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In the times of an ever-increasing rate of global warming and rapidly depleting fossil fuels, re-
newable sources of energy are attracting vast attention and numerous efforts have been directed
towards achieving a hydrogen-based economy over the past few years. However, the biggest techni-
cal challenge so far has been the development of materials and the required infrastructure for efficient
storage and transportation of hydrogen. To this end, liquid organic hydrogen carriers (LOHCs) have
been extensively studied as they provide a safer alternative to storing high-purity hydrogen using
the existing fuel infrastructure. However, commercial applications of LOHCs are only feasible when
expensive, noble metal catalysts are substituted with inexpensive but equally efficient alternatives.
In this work, we employ our group’s cyberinfrastructure for the data-driven discovery and design
of novel catalysts for LOHCs. We screen a library of homogeneous Ir-based pincer catalysts for the
dehydrogenation of perhydro-N-ethyl carbazole. We develop a computational protocol to evaluate
these catalysts based on thermodynamic parameters calculated using Density Functional Theory.
Next, we use this data to train machine learning models for predicting the Gibbs free energies of
the reactions and analyze hidden structure-property relationships in these systems.

I. HYDROGEN CARRIERS

Our present-day energy system is dominated by the
systematic exploitation of large reservoirs of carbon-
based fossil fuels. Although fossil fuel reserves are ex-
pected to last several centuries at the current rate of
consumption, the rate of global climate change is the
primary driving force behind the search for large-scale
renewable energy sources. However, a major shortcom-
ing in the utility of renewable sources of energy is the
disparity in the geographic locations (and/or timings)
associated with the production and demand for energy.
This necessitates the development of energy storage so-
lutions in different media, which can then be transported
to the region of demand in order to ensure an uninter-
rupted supply of energy. Even batteries that promise
large storage capacities fall short in the context of storage
for extensive time periods, as well as their low gravimet-
ric energy density. On the other hand, hydrogen which
only yields water upon combustion, has a high gravimet-
ric energy density of 28.68 kcal/g (approx. 3× gasoline),
and is thus a prime candidate for large-scale applications
in the automotive industry.

Several aspects of a hydrogen-powered economy, such
as production, storage, and distribution of hydrogen are
an active field of research [1]. However, rapid storage
of hydrogen in sufficient quantities under mild operating
conditions is perhaps the biggest challenge in its commer-
cialization [2, 3]. Of the several strategies for hydrogen
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storage, the focus of this work is on chemically-bound hy-
drogen storage in liquid organic hydrogen carriers (LO-
HCs) [4–9].

LOHCs provide a flexible media for the storage and
transportation of high-purity hydrogen, without losses
even for long distances, using the existing fuel infrastruc-
ture. They have a higher gravimetric as well as a higher
volumetric energy density as compared to other fuels used
for commercial applications. Hydrogen is stored in these
liquid-phase organic compounds for transportation, and
is extracted on-demand. LOHCs retain their core molec-
ular structure after both catalytic reactions, hydrogena-
tion and dehydrogenation, thus eliminating the need for
a new energy carrier after every cycle. While the hy-
drogenation reaction is exothermic in most cases, the de-
hydrogenation reaction is endothermic, which allows for
coupling of these reactions within a reactor in order to
maximize efficiency.

The stability of the hydrogenated LOHC is ensured
by favorable hydrogenation enthalpy, which in turn en-
sures acceptable dehydrogenation temperatures. The
desired enthalpy range has been stated to be in the
range of 40-55 kJ/molH2 [7, 10]. For most applica-
tions, the thermodynamic reversibility of the hydrogena-
tion/dehydrogenation reactions is the primary factor in
the choice of LOHCs. The storage density, stability,
cost, performance and operational safety have also been
weighed in this context. The U.S. Department of En-
ergy aims to achieve 0.055 kg H2/kg system or 0.04 kg
H2/L system for onboard hydrogen storage for light-duty
fuel cell vehicles by 2025. As energy storage media, the
present research focus is on the safety and robustness of
the overall process, along with the selectivity and kinetics
of the catalysts.
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FIG. 1: Schematic for the dehydrogenation mechanism of perhydro-N-ethyl carbazole.

Over the past few years, various classes of cycloalka-
nes have been studied and reported as potential LOHC
candidates. Abundantly utilized in industries (especially
oil refineries), chemicals such as benzene, toluene and
decalin are prime examples of this category. With a
high hydrogen carrying capacity and a high boiling point,
these compounds are quite suitable for large-scale appli-
cations. However, they are associated with high dehy-
drogenation enthalpies which requires high operational
temperatures of up to 300°C. It has been observed that
the dehydrogenation reaction is more favorable thermo-
dynamically with the introduction of heteroatoms such as
nitrogen, oxygen, phosphorous or boron in the cycloalka-
nes. N-substituted five-membered rings, polycyclic hy-
drocarbons, lower steric hindrance around heteroatoms
are other factors that also favor the reaction thermody-
namics [4, 11–16].

Among heterocycles, N-ethyl carbazole (NEC) is per-
haps the most prominent example that has been stud-
ied in the context of reversible dehydrogenation [17–24].
NEC has a hydrogen carrying capacity of 5.8 wt.%, and
a dehydrogenation enthalpy in the range 50-53 kJ/mol
H2. Upon complete dehydrogenation, perhydro-NEC (or
H12-NEC) releases 6 moles of hydrogen in three stages,
with H8-NEC and H4-NEC as the most stable interme-
diates [25–27]. The dehydrogenation reaction starts from
the five-membered ring and subsequently proceeds in the
two six-membered rings as shown in Fig. 1 [28, 29].

For practical applications, the design of catalysts for
both hydrogenation and dehydrogenation reactions is
aimed at high selectivity, but under sufficiently mild re-
action conditions since LOHCs are susceptible to thermal
degradation [30]. A large number of heterogeneous cata-
lysts (with or without supports), that are associated with
high selectivity and yield, have been reported in litera-
ture for several classes of cycloalkanes as well as hetero-
cycles [31–45]. However, these noble-metal catalysts are
expensive and deactivation of highly active catalysts due
to coking is a major concern. Thus, stable homogeneous

catalysts with lower manufacturing costs and compara-
ble catalytic activities are promising alternatives [46–60].
One of the primary advantages of homogeneous catalysts
is their tunability at the molecular level, which allows
their properties to be tailored towards specific require-
ments. For the dehydrogenation of H12-NEC, Wang et
al. reported three homogeneous Ir based tridentate (PCP
pincer) ligand complexes at 200°C [61].

Since a systematic exploration of catalyst scope is very
time- and resource- intensive, this work aims to build
upon the results of Wang et al. to propose novel ho-
mogeneous pincer complexes (that are thermally stable
even at higher temperatures) for the complete dehydro-
genation of H12-NEC. Using computational studies, the
process of characterization and discovery of novel cat-
alysts for LOHCs can be accelerated at a significantly
faster pace and a substantially lower cost. These cal-
culations can then help in guiding the experimentalists
towards only the most promising set of candidates.

With respect to organic hydrogen carriers, only a hand-
ful of iridium, ruthenium and iron based pincer com-
plexes have been discovered for dehydrogenation. There-
fore, we address this non-systematic exploration of the
catalyst scope for hydrogen carriers, using the software
ecosystem developed in our research group [62]. We build
a library of candidate molecules and cast them into a
high-throughput screening (HTPS) protocol using our
group’s software ecosystem for the data-driven discovery
of materials. In Sec. II, we introduce the physical foun-
dations of our proposed protocol and discuss the details
of the computational approach employed. We present
the results of the quantum chemical calculations and the
performance of predictive models trained on this data in
Sec. III. Finally, we summarize our findings in Sec. IV.
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II. METHODS AND COMPUTATIONAL
DETAILS

In this work, we follow the accepted mechanism for the
catalytic dehydrogenation of cycloalkanes by the Ir-PCP
type pincer complexes as reported in Refs. [48, 63]. The
basis for our HTPS protocol is the calculation of thermo-
dynamic barriers (∆Gr = ∆Gf,products −∆Gf,reactants),
for each of the six dehydrogenation steps of H12-NEC
(shown in Fig. 1) using the aforementioned reaction
mechanism. We use our group’s library generator code,
ChemLG [64], to generate initial geometries for 1) cata-
lyst molecules, 2) NEC structures corresponding to the
six dehydrogenation reactions, and 3) six catalyst-NEC
adducts for every catalyst.

A. Virtual Screening Library

Using SMILES strings as the input to ChemLG,
we create a library of 3066 candidate molecules for
catalysing the dehydrogenation reaction of H12-NEC.
We run ChemLG in a constrained combinatorial mode
to achieve sequential linking of molecular fragments (or

FIG. 2: (a) shows the four sites on the reference pincer
catalyst that are considered for substitution in the

library generation process. (b) shows the 18 building
blocks that are provided as initial fragments to our
library generator code, ChemLG, along with the sites
on the reference catalyst where each building block can

be added.

building blocks) at the four sites on the reference pincer
catalyst shown in Fig. 2(a). We use a set of 18 building
blocks compiled from homogeneous catalysts reported in
literature for C-H bond activation reactions. The build-
ing blocks, as well as the specific sites on the reference
catalyst at which they can be attached, are shown in Fig.
2(b).
ChemLG utilizes the OpenBabel 3.0 software [65] to

generate 3D structures for these catalysts using the UFF
force field [66] and further optimizes the initial structures
for 2000 steps. Additionally, we generate 3D structures
for the adducts of every catalyst in this library with the
six NEC structures (a total of 7 structures correspond-
ing to each catalyst) using the same protocol for initial
geometry optimization.

B. Quantum Chemistry Protocol

We model the six dehydrogenation steps of H12-NEC
following this mechanism and perform first-principles
quantum chemistry calculations within the Kohn-Sham
density functional theory (DFT) framework.
For each of the pre-optimized 3D catalyst structures

obtained from ChemLG, we further optimize the geome-
tries using the B3LYP hybrid functional [67] and the
LANL2DZ basis set [68–70] (including Grimme’s D3 cor-
rection [71] to account for dispersion interactions) avail-
able from the ORCA 4.0.2 quantum chemistry pack-
age [72]. This is done in two consecutive optimization
steps defined by the ‘LOOSEOPT’ and ‘TIGHTOPT’
convergence threshold parameters in ORCA along with
the ‘SlowConv’ convergence strategy. We then obtain
thermochemical properties via single point numerical fre-
quency (‘NUMFREQ’) calculations for the final opti-
mized geometries.

C. Hypergeometric Distribution Analysis

In addition to identifying the best catalyst molecules
arising from the HTPS process, we also look for struc-
tural patterns in these molecules that result in both fa-
vorable as well as unfavorable reaction thermodynamics.
In this case, a hypergeometric distribution analysis of the
data is useful for uncovering relationships between intu-
itive individual descriptors and the target property, i.e.,
∆Gr. For this, we compute the Z-scores (Zi) of each
building block (irrespective of the sites at which they are
attached) given by:

Zi =
ki −mKi

M

σi

σi =

[
mKi

M
×
(
M −Ki

M

)
×
(
M −m

M − 1

)] 1
2
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where M is the total number of compounds in the gen-
erated library, m is the subset of compounds being con-
sidered (e.g., the best catalysts discovered), Ki is the
frequency of building block i in M molecules and ki is its
frequency in the subset of m molecules.
It follows that a large positive Z-score for a building

block indicates its statistical over-expression in that sub-
set of molecules relative to the overall screening library.
Thus, Z-scores can be used to identify (and quantify the
extent of correlation of) the most important building
blocks for a catalyst with the least activation barriers for
a reaction. Similarly, a large negative Z-score implies a
statistical under-expression (or inverse correlation), while
Z-scores close to zero imply no statistical correlation of
that descriptor to the target property.

D. Machine Learning Protocol

In order to accelerate the screening of molecular cat-
alysts, we take the help of machine learning models to
make guiding predictions in the search for the most
promising catalysts. We utilize several 2-D and 3-D
descriptors to featurize the relevant chemical space for
revealing hidden structure-property relationships within
this data. To generate 2-D descriptors, we use the
SMILES strings of the catalysts as the input, which is
useful in capturing all information related to atom types
and their connections to neighboring atoms. From the
RDKit [73] code, we use the following fingerprints: Mor-
gan fingerprints with circular radius 2 [74, 75], hashed
atom pair (HAP) fingerprints [76], hashed topological
torsion (HTT) fingerprints [77], and MACCS keys. Addi-
tionally, we compute the synthetic feasibility of the cata-
lysts in our library using two scoring functions: SA-score
[78] from RDKit and SC-score [79].

We generate 3-D descriptors for each of the three sets of
optimized geometries obtained from ChemLG and DFT
calculations mentioned in Sec. II B. These descriptors
include:

• OpenBabel descriptors: FP2, FP3 and FP4 (in-
cluding six extended-connectivity fingerprints –
ECFP 1-6) path-based fingerprints that are similar
to Daylight fingerprints. We also use Spectrophores
[80, 81] that are created from four property fields
surrounding the molecules – atomic partial charges,
shape deviations, lipophilicities, and electrophilici-
ties. Since Spectrophores encode the 3-D structures
of the catalysts independently of their position and
orientation, structures with similar 3-D shape and
properties yield similar Spectrophores.

• Coulomb matrices [82]: We use all five Coulomb
matrix representations available through ChemML
that include eigenspectrum (Coul Mat 1), ran-
dom coulomb (Coul Mat 2), sorted coulomb
(Coul Mat 3), unsorted coulomb (Coul Mat 4),

and unsorted triangular coulomb matrix
(Coul Mat 5).

• Bag of bonds [83]: These descriptors which are in-
spired from the bag-of-words descriptor often used
in natural language processing applications are also
generated via ChemML.

• Fractional buried volumes [84]: In a transition
metal complex, the fraction of buried volume can be
used to measure the steric hindrance on the metal
center that is induced by a ligand.

For each of these descriptors, we train two Keras deep
neural network (DNN) architectures using ChemML [85]
– 1) for predicting the ∆G of individual reaction steps,
and 2) for predicting the ∆G of all reaction steps simulta-
neously. For the first architecture, the input descriptors
correspond to the catalyst-substrate adduct structures,
whereas for the second architecture, they only take into
account the catalyst structures.
For training the model, the input data is split into a

90:10 train:test ratio, and all descriptors other than fin-
gerprints, i.e.non-binary descriptors, are scaled to unit
variance. The model hyperparameters – regularization,
activation function and the number and size of hidden
layers, are optimized via ChemML’s genetic algorithm
module, which optimizes the mean absolute error (MAE)
of the validation set obtained from a five-fold cross-
validation step in the training process [86–88].

III. RESULTS AND DISCUSSION

In Ref. [61], the dehydrogenation of H12-NEC has
been reported without the use of any solvent. Thus, we
initially setup our DFT calculations in a similar fashion.
To account for the solvent effects of liquid phase H12-
NEC, we use the CPCM model for solvation [89]. We
use a dielectric constant of 1.3 and a refractive index of
1.6394 for H12-NEC. For a small subset of 200 catalyst
molecules, we also run the same calculations using gas-
phase H12-NEC, i.e.without the use of a solvent field,
and compare the values of ∆G in both cases. We note
that there is only a marginal difference between the two
values, with the minimum and maximum values at -0.3
and +0.81 kcal/mol respectively. A scatter plot of these
calculations for the 200 catalysts is shown in Fig. 1 of
the SI. Thus, for the remainder of the molecules in our
library, we utilize the latter approach to calculate the
properties of interest as these calculations have a lower
computational overhead.
For the 3066 catalysts generated through our library

generation process, the SMILES codes and the corre-
sponding building blocks for the top 20 catalysts in terms
of the lowest ∆Gr for all of the six dehydrogenation re-
actions is tabulated in Table 1 of the SI. The distribu-
tion of Gibbs free energies (blue) and enthaplies (red) in
kcal/mol, along with the corresponding kernel density
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FIG. 3: A distribution of the Gibbs free energies (∆G in kcal/mol) and enthalpies (∆H in kcal/mol) of the 3066
catalyst molecules in our virtual library, for the six dehydrogenation reactions of perhydro-N-ethyl carbazole. The
dotted blue and red lines indicate the mean ∆G and ∆H values respectively for each reaction step, whereas the line

curves show the respective kernel density estimates.

FIG. 4: Hammett plots for single site substitutions w.r.t. sites A and B on the reference catalyst. Each curve in the
plot corresponds to the building block substituted at the respective site.



6

FIG. 5: Z-scores of the 18 building blocks. The x-axis labels are comprised of the building block number and the
corresponding site where they are attached.

estimates (line curves) and mean values (dotted vertical
lines) for both thermochemical properties, for the six de-
hydrogenation reactions of H12-NEC is shown in Fig. 3.
For both ∆G and ∆H, we see a decreasing trend in the
corresponding values as the reaction progresses towards
complete dehydrogenation (overall shift of nearly 10-15
kcal/mol).
To analyze this data further, we first look at single

building block substitutions at each of the four sites
shown in Fig. 2(a), i.e., building blocks used at all the
remaining sites on the catalyst are held constant. For
sites A and B, Fig. 4 shows the change in free energy
barriers (∆G in kcal/mol) due to the different building
blocks. Although different building blocks are dominant
at different steps of the reaction, we observe a substan-
tial fluctuation in the ∆G even from single substitutions.
In particular, substitutions on site B show larger fluc-
tuations in ∆G across all reaction steps as compared to
those on site A. This implies a stronger electronic effect of
site B on the metal center compared to site A. We make
similar observations for sites C and D, where a large num-
ber of cases arise as we also account for non-symmetric

substitutions on the pincer arm.
In addition to this, we also report the ∆G for substitu-

tions made on the para-phenyl position of the reference
catalyst in Table 2 of the SI. We select a set of 8 sub-
stituents for which the electronic effects span from elec-
tron withdrawing to electron donating effect. Compared
to the reference catalyst, we do not see a significant shift
in the ∆G values with the introduction of these groups
into the catalyst. However, we note that electron do-
nating groups are slightly more favorable for the dehy-
drogenation reactions compared to electron withdrawing
groups.
For a site-agnostic analysis of the building blocks, we

calculate the z-scores for the 18 building blocks as shown
in Fig. 5. For this figure, we look at the top 5% of the
catalysts (w.r.t. ∆G) for each of the six reactions, and
evaluate the contribution (presence/absence in the cat-
alyst molecule) of each building block in this subset vs
their contribution in the remainder of the library. For
catalyst sites A and B, we see a high positive as well as
high negative correlation, whereas for sites C and D, the
correlation goes from moderately positive to weakly neg-
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FIG. 6: A comparison of the performance of machine learning models trained using various 2-D and 3-D descriptors
for predicting the ∆Gr of all six dehydrogenation steps simultaneously. The y-axis corresponds to the sum of the
mean absolute errors (test set) of the six predictions for each catalyst molecule. The blue, orange, green, and red
lines for each descriptor refer to the four types of optimized geometries used for generating the 3-D descriptors.

ative. This implies a stronger effect of substitutions on
sites A and B as compared to sites C and D. Further-
more, we see a flipping of the building blocks from the
red zone to the green zone, and vice versa, after the first
two reaction steps. With this result, we infer two things:
1) we cannot select a single set of the strongest correlated
building blocks to construct a catalyst that will yield su-
perior performance across all reaction steps, and 2) the
selection of the best building blocks for designing a cat-
alyst should instead be based on the rate determining
step(s) in the reaction mechanism.

We also plot the z-scores for the cyclometallated ring
sizes of the catalysts in Fig. 2 of the SI. These refer to
the number of atoms in each of the two cyclic rings that
are formed by the metal center and the ligand atoms.
For instance, in Fig. 2(a), the two rings are comprised
of Ir − C − C − O − P atoms, and have an identical

size of 5-5. Across all pincer complexes reported in liter-
ature, symmetric ring sizes for pincer complexes largely
outnumber non-symmetric ones. However, the plot in-
dicates that non-symmetric ring sizes are also strongly
correlated to ∆G. Similar to the z-scores for building
blocks, we see a flipping of the cyclometallated ring sizes
from the red zone to the green zone, and vice versa, as
we move further through the reaction steps.
The generation of thermochemical data for the 3066

catalysts in our library following the computational pro-
tocol described in Sec. II B is a computationally demand-
ing procedure. For each catalyst molecule, it took almost
an average of 3 days (approx. few minutes for force-field
optimized geometries, 8-10 hours for LOOSEOPT op-
timization, and 50-70 hours for TIGHTOPT optimiza-
tion) for all the calculations to complete on a 40-core
node, resulting in a total of a little over 2 years for gen-
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erating the entire data. Thus, in order to accelerate the
screening/hyper-screening of additional libraries of pin-
cer catalysts, we train supervised ML models for predict-
ing the thermochemical data.

Of the two model architectures described in Sec. IID,
models trained using the second architecture uniformly
outperformed those trained using the first architecture
for all descriptors. For the second model architecture,
Fig. 6 shows the performance of ML models generated
from various 2-D (using SMILES strings) and 3-D de-
scriptors (using each of the three optimized geometries
– ‘TIGHTOPT’, ‘LOOSEOPT’, and ‘FORCE-FIELD’).
The y-axis of the plot corresponds to the sum of the
MAEs of the six predictions for each molecule of the test
set.

The best models corresponding to the ‘TIGHTOPT’,
‘LOOSEOPT’, ‘FORCE-FIELD’, and ’SMILES’ descrip-
tors arise from the sorted coulomb matrix, Spec-
trophores, ECFP4 and the MACCS keys respectively.
Within 3-D descriptors, the most accurate predictions
arise from the models trained on ‘TIGHTOPT’ geome-
tries. When considering all three geometries simultane-
ously, the best models are those corresponding to the
random coulomb matrix. Furthermore, for the bag of
bonds and random coulomb matrix descriptors, we see
very close predictions between the 3 geometries.

For most descriptors, we don’t see a significant differ-
ence in the model predictions w.r.t. the three geometries,
thus, models trained on less accurate geometries can po-
tentially be used to make predictions on a large dataset.
Since the creation of descriptors using ‘FORCE-FIELD’
and ‘LOOSEOPT’ geometries takes substantially lower
time than that for ‘TIGHTOPT’ geometries, the primary
bottleneck, i.e. the computational overhead in the HTPS
protocol can be alleviated.

IV. CONCLUSIONS

In this study, we employ a data-driven in silico ap-
proach to investigate liquid organic hydrogen carriers
that provide an excellent media for the storage and
transportation of pure hydrogen. We conduct a high-
throughput screening study to identify lead molecular
catalysts for extracting hydrogen pairs from N-ethyl car-

bazole. Our methodology serves as a rapid and efficient
scheme to assess the thermochemical properties of cata-
lysts, as well as to reveal structure-property relationships
that are crucial to establish rational design principles.
We identify the most promising catalysts, as well

as the top building blocks (both site-specific and site-
agnostic) and structural patterns that contribute favor-
ably to the reaction thermodynamics. To accelerate the
high-throughput screening, we also train machine learn-
ing models that accurately model the Gibbs free energies
of these reactions. Even with models trained on par-
tially optimized geometries, we are able to achieve similar
model performance, thus significantly reducing the time
required for first-principles computational studies. We
aim to utilize these valuable insights into these systems
to pursue promising candidates via future experiments.
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