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ABSTRACT. Computational simulations of entropy are important in understanding the 

thermodynamic forces that drive chemical reactions on a molecular scale. In recent years, various 

algorithms have been developed and applied in conjunction with molecular modeling techniques 

to evaluate the change of entropy in solvation, hydrophobic interactions, and chemical reactions. 

The aim of this review is to highlight four specific computational entropy calculation methods: 

normal mode analysis, free volume model, two-phase thermodynamics, and configurational 



entropy modeling. The technical aspects, applications, and limitations of each method will be 

discussed in detail. 
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1. Introduction 

Entropic variation accompanies chemical processes, which broadly encompass organic 

reactions, supramolecular complexation, protein-ligand or protein-protein interactions, alloy 

formation, catalysis, solvation, and so on. At the molecular level, changes in configurational space 

during these reactions or interactions lead to an entropy variation. For instance, in the Diels–Alder 

reaction between 1,3-butadiene and ethylene to form cyclohexene, the removal of 3 translational 

and 3 rotational degrees of freedom in the process of product formation leads to an entropy 

reduction. In complex systems, such as those found in solvents or enzymes, the participation of 

solvent molecules or conformational changes of proteins can complicate chemical reactions or 

molecular interactions. In these cases, changes in entropy have been observed to balance out 

changes in enthalpy, playing a role in the enthalpy-entropy compensation effect.1, 2 

Experimental methods to determine entropic change in chemical reactions and molecular 

interactions have been established. One way is to calculate entropy using van't Hoff equation by 

fitting the logarithm of equilibrium constants to the reciprocal of temperature.3, 4 Other methods 

include isothermal titration calorimetry5 and differential scanning calorimetry6, which measure 

enthalpy and free energy to determine entropy. Although entropy can be estimated experimentally, 

the molecular details behind the entropic change are not fully understood.  



Computational modeling approaches, including molecular dynamics (MD) and Monte 

Carlo (MC) simulations, have been developed to investigate the evolution of microscopic states in 

chemical processes under certain physical conditions (e.g., temperature, pressure, chemical 

potential, etc.). However, quantification of entropy from molecular ensembles is challenging due 

to the demand of searching all accessible configurations to calculate the configurational probability 

density function or partition function. This issue is particularly severe for reactions involving a net 

change of molecular molar numbers (e.g., bimolecular reactions). Computational strategies have 

been extensively developed to account for entropic variation of chemical transformations, 

including Hessian-based methods,7, 8 direct binning approach,9 and thermodynamic integration.10 

Methods have also been developed to calculate entropy associated with solvation,11-14 hydrophobic 

interaction,15, 16 and interfacial tension.17 

Considering the extensive development of theoretical and computational methods for 

entropy calculation, this review does not intend to provide a comprehensive discussion on all active 

fronts of entropic modeling. Rather, this review focuses on four computational approaches for 

entropy calculation: normal mode analysis, free volume theory, two-phase thermodynamics theory, 

and configurational entropy modeling.  Normal mode analysis (NMA) is a widely used method to 

determine entropy by constructing partition functions from the Hessian matrix. Free volume theory 

accounts for the contribution of molecular volume in the calculation of translational entropy for 

reactions in condensed media.11 Two-phase thermodynamics theory calculates entropy of chemical 

processes in condensed media through dividing the partition functions of a molecular state into 

gas-like and solid-like components using MD trajectories.12 Configurational entropy modeling 

evaluates entropy through a direct counting approach, in which probability density functions of 

internal degrees of freedom are calculated using a geometric binning of molecular ensembles 



sampled from MD or MC methods.9 The theoretical basis, applications, and limitations of each 

approach will be discussed in the following sections. We hope the discussion can inspire more 

researchers to further develop and apply these methods to elucidate the entropic nature of chemical 

transformations. 

2. Normal Mode Analysis 

Normal mode analysis (NMA) assumes that a molecular system is stabilized by a series of 

linearly combined and non-interacting harmonic potentials. The method accounts for the entropic 

contribution of molecular fluctuations around a local minimum on the potential energy surface 

(PES). For an optimized molecular structure with N atoms, NMA constructs a 3𝑁	𝑋	3𝑁 Hessian 

matrix to extract the information of normal modes. Each element of Hessian matrix is a second-

order partial derivatives of potential energy functions over Cartesian coordinates. The 

diagonalization of Hessian matrix informs eigenvalues representing the local curvatures of the 

potential energy surface and eigenvector representing the normal mode of intramolecular 

vibrations. The eigenvalues of normal modes can be converted to vibrational frequencies to 

calculate vibrational entropy using partition functions. The rigid-body rotations and translations of 

the molecule are separately counted using rotational and translational partition functions, 

respectively. NMA is among the most popular methods available in many software packages (i.e., 

Gaussian,18 Q-Chem,19 NWChem,20 Bio3D,21 etc.). Below, we will introduce the technical details 

of NMA. 

Considering a reaction in the gas phase, 𝐴 + 𝐵 → 𝐴𝐵 , in which 𝐴  and 𝐵  represent 

reactants and 𝐴𝐵 represents a product (or a transition state complex). To calculate the entropy of 

each species, one would start with geometry optimization to calculate the corresponding 

equilibrium structures. For 𝐴, 𝐵, and 𝐴𝐵, the optimization tracks the gradient along PES to locate 



the local minima on the PES, where the gradient equals to zero. For the transition state complex, 

the optimization aims to locate a saddle point on the PES, which is a local maximum along one 

direction (i.e., the reaction coordinate) but minima for all other directions. Each optimized 

structure undergoes frequency analysis where translational, rotational and vibrational partition 

functions are constructed. Translational partition function can be represented by using Thermal de 

Broglie wavelength (i.e., Λ = !
"#$%&!'

) and the volume, 𝑉, of the system: 
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-
."

    eq 1 

where 𝑚  is the mass of the molecule, 𝑇  is the temperature, ℎ  is Planck constant, and 𝑘/  is 

Boltzmann constant.  

Rotational partition function resulting from rotational degree of freedom can be represented 

from rotational temperature (i.e., Θ)0(,& =
!#

2$#3$&!
, where 𝑘 = 𝑥, 𝑦, and 𝑧 Cartesian axis), which is 

inversely proportional to the moment of inertia, 𝐼&: 

𝑞)0( =
$% #⁄

4'()
7 '"∕#

56+,-,/6+,-,06+,-,17
%
#
8  eq 2 

where 𝜎)0( is the rotational symmetry.  

Vibrational partition function can be represented with the vibrational temperatures (i.e., 

Θ89:,; = ℎ𝑣;/𝑘/ , where 𝐾  is the vibrational modes) resulting from normal mode vibrational 

frequencies, 𝑣;, identified from the diagonalization of Hessian matrix. 

𝑞89: = ∏ <23456,7∕#8

=>?23456,7∕8;    eq 3 

The electronic partition function can be simplified to the degeneracy of ground state energy 

level, 𝜔@, (i.e., 𝑞?A?B = 𝜔@, where 𝜔@), where the first and higher excited states are inaccessible 

under the assumption that the first electronic excitation energy is much greater than 𝑘/𝑇. Notably, 



the vibronic effect should be considered when the molecular system breaks Born-Oppenheimer 

approximation (e.g., Jahn-Teller effects).22 

Using partition functions (i.e., eq 1-3), the total entropy (i.e., contributions from 

translational, rotational, and vibrational modes) of each species can be calculated using eq 4. The 

overall reaction entropy and the activation of entropy can be calculated by 𝑆C/ − (𝑆C + 𝑆/) and 

𝑆C/‡ − (𝑆C + 𝑆/), respectively. 

𝑆 = 𝑅 Dln 𝑞()*+,𝑞)0(𝑞89:) + 𝑇 D
D EF G)':;<G'()G=>?

D'
G
-
G eq 4 

To account for solvent effects, implicit solvent model, which treats solvent as a continuum 

of uniform dielectric constant, can be used in conjunction with structural optimization or single-

point energy calculation (Figure 1). The entropy associated with the overall reaction in the 

condensed phase can be evaluated using thermodynamic cycle, where the overall reaction entropy 

in the condensed phase can be obtained by the entropic variation in the gas phase combined with 

the entropy of solvation (Figure 1).  	

 

Figure 1. Thermodynamic cycle used to calculate the entropy of the reaction, 𝐴 + 𝐵 → 𝐴𝐵, in the 

solution. ∆𝑺𝒔𝒐𝒍 = ∆𝑺𝒈𝒂𝒔 + ∆𝑺𝒄𝒐𝒏𝒅(𝑨𝑩) − ∆𝑺𝒄𝒐𝒏𝒅(𝑨) − ∆𝑺𝒄𝒐𝒏𝒅(𝑩). 

 In principle, NMA can be used for calculating molecular entropies under various levels of 

theories and methods, but its accuracy may be limited by multiple factors. First, based on the 



benchmark studies by Pracht and Grimme, the mean deviation of entropy calculation is less than 

1 cal mol-1 K-1 for two standard density functional theory (DFT) methods B97-3c and B3LYP-

D3.23 However, in practice, the accuracy of entropy calculations can vary significantly due the 

complexity of molecular systems (i.e., metal effects, multireference states, spin effects, etc.). 

Furthermore, insufficient DFT integration grid size can be an additional source of error that arises 

from overlooking the sensitivity of entropic component that are distinct from errors due to 

harmonic approximation.24 

Second, NMA demands high computational cost due to the diagonalization of a 3𝑁	𝑋	3𝑁 

Hessian matrix. The computational complexity is on the order of 𝑁# , which is nontrivial to 

calculate for systems with large number of atoms. As an approximated form of NMA, coarse-

grained methods (e.g., elastic network model) have been employed to inform the large-scale 

collective motions for biomolecules or solvent systems,25-28 in which the number of atoms of the 

whole system is usually on the scale of 10,000 to 100,000.  

Third, configurational entropy derived from NMA becomes less accurate for larger and 

more flexible molecules. Flexible molecules involve rugged potential energy surface. 

Anharmonicity prevails for lower-frequency modes that feature delocalized, collective motion of 

large group of atoms with a longer timescale. Anharmonicity breaks the non-interacting 

assumption among vibrational modes and leads to larger errors in entropy calculations. To reduce 

this error, Truhlar and co-workers proposed quasi-harmonic method that increases the vibrational 

frequencies under 100 cm-1 to 100.29 Later, Head-Gordon and co-workers proposed uncoupled 

mode approximations and improved the accuracy of entropy calculation in anharmonic systems by 

constructing separate one-dimensional potential energy surfaces for torsions and vibrations.30 

Besides anharmonicity, flexible molecules also involve multiple conformations that collectively 



contribute to the ground state entropy and free energy. NMA derived from single optimized 

conformation is not theoretically adequate. To fix this error, Truhlar and co-workers developed the 

internal-coordinate multi-structural approximation, which is a multi-structural approach to 

accounting for the effects of torsional anharmonicity on entropy calculations.31 The method 

involves summing torsional contributions from a list of distinguishable conformers and is shown 

to improve the accuracy of entropy calculations in complex molecular systems. In addition to these 

methods, configurational entropy calculation had been reported to calculate the total entropy 

change of biomacromolecule ensembles using configurational probability density functions 

determined from counting conformations sampled using MD or MC methods – this will be 

discussed in the following section (section 5).  

Fourth, NMA faces problems in characterizing the entropy of molecules in the condensed 

phase. Quantifying entropy in such systems is challenging due to the difficulty of considering 

volume occupied by solvent molecules, anharmonic and diffusive motion, and solute-solvent 

interactions. Despite the advancement of implicit solvation models in accurately describing the 

solvation free energy of molecules,32 charactering molecular entropy directly under solvent 

conditions remains an open question. Inclusion of explicit solvent clusters along with implicit 

solvent models helps improve the description of solvation energy, but how to better account for 

their contributions in entropy presents a major hurdle. Several computational methods have been 

reported to address the entropy associated with the condensed phase.11-15 We will focus on direct 

entropy calculation methods for condensed media in free volume theory and two-phase 

thermodynamic model sections. 

3. Free Volume Theory 



For bimolecular reactions, translational entropy contributes significantly to the overall 

entropic change in the reaction. Derived from monoatomic ideal gas, Sackur-Tetrode model (i.e., 

eq 5) has been widely employed to estimate the translational entropy for molecules in the 

condensed media.  

𝑆()*+, = 𝑅 ln LD=@
2%@ #⁄

PA
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In this equation, 𝑇 is temperature, 𝑚 is mass, ℎ is Planck constant, 𝑁C is the Avogadro’s number, 

and [𝑋] = +
-
 is the molar concentration for 𝑛 moles of solute in the system with a volume of 𝑉. 

Ideal gas model is intrinsically deficient in the description of molecular volumes and 

intermolecular interactions. As such, Whitesides and co-workers developed free volume theory to 

correct the translational entropy calculated from the Sackur-Tetrode model (Figure 2).11 To 

describe the freely-accessible volume of a molecule in the condensed media (i.e., 𝑉W)??), the theory 

explicitly subtracts the contribution of molecular volume (i.e., 𝑉%0A?BXA?, the volume enclosed by 

the van der Waals surface of the molecule) from the total volume hypothetically accessible by an 

ideal gas molecule (eq 6). The volume can be represented by a sphere or a cube.  

𝑉W)?? = 𝐶W)?? RS
=@#C

[R]PA

" − T𝑉%0A?BXA?
" U

U

	  eq 6 

Vmolecule is the volume of the molecule. Cfree is 8 or 6.3 for hard cube or sphere models, respectively.  



 

Figure 2. Free volume model addresses free volumes of pure liquids as an array of regular cubic 

lattices. The volume of molecule, 𝑉%0A?BXA?, can be estimated from the density of molecule and the 

intermolecular distances (𝐼𝑆𝐷) are determined from the concentration of molecules, 𝑋. The free 

volume (𝑉W)??) available to each liquid molecule is estimated as the volume occupied by the center 

of mass moving in a cage defined by the intermolecular distance. 

Using free volume theory, the error of translational entropy prediction for liquid-phase 

molecules can be significantly reduced.11 For a reaction in the condensed phase, 𝐴 + 𝐵 → 𝐴𝐵, the 

translational components of the entropies of condensation (i.e., ∆𝑺𝒄𝒐𝒏𝒅(𝑨𝑩), ∆𝑺𝒄𝒐𝒏𝒅(𝑨),

∆𝑺𝒄𝒐𝒏𝒅(𝑩),  Figure 1) can be corrected using Sackur-Tetrode model with the 𝑉W)??  values 

calculated from the volume of each species. Consequently, free volume theory provides a 

physically informed remedy to accurately predict the translational entropy in the process of 

condensation. Recently, the Paton group has integrated free volume theory into the open-source 

Python toolkit, GoodVibes.33 However, we should note that free volume theory is more applicable 

to diluted aqueous solutions with low concentration of solute. When the solute concentration 



becomes higher, the free volume of solute molecules will significantly dominate the free volume 

of solution, and the irregular shapes of solutes hinder the estimation of free volume. These effects 

further complicate the estimation of solvation entropy in condensed media.  

4. Two-Phase Thermodynamics Model 

 Besides extracting entropy from the Hessian Matrix of optimized geometries, one can also 

evaluate entropy from time-resolved molecular dynamics trajectories. Lin, Goddard, Pascal, and 

coworkers developed Two-Phase Thermodynamic (2PT) theory to predict absolute entropies of 

molecular fluids by evaluating density of state (DoS) distributions from the MD trajectories. As 

shown in Figure 3, 2PT theory represents the DoS functions of molecules in the condensed phase 

using a linear combination of diffusive and non-diffusive components (i.e., ideal gas and solid 

components, respectively). 2PT model can handle the low frequency vibrations using a measure 

of fluidity of the system and applies quantum statistics to the normal vibrational modes of a system 

(i.e., the Debye-Einstein model). Distinct from NMA, 2PT theory can account for harmonic, fluidic, 

and quantum effects. Based on the benchmark, the calculation of entropy is converged using one 

MD trajectory with 10-50 ps time scale. As such, the method is applicable to evaluate the entropy 

change of chemical processes in a larger-scale molecular systems with reasonable computational 

cost. Below, we will discuss the theoretical details of 2PT theory. 



 

Figure 3. Typical density of state (DoS) distributions 𝐷(𝑣) of gas (red), solid (blue) and liquid 

(black) as a function of frequency 𝑣. The underlying assumption of two-phase thermodynamics 

model is that the liquid phase density of state function can be partitioned to the gas and solid 

components. 

2PT method begins with a molecular dynamics (MD) simulation of a molecular system 

consisted of all target molecules and derives DoS function 𝐷(𝑣) from the Fourier transform of the 

corresponding velocity autocorrelation functions. The DoS functions of fluid molecules, which 

contain the information of translation, rotation, and intramolecular vibration motions, are 

partitioned into the solid-like and gas-like components. The zero-frequency intensity 𝐷(𝑣 = 0) 

corresponds to the diffusive modes of the system. For solid-like components, the DoS function can 

be represented as the Debye-Einstein model, in which the system is treated as a continuous 

collection of noninteracting quantum harmonic oscillators (i.e., 𝐷(0) = 0). For gases, the DoS 

decays exponentially with frequency, which represents anharmonicity and diffusivity of the system 

(i.e., 𝐷(0) > 0). 



The molecules in MD simulation are equilibrated for 1-2 ns. Atomic velocities are saved 

every 4 fs. Atomic velocities are decomposed into translational, rotational, and vibrational 

components using eq 7 for atom 𝑗 in the 𝑘 direction (𝑘	 = 	𝑥, 𝑦, and 𝑧 in the Cartesian coordinate). 

𝑣Y&(𝑡) = 𝑣Y,()*+,& (𝑡) + 𝑣Y,)0(& (𝑡) + 𝑣Y,89:& (𝑡) eq 7 

Translational velocity of atom 𝑗  is represented by the center of mass velocity of the 

molecule in which the atom 𝑗 resides. Rotational velocity can be represented by the cross product 

of the position vector of atom 𝑗 and the angular velocity: 𝜔[[⃗ × 𝑟Z[[⃗ , where 𝑟Z[[⃗  is the position vector of 

atom 𝑗 to the center of mass of the molecule and 𝜔[[⃗  is the angular velocity determined from 𝑳[[⃗ =

∑𝑚Ya𝑟Z[[⃗ × 𝑣Z[[[⃗ b = 𝑰𝜔[[⃗ . Vibrational velocity can be obtained from 𝑣Y,89:& (𝑡) = 𝑣Y&(𝑡) − 𝑣Y,()*+,& (𝑡) −

𝑣Y,)0(& (𝑡).  

 The DoS function 𝐷(𝑣)  is defined as the mass weighted sum of the atomic spectral 

densities𝐷(𝑣) = #
&!'
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Y[= , where 𝑚Y  is the mass of atom 𝑗  and 𝑁  is the total 

number of atoms in the system. The spectral density 𝑠Y&(𝑣) of atom 𝑗 in the 𝑘 direction (𝑘 = 𝑥, 𝑦, 

and 𝑧 in the Cartesian coordinate) is defined as the square of the Fourier transform of the velocities 
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, where 𝑣Y&(𝑡)is the 𝑘-component of the velocity vector of 

atom 𝑗 at time 𝑡. Therefore, the DoS function can be expressed as 
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In eq 9, 𝑀 is the total number of molecules for the rotational component, and 𝜔A& and 𝐼A& 

are the 𝑘-th principle angular momentum and moment of inertia of molecule, respectively. Under 

the assumption that all the normal modes are harmonic, the vibrational DoS function of the gas 

component can be neglected. 

 In the condensed phase, the motions associated with the low frequency modes mediate the 

fluidicity of the system. Using diffusivity obtained from MD simulation (under the framework of 

NVT ensemble), the fluidicity can be determined to characterize translational and rotational DoS 

functions of the gas component using eq 11.  
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Diffusivity constant, ∆, can be defined as: 
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where mode = translational and rotational.  
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 As translational and rotational DoS functions of the gas component are completely 

determined, the solid components can be obtained by subtracting 𝐷%0_?
^*, (𝑣) from the total DoS 

functions 𝐷%0_?(𝑣)  (i.e., 𝐷%0_?,0A9_ (𝑣) = 𝐷%0_?(𝑣) − 𝐷%0_?
^*, (𝑣) ). With demonstrated 2PT 

decomposition of the density of states, the entropy of the system is determined as the sum of the 

gas and solid contributions: 
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𝑊j
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− ln[1 − exp(−𝛽ℎ𝑣)]     eq 17 

where the weighting functions for solid component, 𝑊j
,0A9_(𝑣) , are modeled with harmonic 

oscillators. The weighting function of the translational motion of gas component is assumed to be 

that of hard spheres,34 
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where 𝑆pj  is the hard sphere entropy and 𝑦 = 𝑓()*+,
c∕# ∕ ∆U #⁄ . 𝑧(𝑦) is the compressibility factor 

derived from Carnahan-Starling equation of state of hard sphere gasses. The weighting function of 

the rotational motion of gas component is 
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where 𝑆T is the rotational entropy of a rigid body with rotational temperature 𝛩C = ℎ# ∕ 8𝜋#𝐼C𝑘/. 

 By partitioning liquid density of state function into gas and solid components, 2PT model 

separately treats harmonic, fluidic, and quantum effects to accurately calculate absolute entropy 

for liquid-phase molecules. Furthermore, 2PT model can be applied to various range of 

temperature and density. For instance, Lin et al. demonstrated the accurate prediction of entropy 

of water along the saturation curve.12 2PT model has also been employed to characterize entropy 

of water dynamics involved in enzymatic reactions,35 water-carbon nanomaterial interfaces,36-39 

amorphous polyethylene glycol-water mixtures,40 and biological systems.41, 42 Furthermore, 



besides small molecules such as water and carbon dioxide,43 2PT model has been recently 

suggested to accurately calculate the absolute entropy of flexible molecules in condensed phase.44 

5. Configurational Entropy Calculation 

 Configurational entropy calculation determines the overall entropy of a molecule by 

analyzing the probability density function (PDFs) of the internal degrees of freedom obtained from 

MD or MC simulations of molecular ensembles. Unlike NMA, which extracts vibrational modes 

from a Hessian matrix of optimized structures, configurational entropy calculation builds 

configurational PDFs of internal coordinates (i.e., bond, angle, and torsion angle) from a collection 

of sampled structures. High-dimensional configurational PDFs can be estimated using a 

combination of Generalized Kirkwood Superposition Approximation (GKSA)45, 46 and the 

Maximum Information Spanning Tree (MIST) approximation.47, 48 GKSA helps overcome the 

challenge of high dimensionality by approximating the high-order configurational PDF using 

pairwise MI terms. MIST approximation removes small MI terms to prevent overestimation of 

full-dimensional entropy. 

The total entropy of a molecule can be partitioned into the momentum and spatial 

components where in isothermal condition, the momentum component is constant and can be not 

considered. Therefore, the total entropy of a single molecule can be described by spatial component 

as shown in eq 21, 

𝑆UP
,t*(9*A = −𝑘/ ∫𝜕𝑞=…𝜕𝑞UP𝜌(𝑞=…𝑞UP) ln[𝜌(𝑞=…𝑞UP)]	 eq 21 

where 𝜌 is the configurational probability density function (PDF), 𝑞9 terms are the spatial degrees 

of freedom (DoFs), and 3𝑁 is the total number of DoFs in Cartesian coordinate system for 𝑁 atoms. 

The spatial component can be further decomposed into the configurational and roto-translational 

components; under a rigid-body roto-translational coordinate transformation, external roto-



translational components is not considered. Therefore, the configurational entropy refers to the 

spatial DoFs, with the momentum and external roto-translational contributions removed. 

Configurational entropy calculation starts by converting the molecular configurations in 

dynamic trajectories from Cartesian coordinates to internal coordinates (Z-matrix), which naturally 

excludes rotational and translational degrees of freedom. The internal coordinate system consists 

of bond lengths, angles, and torsional angles; for 𝑁	atoms, the total number of DoFs, in which 

there can be 𝑁 − 1  bonds, 𝑁 − 2  angles, and 𝑁 − 3  torsional angles (i.e., 

𝑏=, … , 𝑏P>=, 𝜃=, … , 𝜃P>#, 𝜙=, … , 𝜙P>U), equals to 3𝑁 − 6 vibrational DoFs in Cartesian coordinate 

system. Using histogram-based methods, 1D and 2D histograms can be obtained to estimate the 

configurational PDFs, which are used to calculate 1D and 2D entropies in the following equations: 

𝑆R> = −∑ 𝜌R>[𝑘] ln �
uS>[&]

v(R>[&])!S>
�&    eq 22 

𝑆R>,RD = −∑ 𝜌R>,RD[𝑘, 𝑙] ln R
uS>,SD[&,A]

v(R>[&])v5RD[A]7!S>!SD
U&,A   eq 23 

where 𝑗 ∈ [𝑖 + 1, 3𝑁 − 6], 𝑋9 , 𝑋Y ∈ [𝑏=, … , 𝑏P>=, 𝜃=, … , 𝜃P>#, 𝜙=, … , 𝜙P>U], 𝑘 and 𝑙 are indices of 

histograms, ℎR>  and ℎRD  are the width of the bins, and 𝐽(𝑋9[𝑘]) and 𝐽(𝑋Y[𝑙]) are the Jacobian 

determinants for the internal coordinates as defined below:  

𝐽(𝑏) = 𝑏#  eq 24 

𝐽(𝜃) = sin	(𝜃) eq 25 

𝐽(𝜙) = 1  eq 26 

The total configurational entropy is computed with MI terms from GKSA and the MIST 

approximation as shown in eq 27, 

𝑆UP>f`3j'(𝑋=, … , 𝑋UP>f) = ∑ o𝑆=(𝑋9) − 𝐼#a𝑋9; 𝑋YbY∈{=,…,9>=}
%*{ qUP>f

9[=  eq 27 



where 𝑋9  is DoF and 𝐼#a𝑋9; 𝑋Yb ≡ 𝑆=(𝑋9) + 𝑆=a𝑋Yb − 𝑆#a𝑋9 , 𝑋Yb is the mutual information (MI) 

that represents the interdependency among DoFs. 

 

Figure 4. Illustration of 1-dimensional (left) and 2-dimensional (right) histograms using DoFs (i.e., 

𝑋9 , 𝑋Y ). Each represents the probability density distribution, where ℎR>  and ℎRD  represent the 

widths of bins. 

 Configurational entropy calculation is used to determine the total entropy change of 

flexible and moderate-sized molecules by creating configurational probability density functions 

(PDFs) based on fully equilibrated MD simulation trajectories. The advantage of this approach is 

its ability to effectively account for anharmonic and coupling effects using configurational PDFs 

and mutual information between degrees of freedom. Furthermore, unlike the Two-Phase 

Thermodynamics (2PT) model, which only captures entropy at a sub-nanosecond time scale, 

configurational entropy calculations can capture conformational changes over long-time scales and 

provide a more comprehensive understanding of the entropy associated with biomolecular 

processes. 

Based on the framework of configurational entropy calculation, our group previously 

developed entropic path sampling (EPS) to evaluate the change of entropy along reaction path 

using a collection of reaction dynamic trajectories.49 Along the post-transition-state reaction path, 



the reaction dynamic trajectories are divided into structural ensembles that are consecutively 

spaced along a specific geometric range for the reacting bond. For each structural ensemble, its 

configurational entropy is computed to analyze the entropic path. Furthermore, configurational 

PDFs can be decomposed into structural moieties for entropy decomposition analysis.50 This 

approach can be potentially used to understand the entropic origin behind the selectivity of organic 

reaction dynamics.51 

However, the configurational entropy cannot characterize the entropy of the many-body 

system, where the solvent-mediated interaction entropy remains uncertain. Configurational 

entropy calculation can address the entropy of condensation by calculating the entropy difference 

of the target molecule between gas phase and condensed phase simulations. However, the total 

entropy change of the molecular system cannot be represented by simply adding configurational 

entropies of molecules and solute-solvent interaction entropy calculation is limited with increasing 

number of molecules in the system. 

Conclusion 

 In this review, we focus on the discussion of four computational methods used to calculate 

entropy in chemical processes, including their theoretical foundation, computational applications, 

and limitations. Normal mode analysis derives translational, rotational, and vibrational entropy 

based on the optimized structure's Hessian matrix. The free volume theory improves the 

calculation of translational entropy during chemical condensation by incorporating the 

contribution of molecular volume. The two-phase thermodynamics model calculates the absolute 

entropy of the condensed phase by dividing the density of state function into the contributions of 

gas- and solid-like components. Configurational entropy calculation determines the entropy of 



large and flexible molecules using probability density functions derived from molecular ensembles 

built by molecular dynamics or Monte Carlo simulations. 

These theoretical and computational advances enable researchers to gain tremendous 

insights into the conformational changes that occur during chemical reactions. The immediate 

challenge is to increase the accuracy of these methods through the use of more accurate potential 

energy functions, enhanced sampling of conformational space, and more sophisticated 

computational models for complex molecular systems. The incorporation of data-driven modeling 

also provides tremendous opportunities to further the accuracy of entropy calculations.52 It is 

hoped that this review will inspire further development and application of these methods to deepen 

our understanding of the entropic nature of chemical processes. 
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