differential equations containing reaction constants k1 

and k2. The decision variables and their ranges are temperature (-10-70 °C), residence 
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time (1-100 s), the concentration of benzoic acid 6 (10-120 mmol/l), the concentration 

of HAUT (10-120 mmol/l), and concentration of piperazine 7 (10-120 mmol/l). 

Different from Case 1, Case 2 has three concentrations in the decision variables. 

r1 = k1𝐶6𝐶𝐻𝐴𝑈𝑇
0.61 𝐶7

0.45            (11) 

r2 = k2𝐶6𝐶𝐻𝐴𝑈𝑇
0.61 𝐶7

0.45            (12) 

In Case 2, the selectivity at the optimal point of the three MOO outputs is 

relatively lower than in Case 1 (Table 2), which indicates that it is more difficult to 

compromise conversion and selectivity in this case. Figure 3 and Table 2 show that a 

further increase in selectivity from the current optimal point leads to a dramatic 

decrease in conversion. Furthermore, NEXTorch shows a narrower Pareto Front than 

FlowBO and TSEMO, which again infers NEXTorch is more inclined to exploitation 

compared to FlowBO and TSEMO. However, in this case, NEXTorch’s adherence to 

exploitation leads to slightly better optimization results than FlowBO (conversion 

0.9999 vs 0.9997 and selectivity 0.9705 vs. 0.9684). 

a 

 

b 

 

c 

 

d 

 
Figure 3. Case 2 optimization results of MOO using a) FlowBO, b) NEXTorch, and c) 

Summit-TSEMO, with the color bar showing number of iterations, and of SOO using d) FlowBO 

with black solid lines showing the cumulative best-observed yield and grey dots showing other 
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experiments. 

 

Table 2. Decision variables and objectives values of Case 2, with three best conditions 

recommended by FlowBO (multiple), NEXTorch, Summit-TSEMO, and FlowBO (single). 

Suggested 

by 

Iteration 

round 

Residence  

time 

(s) 

T 

(℃) 

Conc. 6 

(mmol/l) 

Conc. 

HAUT 

(mmol/l) 

Conc. 7 

(mmol/l) 

Conversio

n 

Selectivity 

FlowBO 

(MOO) 

20 100.0 -10.00 50.25 120.0 120.0 0.9997 0.9687 

10 49.46 -10.00 40.89 119.6 88.26 0.9994 0.9684 

13 100.0 -10.00 116.5 120.0 120.0 0.9973 0.9679 

NEXTorch 14 41.55 -8.852 10.00 95.91 99.94 0.9968 0.9744 

36 58.57 -10.00 10.00 83.63 62.18 0.9999 0.9705 

30 43.21 -10.00 23.87 86.75 120.0 0.9999 0.9704 

Summit- 

TSEMO 

43 47.24 -10.00 10.03 120.0 88.82 0.9984 0.9724 

51 93.49 -9.998 17.76 49.45 120.0 0.9991 0.9705 

41 28.48 -10.00 62.63 105.1 118.9 0.9994 0.9684 

FlowBO  

(SOO) 

9 100.0 -10.00 10.00 66.48 43.61 0.9999 0.9708 

7 51.03 -10.00 10.00 86.61 86.93 0.9999 0.9672 

19 10.35 -10.00 10.00 120.0 120.0 0.9999 0.9666 

Manual 

Optimizati

on 

/ 50.00 0 100.0 100.0 100.0 0.9900 0.9520 

 

Surprisingly, in this case, FlowBO-SOO outperformed FlowBO-MOO in terms of 

conversion and selectivity. A possible reason for this is the simplicity of this one-step 

reaction compared to the three-step reaction in Case 1. On the other hand, another 

comparison from Case 2 is between the MOO results and the manual optimization 

results reported in the literature. Table 2 shows that by using lower temperatures, all 

MOO models achieved higher conversions and selectivity than the manual 

optimization.  

 

Case 3, the continuous flow monoacylation reaction of o-phenylenediamine and 

benzoic anhydride 

The kinetic model of Case 3, developed by our group in 202135, is the acylation 

reaction of o-phenylenediamine 10 and benzoic anhydride 11, the target product being 

the monoacylation product N-(2-aminophenyl)benzamide 12 and the by-product being 

the diacylation product N-(2-aminophenyl)benzamide 13 (Scheme 3).  
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Scheme 3. Continuous flow monoacylation reaction of o-phenylenediamine and benzoic 

anhydride 

Equations 13-16 are the four differential equations containing reaction constants 

k4 and k5. The decision variables including residence time (1-1000 s), temperature 

(0-120 °C), concentration of o-phenylenediamine 10 (0.01-0.3 mol/l), and benzoic 

anhydride 11 (0.01-0.3 mol/l). 

d[𝐶10]

𝑑
= −k4[ 𝐶10][𝐶11]                            (13) 

d[𝐶11]

𝑑
= −k4[ 𝐶10][𝐶11] − 𝑘5[ 𝐶11][𝐶12]           (14) 

d[𝐶12]

𝑑
= k4[ 𝐶10][𝐶11] − 𝑘5[ 𝐶11][ 𝐶12]           (15) 

d[𝐶13]

𝑑
= k5[ 𝐶11][𝐶12]                         (16) 

The results in Table 3 show that all four BO models outperformed the human 

optimization, but only FlowBO-MOO and FlowBO-SOO had conversions and 

selectivity higher than 99.9%. However, FlowBO-SOO had a significantly longer 

residence time than FlowBO-MOO in achieving these results (1000s versus 267.1s) 

Regarding Pareto Fronts (Figure 4), FlowBO and Summit-TSEMO reached both 

the region of higher conversion and lower selectivity (topmost horizontal line) and the 

region of lower conversion and higher selectivity (the rightmost vertical line), while 

NEXTorch only reached the latter. The complete optimization record (Figure S6) 

shows NEXTorch took many iterations at a concentration of 0.010 mol/l for 11, while 

FlowBO had more exploration at 11 and found three optimal results at three different 

concentrations (Table 3). On the other hand, TSEMO had a lower search coverage of 

concentrations than FlowBO, which led to suboptimal results in the conversion. 
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a 

 

b 

 

c 

 

d 

 
Figure 4. Case 3 optimization results of MOO using a) FlowBO, b) NEXTorch, and c) 

Summit-TSEMO, with the color bar showing number of iterations, and of SOO using d) FlowBO 

with black solid lines showing the cumulative best-observed yield and grey dots showing other 

experiments. 

 

Table 3. Decision variables and objectives values of Case 3, with three best conditions 

recommended by FlowBO (multiple), NEXTorch, Summit-TSEMO, and FlowBO (single). 

Suggested  

by 

Iteration  

round 

Residence 

time(s) 

Temperature 

(℃) 

Conc. 10 

(mol/l) 

Conc. 

11 

(mol/l) 

Conversion Selectivity 

FlowBO 

(MOO) 
6 267.1 47.74 0.3000 0.1254 0.9999 0.9999 

10 158.9 101.0 0.2541 0.2021 0.9999 0.9999 

11 408.3 77.4 0.2903 0.0608 0.9999 0.9999 

NEXTorch 9 442.6 55.83 0.3000 0.0100 0.9999 0.9988 

16 914.7 79.91 0.3000 0.0100 0.9999 0.9987 

12 940.3 43.22 0.2330 0.0100 0.9999 0.9986 

Summit- 

TSEMO 

54 591.1 120 0.2732 0.1795 0.9948 0.9999 

58 839.3 69.86 0.2309 0.1849 0.9947 0.9999 

38 1000 120 0.2175 0.1544 0.9939 0.9999 

FlowBO 

(SOO) 

11 1000 29.79 0.3 0.2614 0.9999 0.9999 

15 1000 116.1 0.3 0.1523 0.9999 0.9999 

13 1000 55.07 0.2249 0.3 0.9477 0.9692 

Manual 

experimentation 
/ 336.0 70.00 0.1800 0.1000 0.9810 0.9760 
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Case 4, continuous flow monoacylation reaction of m-phenylenediamine and 

benzoic anhydride 

The model of Case 4 was the acylation reaction of m-phenylenediamine 14 and 

benzoic anhydride 11, the target product being the monoacylation product 

N-(3-aminophenyl)benzamide 15, and the by-product being the bisacylation product 

N, N'-dibenzoyl-1,3-benzenediamine 16 (Scheme 4)34. 

 

Scheme 4. Continuous flow monoacylation reaction of m-phenylenediamine and benzoic 

anhydride 

Equations 17-20 had four differential equations containing two reaction constants 

k6 and k7. The decision variables and ranges were resistance time (1-1000 s), 

temperature (30-130 °C), and the concentration of m-phenylenediamine 14 (0.01-0.4 

mol/l) and benzoic anhydride 11 (0.01-0.2 mol/l). 

d[𝐶14]

𝑑
= −k6[ 𝐶14][𝐶11]                       (17) 

d[𝐶11]

𝑑
= −k6[ 𝐶14][𝐶11] − 𝑘7[ 𝐶11][𝐶15]          (18) 

d[𝐶15]

𝑑
= k6[ 𝐶14][𝐶11] − 𝑘7[ 𝐶11][ 𝐶15]           (19) 

d[𝐶16]

𝑑
= k7[ 𝐶11][𝐶15]                         (20) 

In this case, all MOO and SOO models, except TSEMO, found their optimal data 

points with conversions and selectivity above 99.9%. For models with more than three 

sets of experimental conditions leading to this optimal result, only the three sets with 

the lowest number of iterations are shown in Table 4, while the rest are shown in 

Table S4. However, the optimal points of FlowBO-MOO provided a more flexible 

choice of temperature (from 57.25 to 120.0℃) and residence time (from 91.85s to 

1000s), while temperatures above 100 ℃ and residence times below 500 s were not 

seen in the optimum results of NEXTorch (Table S4). In addition, although 

FlowBO-MOO and NEXTorch showed similar Pareto Front patterns, their 
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optimization records show that FlowBO-MOO explored a wider range of residence 

times and temperatures (Figure S7).  

a 

 

b 

 

c 

 

d 

 
Figure 5. Case 4 optimization results of MOO using a) FlowBO, b) NEXTorch, and c) 

Summit-TSEMO, with the color bar showing number of iterations, and of SOO using d) FlowBO 

with black solid lines showing the cumulative best-observed yield and grey dots showing other 

experiments. 

Table 4. Decision variables and objectives values of Case 4, with three best conditions 

recommended by FlowBO (multiple), NEXTorch, Summit-TSEMO, and FlowBO (single). 

Suggested by Iteration 

round 

Residence 

time(s) 

Temperature 

(℃) 

Conc. 14 

(mol/l) 

Conc. 11 

(mol/l) 

Conversion Selectivity 

FlowBO  

(MOO) 
7 825.1 57.25 0.2494 0.1133 0.9999 0.9999 

27 811.7 105.8 0.3718 0.2 0.9999 0.9999 

33 1000 61.57 0.3378 0.1754 0.9999 0.9999 

NEXTorch 1 783.24 74.68 0.3625 0.1176 0.9999 0.9999 

11 758.0 72.80 0.2310 0.2000 0.9999 0.9999 

12 765.3 99.33 0.4000 0.146 0.9999 0.9999 

Summit- 

TSEMO 
46 725.4 106.5 0.3125 0.1638 0.9943 0.9999 

6 791.8 79.12 0.3381 0.1353 0.993 0.9999 

 54 997.7 75.82 0.3999 0.0905 0.9896 0.9999 

FlowBO 

(SOO) 
6 692.1 107.1 0.32 0.08 0.9999 0.9999 

8 489.3 120 0.33 0.04 0.9999 0.9999 

17 905.7 103.8 0.37 0.14 0.9999 0.9999 

Manual 

experimentation 
/ 528.0 70.00 0.3000 0.1000 0.9840 0.9690 
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Case 5, continuous flow monoacylation reaction of p-phenylenediamine and 

benzoic anhydride 

The kinetic model (Case 5) was the acylation reaction of p-phenylenediamine 17 

and benzoic anhydride 11, the target product was the monoacylation product 

N-(4-aminophenyl)-benzamide 18, and the by-product was the diacylation product 

N,N'-dibenzoyl-1,4-benzenediamine 19 (Scheme 5)35. 

 

Case 5. Continuous flow monoacylation reaction of p-phenylenediamine and benzoic 

anhydride 

Equations 21-24 outline the kinetic equation for Scenario 4, which consists of 

four differential equations containing two reaction constants k8 and k9 with a decision 

variable of resistance time (1-200 s), temperature (0-120 °C), the concentration of 

p-phenylenediamine 17 (0.01-0.3 mol/l) and benzoic anhydride 11 (0.01-0.3 mol/l).  

d[𝐶17]

𝑑
= −k8[ 𝐶17][𝐶11]                      (21) 

d[𝐶11]

𝑑
= −k8[ 𝐶17][𝐶11] − 𝑘9[ 𝐶11][𝐶18]         (22) 

d[𝐶18]

𝑑
= k8[ 𝐶17][𝐶11] − 𝑘9[ 𝐶11][ 𝐶18]          (23) 

d[𝐶19]

𝑑
= k9[ 𝐶11][𝐶18]                        (24) 

Only the MOO and SOO of FlowBO achieved more than 99.9% in both 

conversion and selectivity (Table 5). The selectivity was lower for NEXTorch, while 

the conversion was lower for TSEMO. Other observations were similar to Case 4: 

NEXTorch’s Pareto Front had a narrower coverage (Figure 6), while FlowBO’s 

decision variables were more flexible (Table 5). The FlowBO-SOO required a higher 

temperature. All MOO and SOO results were better than the manual optimization 

results. 
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Figure 6. Case 5 optimization results of MOO using a) FlowBO, b) NEXTorch, and c) 

Summit-TSEMO, with the color bar showing number of iterations, and of SOO using d) FlowBO 

with black solid lines showing the cumulative best-observed yield and grey dots showing other 

experiments. 

 

Table 5. Decision variables and objectives values of Case 5, with three best conditions 

recommended by FlowBO (multiple), NEXTorch, Summit-TSEMO, and FlowBO (single). 

Suggested by Iteration 

number 

Residence 

time(s) 

Temperature 

(℃) 

Conc. of 17 

(mol/l) 

Conc. of 

11(mol/l) 

Conversion Selectivity 

FlowBO 

 (MOO) 
5 114.7 97.02 0.2168 0.1114 0.9999 0.9999 

8 133.4 63.65 0.2626 0.2388 0.9999 0.9999 

13 74.49 120 0.3 0.1244 0.9999 0.9999 

NEXTorch 1 119.6 55.83 0.2384 0.0748 0.9999 0.9924 

11 193.1 34.55 0.261 0.01 0.9999 0.9993 

12 109 76.36 0.3 0.01 0.9999 0.9993 

Summit- 

TSEMO 
14 190.6 120 0.2238 0.2421 0.9961 0.9999 

46 155.9 84.45 0.3 0.1971 0.9952 0.9999 

 34 142.9 101.5 0.2529 0.172 0.9945 0.9999 

FlowBO  

(SOO) 
7 52.22 112.6 0.1538 0.0276 0.9999 0.9999 

9 61.71 98.59 0.0756 0.01 0.9999 0.9999 

12 83.31 112 0.1035 0.0857 0.9999 0.9999 

Manual 

experimentation 
/ 96.00 70.00 0.1400 0.1000 0.9810 0.9780 
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Comparing the computational time of MOO models 

FlowBO and NEXTorch were ahead of TSEMO in terms of computational speed 

(Table 6) probably because they were implemented based on the BoTorch framework 

with GPU acceleration. In addition, the average computational time of FlowBO in 

these five cases was only 50.6% of that of NEXTorch, which suggests that the 

qNEHVI25 algorithm is more computationally efficient than qEHVI24.  

Table 6. Average computational time of the MOO models in each case 

Case 
Computational time (min) 

FlowBO NEXTorch Summit-TSEMO 

 1 0.78 1.98 2.15 

2 0.36 2.20 2.28 

3 0.78 0.72 1.96 

4 0.84 1.32 2.07 

5 0.72 0.65 1.88 

 

Discussions 

 In four of the five cases above, FlowBO performed the best. In Case 4 and Case 5, 

FlowBO was the only MOO model that achieved >99.9% conversion and selectivity. 

For the cases where both FlowBO and NEXTorch achieved >99.9% conversion and 

selectivity, FlowBO provided a larger range of decision variables to choose from, 

such as temperature and residence time. In some cases, the Top-1 result may not be 

the best result for the downstream process, such as separation (i.e. the temperature 

may be too high for separation). Therefore, a range of optimal results with various 

combinations of variables is preferred, especially for multi-step process optimization38, 

39.  

 The only case that FlowBO did not perform best was a single-step reaction. A 

possible reason for the better performance of NEXTorch was that it was more inclined 

to exploitation. For a single-step reaction, since a suboptimal point may be easier to 

find, continuous exploitation near that point may be beneficial for further optimization. 

However, for the other four cases, which are all series reactions, the search space is 

larger and over-exploitation may trap the search in a local optimum. This may be the 
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reason why the relatively more exploration-oriented FlowBO performed better in all 

series reaction cases. 

 In the case of TSEMO (the version available in Summit), it was difficult to 

compete with the models with recently-developed acquisition functions because it was 

developed earlier than EHVI and NEHVI and was not equipped with GPU 

acceleration. However, as the Lapkin group is actively contributing to the MOO of 

chemical processes39, 40, it is likely that more recent versions of TSEMO that could 

perform better. 

A comparison of FlowBO-MOO and FlowBO-SOO in these five cases shows that 

SOO of yield, while achieving the best optimization results similar to MOO in 

conversion and selectivity, it typically requires longer residence times (Cases 1 and 3) 

or higher temperatures (Cases 4 and 5), which leads to higher cost and lower 

efficiencies. Therefore, when both MOO and SOO are available, MOO should be 

preferred.  

The limitations of this study are as follows. First, only one single-step reaction 

(Case 2) was included. Although series reactions are more challenging to optimize, 

more cases of single-step would be beneficial for more comprehensive benchmarking. 

In addition, the workload was too large to make recommendations from actual 

experiments as we compared four models under five cases. Therefore, we used kinetic 

models to simulate the experimental results, as the Lapkin group did in their study of 

Summit, comparing their TSEMO with other recognized BO models under a 

benchmark of a kinetic model and a machine learning-based predictive model21. 

However, without conducting real experiments, it is more difficult to introduce 

real-world noise (although we introduced an error of ±3% for the calculated 

concentrations) and compare the noise-handling capabilities of the MOO algorithms 

including NEHVI, EHVI, and TSEMO. 

 

Conclusions 

In this work, we presented FlowBO, an open-source Bayesian optimization 
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framework for optimizing flow chemistry (continuous flow reactions). Since previous 

studies have rarely compared existing BO frameworks under the benchmark of 

continuous flow kinetic models, we compared FlowBO with the recently-developed 

open-source framework NEXTorch and the classical MOO model TSEMO under the 

benchmark of five kinetic models. FlowBO outperformed NEXTorch in all four series 

reactions and had a wider choice of decision variables. FlowBO and TSEMO had a 

wider coverage of the search space and Pareto Front in general, but FlowBO’s 

acquisition function qNEHVI is more efficient than the earlier developed TSEMO.  

In the future, we would like to introduce more kinetic model cases, such as more 

complex single-step reactions and different types of multi-step reactions (i.e. parallel 

reactions) for a more solid benchmark of the BO models. Meanwhile, we would like 

to utilize more advanced automated self-optimization platforms equipped with in-line 

analysis capabilities to better evaluate the capability of the advanced MOO 

acquisition functions in handling experimental noise. 

Conflicts of interest 

There are no conflicts of interest to declare. 

Acknowledgments 

We gratefully acknowledge Zhejiang Province Science and Technology Plan 

Project (No. 2022C01179 and No. 2019-ZJ-JS-03) for financial support.  

 

Data Availability Statement 

The data and code repository for this study will be made available once the paper is 

accepted.  



Page 23 of 25 
 

References 

1. Ley, S. V.;  Fitzpatrick, D. E.;  Ingham, R. J.; Myers, R. M., Organic synthesis: march of the 

machines. Angew Chem Int Ed Engl 2015, 54 (11), 3449-64. 

2. Reizman, B. J.; Jensen, K. F., Feedback in Flow for Accelerated Reaction Development. Acc Chem 

Res 2016, 49 (9), 1786-96. 

3. Shields, B. J.;  Stevens, J.;  Li, J.;  Parasram, M.;  Damani, F.;  Alvarado, J. I. M.;  Janey, J. M.;  

Adams, R. P.; Doyle, A. G., Bayesian reaction optimization as a tool for chemical synthesis. Nature 2021, 

590 (7844), 89-96. 

4. Wei, J. N.;  Duvenaud, D.; Aspuru-Guzik, A., Neural Networks for the Prediction of Organic 

Chemistry Reactions. ACS Central Science 2016, 2 (10), 725-732. 

5. Movsisyan, M.;  Delbeke, E. I.;  Berton, J. K.;  Battilocchio, C.;  Ley, S. V.; Stevens, C. V., 

Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 2016, 45 (18), 4892-928. 

6. Negoescu, D. M.;  Frazier, P. I.; Powell, W. B., The Knowledge-Gradient Algorithm for Sequencing 

Experiments in Drug Discovery. INFORMS Journal on Computing 2011, 23 (3), 346-363. 

7. Larkin, J. P.;  Wehrey, C.;  Boffelli, P.;  Lagraulet, H.;  Lemaitre, G.;  Nedelec, A.; Prat, D., The 

Synthesis of 17r-Methyl-11â-arylestradiol: Large-Scale Application of the Cerium (III)-Mediated 

Alkylation of a Ketone. Organic Process Research & Development 2002, 6, 20-27. 

8. Gotti, R.;  Furlanetto, S.;  Andrisano, V.;  Cavrini, V.; Pinzauti, S., Design of experiments for 

capillary electrophoretic enantioresolution of salbutamol using dermatan sulfate. Journal of 

Chromatography A 2000, 875, 411-422. 

9. den Brok, M. W.;  Nuijen, B.;  Miranda, E.;  Floriano, P.;  Munt, S.;  Manzanares, I.; Beijnen, 

J. H., Development and validation of a liquid chromatography-ultraviolet absorbance detection assay 

using derivatisation for the novel marine anticancer agent ES-285 x HCl 

[(2S,3R)-2-amino-3-octadecanol hydrochloride] and its pharmaceutical dosage form. J Chromatogr A 

2003, 1020 (2), 251-8. 

10. Tye, H., Application of statistical 'design of experiments' methods in drug discovery. Drug Discov 

Today 2004, 9 (11), 485-91. 

11. Snoek, J.;  Larochelle, H.; Adams, R. P., Practical Bayesian Optimization of Machine Learning 

Algorithms. NIPS 2012, 4, 2951-2959. 

12. Srinivas, N.;  Krause, A.;  Kakade, S. M.; Seeger, M. W., Information-Theoretic Regret Bounds 

for Gaussian Process Optimization in the Bandit Setting. IEEE Transactions on Information Theory 2012, 

58 (5), 3250-3265. 

13. Shahriari, B.;  Swersky, K.;  Wang, Z.;  Adams, R. P.; de Freitas, N., Taking the Human Out of 

the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 2016, 104 (1), 148-175. 

14. Hutter, F.;  Hoos, H. H.; Leyton-Brown, K., Sequential Model-Based Optimization for General 

Algorithm Configuration. Internat.Conf. Learn. Intel. Optim. 2011, 6683, 507-523. 

15. snoek, J.;  swersky, K.;  Zemel, R. S.; Adams, R. P., Input Warping for Bayesian Optimization of 

Non-Stationary Functions, Internat. Conf.Mach. Learn. 2014, pp, 1674-1682. 

16. Snoek, J.;  Rippel, O.;  Swersky, K.;  Kiros, R.;  Satish, N.;  Sundaram‡, N.;  Patwary, M. M. 

A.;  Prabhat; Adams, R. P., Scalable Bayesian Optimization Using Deep Neural Networks. Internat. 

Conf. Mach.Learn. 2015, pp, 2171-2180. 

17. Hase, F.;  Roch, L. M.;  Kreisbeck, C.; Aspuru-Guzik, A., Phoenics: A Bayesian Optimizer for 

Chemistry. ACS Cent Sci 2018, 4 (9), 1134-1145. 



Page 24 of 25 
 

18. Boukouvala, F.; Ierapetritou, M. G., Feasibility analysis of black-box processes using an adaptive 

sampling Kriging-based method. Computers & Chemical Engineering 2012, 36, 358-368. 

19. Rogers, A.; Ierapetritou, M., Feasibility and flexibility analysis of black-box processes Part 1: 

Surrogate-based feasibility analysis. Chemical Engineering Science 2015, 137, 986-1004. 

20. Deshwal, A.;  Simon, C. M.; Doppa, J. R., Bayesian optimization of nanoporous materials. 

Molecular Systems Design & Engineering 2021, 6 (12), 1066-1086. 

21. Felton, K. C.;  Rittig, J. G.; Lapkin, A. A., Summit: Benchmarking Machine Learning Methods for 

Reaction Optimisation. Chemistry–Methods 2021, 1 (2), 116-122. 

22. Bradford, E.;  Schweidtmann, A. M.; Lapkin, A., Efficient multiobjective optimization employing 

Gaussian processes, spectral sampling and a genetic algorithm. Journal of Global Optimization 2018, 

71 (2), 407-438. 

23. Bradford, E.;  Schweidtmann, A. M.; Lapkin, A., Correction to: Efficient multiobjective 

optimization employing Gaussian processes, spectral sampling and a genetic algorithm. Journal of 

Global Optimization 2018, 71 (2), 439-440. 

24. Daulton, S.;  Balandat, M.; Bakshy, E., Differentiable expected hypervolume improvement for 

parallel multi-objective Bayesian optimization. Advances in Neural Information Processing Systems 

2020, 33, 9851-9864. 

25. Daulton, S.;  Balandat, M.; Bakshy, E., Parallel bayesian optimization of multiple noisy objectives 

with expected hypervolume improvement. Advances in Neural Information Processing Systems 2021, 

34, 2187-2200. 

26. Schweidtmann, A. M.;  Clayton, A. D.;  Holmes, N.;  Bradford, E.;  Bourne, R. A.; Lapkin, A. A., 

Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front 

of multiple objectives. Chemical Engineering Journal 2018, 352, 277-282. 

27. Wang, Y.;  Chen, T. Y.; Vlachos, D. G., NEXTorch: A Design and Bayesian Optimization Toolkit for 

Chemical Sciences and Engineering. J Chem Inf Model 2021, 61 (11), 5312-5319. 

28. Balandat, M.;  Karrer, B.;  Jiang, D.;  Daulton, S.;  Letham, B.;  Wilson, A. G.; Bakshy, E., 

BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. Advances in neural 

information processing systems 2020, 33, 21524-21538. 

29. Minasny, B.; McBratney, A. B., A conditioned Latin hypercube method for sampling in the 

presence of ancillary information. Computers & Geosciences 2006, 32 (9), 1378-1388. 

30. ;, A. M. S.;  Bongartz;, D.;  Grothe;, D.;  Kerkenhof;, T.;  Lin;, X.;  Najman;, J. l.; Mitsos, A., 

Global optimization of Gaussian processes. arXiv:2055.10902v1 2005. 

31. Emmerich, M. T. M.;  Giannakoglou, K. C.; Naujoks, B., Single- and multiobjective evolutionary 

optimization assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary 

Computation 2006, 10 (4), 421-439. 

32. Jones, D. R., Schonlau, M., and Welch, W. J. , Efficient global optimization of expensive 

black-box functions. Journal of Global Optimization 1998, 13, 455-492. 

33. Letham, B.;  Karrer, B.;  Ottoni, G.; Bakshy, E., Constrained Bayesian Optimization with Noisy 

Experiments. Bayesian Analysis 2019, 14 (2). 

34. Xu, Q.;  Fan, H.;  Yao, H.;  Wang, D.;  Yu, H.;  Chen, B.;  Yu, Z.; Su, W., Understanding 

monoacylation of symmetrical diamines: A kinetic study of acylation reaction of m-phenylenediamine 

and benzoic anhydride in microreactor. Chemical Engineering Journal 2020, 398. 

35. Xu, Q.;  Liu, J. M.;  Yao, H.;  Zhao, J.;  Wang, Z.;  Liu, J.;  Zhou, J.;  Yu, Z.; Su, W., Insight 

into Fundamental Rules of Phenylenediamines Selective Monoacylation by the Comparisons of Kinetic 



Page 25 of 25 
 

Characteristics in Microreactor. Bulletin of the Korean Chemical Society 2021, 42 (10), 1336-1344. 

36. Xu, Q.;  Zhang, S.;  Zhao, J.;  Wang, Z.;  Liu, L.;  Zhou, P.;  Yu, Z.; Su, W., Improving the 

reaction efficiency of condensation amidation of piperazine with benzoic acid based on kinetics study 

in microreactors. Journal of Flow Chemistry 2021, 11 (4), 855-866. 

37. Pedersen, M. J.;  Born, S.;  Neuenschwander, U.;  Skovby, T.;  Mealy, M. J.;  Kiil, S.;  

Dam-Johansen, K.; Jensen, K. F., Optimization of Grignard Addition to Esters: Kinetic and Mechanistic 

Study of Model Phthalide Using Flow Chemistry. Industrial & Engineering Chemistry Research 2018, 57 

(14), 4859-4866. 

38. Clayton, A. D.;  Schweidtmann, A. M.;  Clemens, G.;  Manson, J. A.;  Taylor, C. J.;  Niño, C. G.;  

Chamberlain, T. W.;  Kapur, N.;  Blacker, A. J.;  Lapkin, A. A.; Bourne, R. A., Automated 

self-optimisation of multi-step reaction and separation processes using machine learning. Chemical 

Engineering Journal 2020, 384, 123340. 

39. Jorayev, P.;  Russo, D.;  Tibbetts, J. D.;  Schweidtmann, A. M.;  Deutsch, P.;  Bull, S. D.; 

Lapkin, A. A., Multi-objective Bayesian optimisation of a two-step synthesis of p-cymene from crude 

sulphate turpentine. Chemical Engineering Science 2022, 247, 116938. 

40. Pomberger, A.;  Pedrina McCarthy, A. A.;  Khan, A.;  Sung, S.;  Taylor, C. J.;  Gaunt, M. J.;  

Colwell, L.;  Walz, D.; Lapkin, A. A., The effect of chemical representation on active machine learning 

towards closed-loop optimization. Reaction Chemistry & Engineering 2022, 7 (6), 1368-1379. 

 


