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ABSTRACT: S-adenosyl methionine (SAM) -dependent methyl transferases (MTases) are a 
ubiquitous class of enzymes catalyzing dozens of essential life processes. Despite targeting a large 
space of substrates with diverse intrinsic reactivity, SAM MTases have similar catalytic efficiency. 
While understanding of MTase mechanism has grown tremendously through integration of 
structural characterization, kinetic assays, and multiscale simulations, it remains elusive regarding 
how these enzymes have evolved to fit the diverse chemical needs of their respective substrates. 
In this work, we performed a high-throughput computational analysis of 91 SAM MTases to better 
understand how the properties (i.e., electric field strength and active site volumes) of SAM MTases 
have been evolved to achieve similar catalytic efficiency towards substrates of different reactivity. 
We found that electric field strengths have largely evolved to make the target atom a better methyl 
acceptor. For MTases that target RNA/DNA- and histone protein, our results suggest that electric 
field strength accommodates hybridization state and variation in cavity volume trends with 
diversity of substrate classes. Metal ions in SAM MTases contribute negatively to electric field 
strength for methyl donation and enzyme scaffolds have evolved to offset these contributions.  



 
  



1. Introduction 

S-adenosyl methionine methyltransferases (SAM MTases) are a ubiquitous class of 

enzymes. SAM MTases are observed in a wide range of organisms including bacteria, fungus, 

plants, and humans.1-4 SAM MTases catalyze SN2 methylation, using SAM as a methyl donor. 

Their functions are involved in many essential life processes, including gene expression,5-7 protein 

modification,8-10 neurotransmitter degradation,11-13 and natural product synthesis.14-16 SAM 

MTases target various types of atoms, including carbon, nitrogen, oxygen and sulfur (Scheme 1). 

Enabled by advances in structural determination, kinetic studies, and multiscale molecular 

modeling,17-20 the mechanistic detail of SAM MTases has been unveiled.21-23 Combination of 

binding isotope effect experiment and large-scale quantum mechanical calculations shows the 

dependence of ground state donor-acceptor distance on the catalytic efficiency of catechol-O-

methyltransferase.18, 24, 25 Investigations into C–H hydrogen bonding have elucidated the role of 

these non-bonding interactions in ensuring catalytic efficiency.26-28 Analysis of charge transfer and 

electrostatics on four Class I SAM MTases has illustrated the ability of these enzymes to customize 

their electrostatic potentials to the intrinsic reactivity of their target substrates.29 

 

Scheme 1. Chemical structure of S-adenosyl methionine. The left side (a) shows the full molecule 

in the protonation state seen at a pH of 7.0. Top right (b) shows the relevant S–C bond broken 

during methyl donation by SAM. The negative partial charge of sulfur and positive partial charge 



of the methyl group are shown. Bottom right (c) shows a hypothetical SN2 transition state where 

the methyl group is being transferred to either a carbon, nitrogen, oxygen, or sulfur.  

Although SAM MTases involve diverse substrate scope with a wide range of intrinsic 

methyl-accepting capability, the kinetic properties of MTase-catalyzed reactions are largely 

consistent. A survey of 15 unique MTases from IntEnzyDB shows an average activation barrier of 

12.7 kcal/mol with a standard deviation of 1.9 kcal/mol (Supporting Information, Table S1).30, 31 

Similarity of turnover number across diverse substrates is not unique to SAM MTases and is 

observed in many classes of enzymes.32 The combination of diverse substrates and functional roles 

with consistent kinetic output suggests that SAM MTases have evolved to address the specific 

characteristics of each catalyzed reaction. However, the molecular origins behind the substrate 

kinetic homogeneity remain largely unknown.  

A high throughput analysis of SAM MTase electrostatic and topological properties is 

needed to rationalize how this diverse class of enzymes has evolved to achieve a narrow 

distribution of kinetics albeit substrate diversity. Existing studies have used different types of 

MTases but remained relatively low throughput, usually using one or two structures.17, 19, 23, 33 A 

notable exception is the structural survey conducted by the Trievel lab, which involves 46 different 

SAM MTases.26, 29 Combined growth in computational resources and protein databank (PDB) 

entries makes a strong case for higher throughput studies that have greater potential to uncover 

more universal trends.34-36  

Here, we present a computational analysis of 91 high-quality SAM MTase structures that 

examines both enzyme interior electric field (EF) strength and cavity volume using EnzyHTP, a 

high-throughput enzyme modeling software developed by our lab.34 Existing computational and 

experimental studies of SAM MTases29 and other types of enzymes have elucidated interior 



enzyme electrostatics to be among the determining factors in mediating catalytic efficiency.37-40 

Volume of active site cavity represents a topological factor that informs the capability of SAM 

MTases in substrate binding. Measuring both an electrostatic and topological value provides a 

holistic view of how each MTase has evolved to the specific characteristics of their respective 

substrates to achieve strong catalytic efficiency. Our analyses of 91 unique SAM MTases have 

enabled us to evaluate how SAM MTases have evolved to specific characteristics of their 

substrates’ target atoms, the diversity of their class of target substrates, and the presence of metal 

ions in their structures.  

2. Computational Methods 

Data Curation. Structures were curated from the Protein Databank (PDB) on October 3rd, 

2022.35 Filtration criteria are: (1) resolution under 2.0 Å, (2) enzyme commission (EC) number of 

2.1.1.X (i.e., SAM-dependent methyltransferase), (3) inclusion of S-adenosyl methionine (SAM), 

and (4) no RNA or DNA fragments. These criteria yielded 175 PDB entries. The PDB codes and 

corresponding search query are listed in the Supporting Information (Table S2 and Figure S1). 

The biological assembly and FASTA sequence for each entry was downloaded from the 

PDB website. When alternative locations or ANISOU records were available, the first coordinates 

were used. Co-crystallizing ligands and ions were removed manually except Zn and Mg ions. Mg 

ions were only kept for catechol O-methyltransferase (COMT) structures. Missing residues were 

added to each structure using the Modeller python package41 by treating the incomplete sequence 

as a template and aligning it to the full sequence provided by the FASTA. All structures were 

protonated at a pH of 7.0 using the EnzyHTP34 package and ligands were protonated using the 

Molecular Operating Environment (MOE) software package.42 Ligands missing heavy atoms were 

replaced with idealized models found in the PDB’s chemical library.  



Each entry was clustered into one of 104 groups using edit distance with a cutoff of 95% 

sequence similarity and a maximum length difference of 5% (Supporting Information, Text S1). 

Clustering was performed by iterating through the list of sequences and iteratively checking if the 

sequence has satisfied the criteria listed above. If it satisfied these criteria, it would be added. If 

not, a new cluster containing just that sequence would be created. A total of 21 clusters were 

identified to contain more than one sequence. The sequence from each cluster with the best 

resolution in angstroms (i.e. the smallest value) was selected by default. If a cluster contains a 

native version of the enzyme and versions with inhibitors, the native version was selected as the 

representative member from the cluster. PDB entries 3m6v and 3m6w were included due to being 

in different space groups as specified by their authors.  

EC numbers were sourced from PDB entries when available, and from the UniProtKB 

database when not listed in the PDB.43 Information on substrate type and target heteroatom were 

derived from the BRENDA database entry corresponding to EC number.44 Substrate and 

heteroatom information was also derived from PDB entries when no EC number could be derived. 

We found 11 entries that have no corresponding EC number and removed them from the dataset 

for analyses that focus on substrate and target atom specificity. We also removed 21 entries that 

have EC numbers other than 2.1.1.X. Complete enzymatic function data annotations are listed in 

the Supporting Information (Table S3). 

Molecular Mechanics Minimization. The SAM-methyltransferase complexes were 

parameterized using the antechamber, parmchk2 and tleap utilities from AMBER19.45 Non-SAM 

ligands were removed from all structures. Each structure was minimized using Amber19’s sander 

application. Minimization was run for a maximum of 20,000 steps and the remaining settings are 

listed in the Supporting Information (Figure S2). 



Electric Field Calculation. For each SAM-methyltransferase complex, the enzyme 

interior electric field (𝐸𝐹) strength was calculated along the S–C bond of SAM using the RESP 

charges for each atom as well as the coordinates of the minimized structure. The below equation 

was used to calculate the electric field strength at the mid-point of the S–C bond by summing over 

all atoms: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝐹𝑖𝑒𝑙𝑑	𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 	0
𝑘𝑞
|𝑟|! (𝑟̂ ∙ 𝑑

8) 

Here 𝑟⃗ is the vector from each atom to the S-C bond mid-point, 𝑑8  is a unit vector pointing along 

the direction of the S-C bond from the center of the bond, 𝑞 is the charge of the atom in internal 

Amber units and 𝑘 is a conversion constant with a value of 332.4 kcal Å/ mol e2. The resulting 

units of 𝐸𝐹	strength are MV/cm.  

Cavity Volume Calculation. We used the Mole2.0 software package to calculate the 

cavity volume of SAM-binding pocket.46 A truncated version of each cavity was created by 

selecting residues containing at least one heavy atom that is within 8 Å of a heavy atom in SAM. 

Volume was calculated a total of 378 times for each cavity with the outer probe radius ranging 

from 3.0 Å to 6.50 Å by 0.25 Å, inclusive, and with inner probe values of 1.0 Å to 2.0 Å by 0.05 

Å, inclusive. Coverage of SAM by each parameter set was calculated by exporting the cavity to a 

mesh and then counting the number of heavy atoms whose centers are inside the mesh using the 

pyvista python module. Each cavity was assigned the lowest volume with coverage greater than 

0.95 or with the max coverage if none were greater than 0.95.  

 

3. Results and Discussion 

We curated 91 MTases for analyses of enzyme interior electric field and cavity size of 

active site. As shown in Scheme 2, electric field strength (EF) for each enzyme was measured 



along the sulfur-carbon bond (S–C) at the middle point between geometric centers of the two atoms 

with the charges derived from the AMBER force field. Positive EF strength values indicate a 

stronger propensity of SAM to donate the methyl group. Cavity volumes were calculated using 

mesh objects generated from the Mole2.0 software package. The protocols for structural curation 

and property analysis are detailed in the Computational Methods section.  

 

 

Scheme 2: Measuring electric field (EF) strength and cavity volume. Visualized by the blue arrow 

in (a), electric field is measured along the S-C bond axis at the center point of the bond. Charges 

and atom locations for the EF calculation are derived from the minimized AMBER structure. Inlay 

(b) shows a sample mesh from Mole2.0 used to calculate the cavity volume. Coverage denotes the 

percentage of SAM’s heavy atoms whose centers are inside the mesh. 

The curated MTases involves a diverse range of substrate specificity (Figure 1a) with 

nucleic acids and histones being the most abundant, representing 55.0% and 23.1% of the dataset, 



respectively. MTases catalyzing small molecules (i.e., molecular weight ≤582.9 g/mol), proteins 

and catechol each contribute 11.0%, 7.7% and 3.3% of the structures, respectively. We isolated 

catechol from the category of small molecules because of its high abundance and well-established 

existing studies elucidating its mechanism.11, 17-19, 22, 29, 47, 48 The distributions of cavity volumes 

and electric field values are displayed in Figure 1b. Cavity volumes range from 498.0 Å3 to 1494.7 

Å3, with a median value of 859.6 Å3. Kernel density estimation (KDE) of cavity volume generates 

a distribution with a single peak around 806.3 Å3 and a small shoulder around 1400.0 Å3. SAM 

has a volume of 295.2 Å3, meaning that the median cavity volume has space of approximately 

twice the size of SAM to accommodate methyl-acceptor substrate.  

Electric field strengths range from -306.2 MV/cm to 190.7 MV/cm, with a median of 13.8 

MV/cm. This result indicates that a large number of SAM MTases have positive electric field 

strength although a substantial number have negative strength values. KDE estimation of electric 

field generated a distribution with two peaks, one around -89.5 MV/cm and another around 93.0 

MV/cm. While the median electric field is on average slightly positive, KDE analysis indicates 

that the wide distribution of EF strength in specific MTases. Cavity volume and EF strength have 

low correlation with an R2 of only 0.01. The lack of relationship implies the two properties are 

independent and EF strength does directly depend on binding cavity size. 



 

Figure 1. A survey of the compiled SAM MTase dataset. The pie chart (a) on the left shows the 

functional breakdown of the MTases. Classifications are based on the EC number when available 

and are derived from the original publication if no EC number was supplied. The heatmap (b) on 

the right shows the distributions of cavity volume and electric field for all 91 MTases. The center 

of (b) shows a topographical view of the values in two dimensions and the margins show one 

dimensional KDE plots of each respective dimension.  

Next, we investigated the electrostatic mediation of MTases on SAM co-factor with 

substrates containing different methyl-accepting polar atoms. We observe statistically significant 

differences in the distribution of electric field strengths for O- and N-targeting MTases (Figure 2, 

left). The EF strengths of O-targeting MTases are on average 136.0 MV/cm more negative than 

those targeting nitrogen. Using student’s t-test, the electric field distributions are statistically 

significant with a p-value of 1.95x10-6. The average electric field of 20.0 MV/cm	for N-targeting 

MTases is 62.1% more positive than the 13.8 MV/cm average field for the broader dataset. The 



results show that the protein scaffolds of N-targeting MTases have evolved more positive electric 

fields to overcome the lower electronegativity of nitrogen, in turn making it a better acceptor of 

SAM’s methyl group. Oxygen’s stronger electronegativity makes it a naturally stronger methyl 

group acceptor, and therefore, MTases take less efforts to evolve their interior electric field. 

Notably, these analyses only reflect a general trend because the specific functional groups under 

each heteroatom-targeting category involve large disparities of methyl-accepting ability (e.g., 

hydroxyl versus carboxyl).  

In contrast, differences in cavity volumes for O- and N-targeting MTases are not 

statistically significant. Cavity volumes only differ by 70.8 Å3 on average (Figure 2b), which is 

considerably smaller than the standard deviations of 262.0 Å3 and 185.0 Å3 for O- and N-targeting 

targeting MTases, respectively. Using student’s t-test, the cavity volume distributions are not 

considered to be statistically significant with a p-value of 0.20. The upper and lower limits of 

cavity volumes for both heteroatom targeting enzymes are also comparable (i.e., ~550 Å3 to ~1425 

Å3), further suggesting that the enzymes do not directly adjust their volumes to accommodate 

different heteroatoms.  



 

Figure 2. Distributions of measured electric field strength and cavity volume as a function of target 

heteroatom. The left and right plots show strip plots with the electric field and cavity volume 

measurements for oxygen (O) and nitrogen (N), respectively. The bars for each data series 

represent the mean value for that subset. Average values and standard deviations are shown at the 

top of each subplot. Carbon-targeting MTases do exist in the dataset but have been omitted from 

this figure as only five data points exist.  

The inverse relationship between electric field and electronegativity of target atom is 

conserved when looking only at MTases targeting RNA/DNA (Figure 3). The MTases targeting 

carbon atoms are also included in this comparison. O-targeting MTases have the most negative 

electric field strength with an average value of -166.5 MV/cm. N-targeting MTases still have 

negative electric field strength with an average of -11.4 MV/cm, but it is much less negative than 

those of O-targeting counterparts. C-targeting is the least electronegative of the three elements and 

has the most positive electric field strength with an average of 83.2 MV/cm, which is almost four 



times higher than the median seen across the larger MTase dataset. This observation is consistent 

with our hypothesis that MTases with targeting atoms of a weaker electronegativity experience a 

stronger evolutionary pressure for accelerating the methyl transfer reactions. As such, they evolve 

to produce more positive electric fields in order to enhance the cleavage of C–S bond for methyl 

donation.  

 

Figure 3. Distributions of measured electric field strength for MTases targeting RNA or DNA 

substrates. Values are grouped by target atom with oxygen, nitrogen, and carbon being represented 

by O, N, and C, respectively. The black line for each category represents the average electric field 

and the average for each atom type plus or minus the standard deviation. Averages and standard 

deviations for each atom are listed above their respective distribution plots. 

Furthermore, we investigated how interior electric field and cavity adapt to substrates with 

different hybridization state of nitrogen atoms. We emphasized the N-targeting MTases for 

RNA/DNA and histones because they are the two largest substrate types in the dataset with 50 and 



21 enzymes catalyzing for these reactants, respectively. Nucleic acids are more diverse, containing 

nitrogen in both sp2 and sp3 hybridization states (Figure 4b). Histone MTases target nitrogen on 

lysine residues in sp3 hybridization only. Notably, the amine group with sp3 N can also have 

varying protonation states depending on local chemical environment. Wide distribution of electric 

field strengths along the S–C bonds mirror this diversity, with RNA/DNA and histone MTases 

having standard deviations of 121.4 MV/cm and 55.3 MV/cm, respectively (Figure 4a). 

RNA/DNA and histone targeting MTases have average electric fields of -31.7 MV/cm and 68.6 

MV/cm, respectively. The stronger electric field for histone MTases may alternatively be due to 

the protonation state of the terminal nitrogen. In biological pH ranges, it will be in an NH3+ 

meaning the methyl-accepting lone pair on the nitrogen is occupied. The stronger EF strength may 

partially work to deprotonate the nitrogen and allow methylation to occur. This notion is supported 

by the differences in EF strength for sp2 and sp3-targeting RNA/DNA MTases which have averages 

of -65.6 MV/cm and 52.9 MV/cm, respectively. This result indicates MTases have directly evolved 

their EF strengths to adjust to hybridization state of target atom.  

Cavity volume spreads repeat the trend seen with electric field spreads with RNA/DNA 

and histone MTases having standard deviations of 231.0 Å3 and 162.9 Å3, respectively. We believe 

the increased variation in volume for RNA/DNA targeting enzymes reflects the geometric 

diversity seen in nucleic acid substrates. Target atoms in nucleic acid substrates have diverse 

locations within their respective residues and have both sp2 and sp3 hybridization whereas all 

histone targets have the same sp3 hybridization.  



 

Figure 4.  Electric field strength and cavity volume data stratified by target substrate type. Target 

substrates are determined by EC number and the subplots in (a) show actual data points overlaid 

onto boxplots. They are color coded with blue corresponding to substrates with the target atom in 

a sp2 hybridization state and orange corresponding to when the target atom is in a sp3 hybridization 

state. On the right (b) the substrates with target atom highlighted in red. Substrates with sp2 and 

sp3 target atoms have blue and orange backgrounds, respectively. 

Finally, we investigated how the presence of metal ions mediate interior electric field of 

MTases (Figure 5). A total of 19 enzymes have a metal ion present, 2 having magnesium, and 17 

having zinc. For 17 of the 19, the metal ion makes the electric field along SAM’s S–C bond more 

negative by an average of -55.5 MV/cm. Metal ions do not typically enhance the electric field 

strength for the purpose of methyl donation, but their corresponding host protein scaffolds have 

evolved to offset these effects. MTases with metal ions have an average electric field of 58.8 

MV/cm versus the average of -20.1 MV/cm for those without metals (Figure 5a). Given the largely 



negative contributions of metal ions, MTases containing metals feature extremely positive 

contributions from protein scaffold alone. Instead of directly aiding the transfer of SAM’s methyl, 

these binding metal ions likely contribute to stabilize the enzyme structure or mediate protein 

dynamics. Many of the zinc-containing enzymes have zinc fingertips which stabilize distal regions 

of enzyme structure.49, 50 In catechol O-methyl transferases (COMT), the magnesium ion stabilizes 

the catecholate intermediate although it directly worsens the EF strength. Similar to heteroatom-

based stratifications, there is an observed upper limit of electric field near ~200 MV/cm for both 

metal and non-metal MTases. The lower bound for non-metal MTases is -306.2 MV/cm versus -

254.9 MV/cm for metal MTases. The consistently tighter EF strength spread and higher range of 

metal-containing MTases indicates that MTases have consistently evolved to directly offset the 

negative EF strength contribution of the metal ions contained within.  

 

 



Figure 5. Distributions of electric fields for MTases as a function of containing metal ions. The 

plot on the left visualizes raw values as black dots and box plots in grey. Inlay (b) shows an 

example of a structure with three metal ions where two provide negative electric field contribution. 

The transparent amino acids are colored red and blue when they contribute > 5.0 MV/cm and < -

5.0 MV/cm to the electric field, respectively. Inlay (c) shows a structure that has no metal ions 

present. SAM is rendered as grey spheres in both (b) and (c). 

Conclusion 

 We carried out a high-throughput analysis of 91 SAM MTase structures focusing on how 

these enzymes have evolved to achieve enzymatic efficiency across a wide range of substrates. We 

first generated cavity volume and electric field strength values for each structure and then 

determined the catalytic function of each protein. When looking at O- and N- targeting MTases, 

we found there was not significant difference in cavity volumes but that electric field strength and 

electronegativity of target atom are inversely correlated at a statistically significant level. This 

trend was also conserved when looking only at MTases that target RNA or DNA substrates, 

including a small number of C-targeting MTases. Comparing values for MTases targeting 

RNA/DNA and histones, we observed variation in both electric field strength and cavity volume 

between these categories. More variation was seen in the electric field strength and cavity volume 

values for RNA/DNA-targeting MTases than histone-targeting MTases which mirrors the 

associated diversity with each class of substrates. We observed that MTases targeting sp3 

hybridized nitrogen atoms have more positive electric field strengths than those targeting sp2 atoms, 

likely to help prepare nitrogen centers to accept a methyl group. Lastly, we investigated the role 

of metal ions and found that they largely have a negative contribution to electric field strength and 

that the sequences of metal containing enzymes have evolved to offset this effect.  
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