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ABSTRACT: β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a 
constituent of the core N-glycan in eukaryotes, was recently identified as a STING immune pathway activator, highlighting its 
potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the 
major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural 
Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence 
of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a “reverse 
thiophosphorylase” enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorylysis-
stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.   

 

β-Mannoside linkages are highly prevalent within the glycans1 
of plants, bacteria, protozoa and eukaryotes with diverse, 
essential roles in biological processes including energy storage2 
and cell wall biosynthesis.3 Notably in eukaryotes the 
ubiquitous ManGlcNAc2 motif within N-glycans4 contains a 
Man1,4GlcNAc disaccharide, which was recently identified as 
a novel immune modulator in autoimmune disease.5, 6 This 
Manβ1,4GlcNAc has shown potential as a new activator of 
STING (stimulator of interferon genes pathway), with the 
disaccharide triggering a broad immune response in 
macrophages.5 STING is a component of the innate immune 
system and a key mediator of inflammation,7 so small molecule 
activators are emerging as a promising strategy in cancer 
immunotherapy.8 
Despite its striking biological significance and recent advances 
in the chemical synthesis of such linkages,9 the efficient 
assembly of -mannosides still remains one of the major 
challenges in glycoscience. Chemoenzymatic strategies have 
therefore emerged as a complementary approach, employing 
chemical synthesis to furnish glycosyl donors and acceptors 
before protecting group free enzyme-mediated glycosylation. 
Enzymatic β-mannoside bond formation is exemplified through 
the use of glycosyl transferases (GTs) such as Alg1, which has 
been used in the synthesis of ManGlcNAc2.10 However, despite 
exquisite stereo- and regioselectivity, the requirement for both 
a complex Leloir glycosyl donor (GDP-Man) and a complex 
acceptor in lipid-linked GlcNAc2-PP-Dolichol, limits the GT’s 
utility.  Glycoside phosphorylases (GPs) which catalyse 
glycosidic bond breakdown (phosphorylysis), offer an 

attractive alternative approach for enzymatic -mannosylation. 
This is because they can be harnessed in a “reverse 
phosphorylysis” synthetic direction (Figure 1A), requiring only 
simple sugar-1-phosphate donors, and have shown promiscuity 
with unnatural substrates.11, 12  

 

Figure 1. The reversible GP catalyzed reaction (A). Proposed 
irreversible “reverse thiophosphorylase” activity with a 4SH-thiol 
acceptor (B). 

Herein we report the chemoenzymatic synthesis of a library of 
unnatural Manβ1,4GlcNAc analogues, using a GP-mediated 
strategy.13 We incorporate unnatural functionality into the 
enzymatic building blocks through chemical synthesis and 
show that when fluorine is present in the GlcNAc acceptor, this 
facilitates further extension of Manβ1,4GlcNAc with Man 
producing longer β-mannan like glycans. Using the same GP, 
we pioneer “reverse thio- phosphorylase” enzymatic activity, 
favouring the synthesis of longer glycans by initially catalysing 
the formation of a phosphorylysis-stable thioglycoside linkage 
(Figure 1B). This approach represents a benchmark for the 
utility of GPs for thioglycoside synthesis, and here specifically 
affords access to a series of  



 

  

Figure 2A. ITag screening methodology for BT1033 reactions. Reaction mechanism depicted in reverse phosphorylysis direction. B. BT1033 
activity towards unnatural donors and acceptors.12, 14

novel, unnatural Manβ1,4-GlcNAcs with direct potential as 
STING-based activators for immunotherapy. 
For the synthesis of our Manβ1,4GlcNAc analogues we 
investigated the inverting β-1,4-D-mannosyl-N-acetyl-D-
glucosamine phosphorylase from Bacteroides thetaiotaomicron 
(BT1033).13 BT1033 is a GH130 family phosphorylase, 
previously shown to catalyse the transfer of Man from α-D-
mannose-1-phosphate (Man1-P) onto N-acetyl-D-glucosamine 
(GlcNAc) to produce Manβ1,4GlcNAc by reverse 
phosphorylysis. To investigate the substrate promiscuity of 
BT1033, we screened a series of chemically synthesised Man1-
P donors (3-10) and GlcNAc acceptors (11-14) (Figure 2). The 
GlcNAc acceptors were designed with an azido-propyl handle 
to provide an accessible point for bioconjugation, and this was 
exploited in our glycan detection methodology (Figure 2A). 
Imidazolium-based ionic liquid tags (ITags) are highly sensitive 
mass spectrometry (MS) probes that enable low detection limits 
due to their dominant ionizability by MS.15 To facilitate the 
detection of the Manβ1,4GlcNAc products in our reactions, as 
well as any unreacted acceptor, the reaction products were 
labelled with an alkyne-functionalised ITag 1 using a copper-
catalysed alkyne-azide cycloaddition (CuAAC) reaction, and 
analysed by liquid-chromatography coupled to mass 
spectrometry (LC-MS). The conversion of starting material to 
product was determined by comparing the relative ionisation 

intensities of the unreacted azido-propyl linked GlcNAc 
(GlcNAc-N3) acceptor to the azido-propyl linked 
Manβ1,4GlcNAc products (Figure 1B, Supporting information 
section 5).  
First, we assessed the suitability of GlcNAc-N3, 11 as an 
acceptor mimic for BT1033, with Man1-P 2 as a donor. LC-MS 
analysis showed an ion consistent with the mass of the 
Manβ1,4GlcNAc-ITag disaccharide (m/z 764) as expected 
(Figure S11). Additionally, we observed an ion consistent with 
the mass of the Manβ1,4GlcNAc-ITag disaccharide + 162 Da 
(m/z 926). BT1033 was previously shown to have weak 
synthetic activity with D-mannose as an acceptor, when using 
Man-1P as a donor.13 Additionally, the enzyme could use 
chitobiose as an acceptor, demonstrating that it is capable of 
producing longer-glycans. Therefore, we proposed that the 
product at m/z 926 was a Man2β1,4GlcNAc-ITag trisaccharide. 
Overall, we observed 74% conversion to disaccharide 15 and 
4% to trisaccharide 16 (Figure 2B). Next, we screened BT1033 
for activity towards eight unnatural Man-1P analogues (3-10), 
with acceptor 11 (Figure 2B, Figure S3-S10). C6-Chloro Man-
1P 4 was best tolerated by BT1033, with 61% conversion to 
disaccharide observed after 24 h (Figure S3). Moderate 
conversions of C5-methyl Man-1P 3 and C6-methyl Man-1P 5 
to disaccharide were also observed at 51% and 44%, 
respectively (Figure S4-S5). Conversion of C6-fluoro Man-1P 



 

6 and C6-azido Man-1P 7 to disaccharide was significantly 
lower at 16% and 11% respectively (Figure S6, S8), suggesting 
that these were poor substrates for the enzyme. No conversion 
of C6-gem-difluoro Man-1P 8 was observed, which was not 
surprising considering the poor turnover of 6. Additionally, no 
turnover of C6-hydroxamic acid Man-1P 9 or C6-amine Man-
1P 10 were observed (Figure S7, S9-S10). There was no 
evidence of longer glycan chain formation when using any of 
the unnatural Man-1Ps. Overall, these findings suggest that 
BT1033 has little or no activity towards C6-modified analogues 
with groups larger than the native CH2OH. While poor turnover 
of C6-azido 7 and C6-amine 10 Man-1Ps was observed, the 
chlorine in disaccharide 18 could allow for further 
derivatization at the C6-position to an azide or amine.  
Next, we screened for activity towards fluorinated GlcNAc-N3 
acceptors 12-14, with Man-1P 2 (Figure 2B). Fluorination, 
while having little effect on the overall conformation of a 
glycan,16 is known to affect stereo-electronic properties and can 
therefore modulate biological function.17 6F-GlcNAc-N3 12 and 
6F-GlcNTFA-N3 14 were well tolerated by the enzyme, 
producing 41% and 22% conversion to disaccharide 
respectively. Additionally, we observed masses consistent with 
the production of longer mannan-type glycans. For example, 
with 12 we observed products consistent with disaccharide (m/z 
766, Manβ1,4-6F-GlcNAc-ITag, 41%), trisaccharide (m/z 928, 
Man2β1,4-6F-GlcNAc-ITag, 41%) and tetrasaccharide (m/z 
1090, Man3β1,4-6F-GlcNAc-ITag, 1%) formation (Figure 
S12). With 14, in addition to the expected disaccharide (m/z 
820, Manβ1,4-6F-GlcNTFA-ITag, 22%) we observed 
trisaccharide (m/z 982, Man2β1,4-6F-GlcNTFA-ITag, 19%), 
tetrasaccharide (m/z 1144, Man3β1,4-6F-GlcNTFA-ITag, 9%) 
and pentasaccharide (m/z 1306, Man4β1,4-6F-GlcNTFA-ITag, 
2%, Figure S14). In contrast, only low-level conversion of 6,6-
diF-GlcNTFA 13 to disaccharide (2%) was observed (Figure 
S13). Taken together, this data indicates BT1033 can tolerate 
acceptors with fluorination at C6 position and within the NAc 
substituent. Increasing the number of fluorines in the acceptor 
resulted in poorer turnover by BT1033, with such presence in 
carbohydrate substrates previously shown to reduce the 
catalytic efficiency of some enzymes. 18 However, the presence 
of fluorine in the acceptor interestingly appeared to facilitate the 
formation of longer glycans by BT1033, when compared to 
GlcNAc-N3 11. We hypothesized that fluorination in the 
acceptors may reduce the rate of the competing phosphorylysis 
reaction, altering the reaction equilibrium and resulting in an 
accumulation of the reverse phosphorylysis disaccharide 
product, which could subsequently serve as an acceptor for 
further mannosylation using 2. To investigate this further, we 
tested BT1033 for activity with a 4-SH-GlcNAc-N3 analogue 
33 and compared this to its activity towards 11 under the same 
conditions (Figure 3). We anticipated that the reaction would 
yield a Manβ1,4-S-GlcNAc-N3 34 thioglycoside (Figure 3A). 
Thioglycosides are carbohydrate mimetics that are often 
resistant to hydrolysis and have elicited significant interest in 
recent years as probes for structural and biological studies, and 
as enzyme inhibitors.19, 20 We hypothesized that if BT1033 was 
able to use a thiol as an acceptor with 2 (in the synthetic 
direction) the reaction may become irreversible due to the 
stability of the resultant thioglycoside to phosphorylysis. 

Following LC-MS analysis of reactions with 33 under disulfide 
reducing conditions, we observed masses consistent with the 
expected disaccharide (m/z 780, Manβ1,4-S-GlcNAc-ITag), as 
well as trisaccharide (m/z 942, Man2β1,4-S-GlcNAc-ITag) and 
tetrasaccharide (m/z 1104, Man3β1,4-S-GlcNAc-ITag) 
formation (Figure 3B). Overall, there was a greater proportion 
of reverse phosphorylysis product (i.e disaccharide) at the end 
of the reaction using 33, compared with 11 (Figure 3C).  

 

Figure 3A BT1033 turnover of thio-GlcNAc-N3 33 to produce the 
Manβ1,4-S-GlcNAc-N3 34 thioglycoside. Reaction mechanism 
depicted in the reverse phosphorylysis direction. B. LC-MS 
analysis showing di-, tri- and tetrasaccharide thioglycoside 
formation. C. Comparative product distribution in BT1033 
reactions with 11 and 33. 

Using 11, we observed mostly acceptor (61%), some 
disaccharide (26%) and trisaccharide (11%), and low-level 
tetrasaccharide (1%). Comparatively, for 33 the majority of the 
product observed was disaccharide (61%), with some 
trisaccharide (25%) and tetrasaccharide (1%). These findings 
are consistent with the accumulation of phosphorylysis resistant 
Manβ1,4-S-GlcNAc-N3 34. 
To showcase the utility of BT1033 for chemoenzymatic -
mannosylation we assembled a library of unnatural 
azidopropyl-linked Manβ1,4-GlcNAc glycans on a semi-
preparative scale, including thioglycoside di, tri and 
tetrasaccharides 34 -36 and fluorinated di, tri, tetra and 
pentasaccharides (25-27, 37), in isolated yields ranging from 
5% to 68%, (Table 1, Supporting information section 8). To 
validate BT1033 was able to operate irreversibly as a “reverse 
thiophosphorylase” we investigated the stability of our glycan 
library to BT1033 catalysed phosphorylysis (Figure 4). As 
expected Manβ1,4-GlcNAc 15 underwent rapid 
phosphorylysis, with ~50% breakdown to acceptor 11 observed 
after 2 min and ~65% after 24 h. Intriguingly, although 
Manβ1,4-6F-GlcNAc 25 showed a greater proportion of 
phosphorylysis over 24 h, a significantly lower amount of 
phosphorylysis was observed at 2 min compared to 15. This 
slower rate of phosphorylysis may therefore account for the 
observed formation of C6-fluorinated tri-, tetra-, and 
pentasaccharide by reverse phosphorylysis; particularly as the 
presence of the 6F-GlcNAc moiety appeared to have minimal 
effect on breakdown of fluorinated trisaccharide 26 to 
disaccharide 25, when compared to trisaccharide 16 containing 
the natural GlcNAc moiety. Notably, 6Cl-Man β1,4-

Table 1. Manβ1,4-GlcNAc-N3 analogues produced on scale 



 

Donor Acceptor Product Yield (%) Amount (mg) 
4 11 6Cl-Manβ1,4-GlcNAc 18 68 2.6 
2 11 Manβ1,4-GlcNAc-N3 15 56 6.5 
  Manβ1,4-Manβ1,4-GlcNAc-N3 16 15 2.4 
2 12 Manβ1,4-6F-GlcNAc-N3 25 12 1.4 
  Manβ1,4-Manβ1,4-6F-GlcNAc-N3 26 13 2.1 
  Manβ1,4-Manβ1,4-Manβ1,4-6F-GlcNAc-N3 27 7 1.4 
  Manβ1,4-Manβ1,4-Manβ1,4-Manβ1,4-6F-GlcNAc-N3 37 5 1.3 
2 33 Manβ1,4-S-GlcNAc-N3 34 20 3.8 

  Manβ1,4-Manβ1,4-S-GlcNAc-N3 35 23 5.9 
  Manβ1,4-Manβ1,4-Manβ1,4-S-GlcNAc-N3 36 11 3.4 

 

Figure 4. Phosphorylysis of Manβ1,4-GlcNAc-N3 analogues, with 
conversions determined by ITag LC-MS analysis. 

GlcNAc 18 also showed a much lower proportion (~20%) of 
phosphorylysis-mediated product after 24 h compared to 15 
(~65%). Again, potentially accounting for the accumulation of 
18 in the reverse phosphorylysis reaction when using 4. As 
hypothesized, Manβ1,4-S-GlcNAc 34 proved resistant to 
phosphorylysis, with no cleavage of the thioglycoside observed 
after 24 h. Indicating that the replacement of the alcohol 
nucleophile with a thiol in the acceptor does enable the 
phosphorylase to operate irreversibly in the synthetic direction. 
However, the presence of the Manβ1,4-S-GlcNAc 
thioglycoside linkage appears to have no effect on the extent of 
phosphorylysis of trisaccharide 35 to thioglycoside 34, 
compared to the natural trisaccharide 16, similar to observations 
for 26. Finally, tetrasaccharides containing the 6F functionality 
27 and the thioglycoside linkage 36 respectively, were 
subjected to phosphorylysis and showed the expected 
breakdown to trisaccharide after 24 h. Whilst the 
phosphorylysis of 27 afforded a distribution of products (from 
acceptor to even longer glycans, indicating reverse 
phosphorylysis was occurring), the reaction with 36 halted as 
disaccharide accumulated due to the stability of the 
thioglycoside linkage.  

In summary, we have demonstrated that BT1033 can be 
exploited to access diverse Manβ1,4-GlcNAc analogues, and 
longer β-mannan like glycans. We have incorporated unnatural 
functionality into the enzymatic building blocks through 
chemical synthesis, enabling a systematic approach in 
screening BT1033 for activity towards these unnatural donors 
and acceptors in a MS-based strategy using a “clickable” ITag 
to facilitate product ionisation and detection. BT1033 displayed 
activity towards C6-modified donors, most notably 6Cl-Man-
1P 4. While fluorinated acceptors were also converted by the 
enzyme, the presence of the fluorine appears to facilitate further 
extension of Manβ1,4-GlcNAc with Man to produce longer β-
mannan like glycans, likely through slowing the rate of 
phosphorylysis. Additionally, the novel demonstration of 
“reverse thiophosphorylase” activity is presented, also 
favouring the synthesis of longer glycans by initially catalysing 
the formation of a stable thioglycoside linkage. To date, the 
enzymatic synthesis of diverse thioglycosides using 
“thioglycoligases”, glycosidase mutants with their catalytic 
acid/base residues mutated to an alanine or glycine, have been 
extensively explored by the Withers group21 and others19, 22. 
However, to our knowledge the use of a wildtype GP to 
synthesise thioglycosides has not been explored. If this “reverse 
thiophosphorylase” activity were generally applicable to other 
GH130 phosphorylases, it could provide a very simple yet 
dynamic access to a diverse range of thioglycosides. Here 
specifically, we have produced a series of novel, unnatural 
Manβ1,4-GlcNAc containing glycans, with potential as non-
hydrolysable STING-based activators for immunotherapy. 
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