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Abstract

The interaction energies of five pairs of interactions: CH30OH-CH30H, CH30H-COy,
C02-CO2, CH30OH-CH3CH20H, and CH3CH,OH-CH3CH,OH were obtained using MP2,
B3LYP, and B3LYP-D3 methods. Activity coefficients of CH3CH>OH-CH3OH and
CH30H-CO2 systems were calculated using the UNIQUAC equation and the phase diagrams
of these binary systems were constructed based on the Raoult's law. The B3LYP-D3
methanol/ethanol isothermal phase diagram at 298K is in good agreement with the
experimental data and the agreement is slightly better than the MP2 result and much better
than the B3LYP result. Thus, the B3LYP-D3 method is promising to obtaining activity
coefficients and illustrates the promise of molecular simulation of phase diagram of binary
systems. A carbon dioxide/ethanol isothermal phase diagram at 230K was constructed. The
current results showed that CO, and CH3OH are hardly mixed under the simulation

conditions.
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1. Introduction

For efficient and sustainable industrial processes, rational design of separation
operations is essential. This requires knowledge of the activity coefficients of fluid mixtures
and phase diagrams[1-4]. Therefore, although studies of catalysis[5-13], reactions[6, 14],
various properties of molecules[15-20] and aggregates[21, 22] and design of new
materials[23-28] for specific applications[29, 30] have garnered a lot of attention,
considerable efforts have been devoted to the studies of binary systems[31, 32].
Investigations using various theories[33] and models[34] were carried out to obtain binary
interaction parameter[35] and phase behaviors[36-38]. A particularly useful equation,
UNIQUAC becomes a useful tool for process-design engineers to calculate fluid-phase
equilibria as required in the design of distillation, extraction, and similar operations[39]. The
UNIQUAC equation, using only two adjustable parameters per binary in addition to the
pure-component parameters reflecting the sizes and outer surface areas of the molecules, is
applied widely to calculate activity coefficients.

The UNIQUAC equations based on the representation of liquid-liquid interaction
contain two parts: combinatorial and residual. The combinatorial part is a function of mole
fraction, and molecular area and segment fractions. These structural parameters are based on
the types and numbers of each component, and from the Van der Waals volume and surface
areas of each component. The residual part of the activity coefficient is computed from mole
fractions, molecular areas, and the energy of interactions between molecules. In this part,
there are two parameters T jj and T ji representing the energy of interactions which are not able

to be measured but must be evaluated empirically from vapor-liquid or liquid-liquid



equilibrium data[40]. Based on experimental data, Kato, et al[41] proposed that the values of
the interaction energies can be correlated with a fourth- order function of (gj-gi)/qj, where g;
and g; denote the molecular surface area of the solute i and j, which represents binary
alkane/alkane systems.

These interaction parameters could be obtained by fitting to experimental Vapor Liquid
Equilibrium data, but it is not easy to obtain these parameters through experiments in the
UNIQUAC equation. It is significant to find an alternative way to determine these parameters
because considerable difficulty or even unfeasibility for some systems. Molecular simulation
provides a promising approach to calculate the UNIQUAC parameters. Jonsdottir[42] and his
coworkers found a new way to obtain these parameters, based on Molecular Mechanics (MM)
with the consistent force field (CFF). In CFF model, two main types of interaction between
atoms are considered: bonded interactions (chemical bonds) and non-bonded interactions
(vander Waals and electrostatic), and parameters are optimized from experimental structural
and spectroscopic data for pure components without any experimental data for mixtures.
Interaction parameters for the UNIQUAC method have successfully been determined for
n-butane/n-pentane, n-hexane/c-hexane, n-petane/n-hexane, n-pentane/acetone,
acetone/cyclohexane, cyclohexane/cyclohexanone. Rasjuussen, et al[43] studied phase
equilibria of carbohydrades in polar solvent with molecular mechanics method, the
calculations applied in glucose/water and sucrose/water are in agreement with experiments.

Theoretical Interaction Energy Calculation (TIEC) was proposed by Cooke, et al[44]
to model and measure solid-liquid and vapor-liquid equilibria of polyols and carbohydrates in

aqueous solution. In this method, interaction parameters are determined between the solvent



and a model compound of similar size as the solvent molecule that contains one or two repeat
units of the polymer molecule. The solubilities of monosaccharides xylose and galactose, and
the disaccharides maltose monohydrate, cellobiose and trehalose dehydrate in water were
measured at various temperatures in good agreement with experiment. Kjeld Rasmussen, et
al[45] used this method to calculate solvent activities for the diethylketone/polypropylene
system, giving results in good agreement with experimental values.

A search algorithm denoted as the Boltzmann Jump Procedure (BJP), which Klein, et
al[46] and coworkers employed to determine UNIQUAC interaction parameters for
alkane/amine system, was a more efficient method for sampling conformational space than
the existing method before. The advantages of the BJP algorithm are that it uses a stochastic
selection criterion, as in Monte Carlo simulations, in which up-hill jumps in energy are
allowed, and it is thus possible to jump over energy barriers or saddle points. The temperature
effect is included by calculating the Gibbs free energy at certain temperature for each pair of
different locally stable conformers and using Boltzmann statistics to determine their relative
probabilities. They also applied this method to carry out simulation for 1,2-ethanediol,
1,2-propanediol and glycerol, surrounded by water molecules[47]. This simulation was
efficient and gave results in good agreement with the experimental data.

Due to the importance of CO. capture and utilization, many models for CO>
adsorption[48-51] and capture[52-58] were proposed. Investigations were made on super
critical CO2[59-62] and of CO; interacting with various organic molecules[63-86]. Studies
were carried out for the CO,-CH3CH>OH binary system using MD simulation[87, 88] or

artificial neural network approach[89-92]. Studies of CO2-CH3OH binary system[93, 94]



were also reported, as CH3OH plays an important role in the super critical CO, system. The
role of CH3OH has been to increase the polarity and solvent strength while retaining the
sensitivity of solubility with respect to pressure and temperature. Moreover, CH3OH can
improve the selectivity of separation by preferentially interacting with one or more
components and facilitating selective fractional separation[95]. Fluid phase equilibria of
CO2-CH30H[96] using Peng-Robinson and Soave-Redlich-Kwong mixing rules.

In this work, we utilize electronic structure theory calculations to study the interaction
of two binary systems, CO.-CH30H and CH3OH-CH3CH20OH. The objectives of the work are
to determine the accuracy of MP2, B3LYP, and B3LYP-D3 in calculating the interaction
energy by comparing calculated phase diagrams of the CH3OH-CH3CH2OH binary system
and the experimental results, and to calculate the activity coefficients and phase diagram of
CO2-CH30H binary system to explore whether it is feasible to study the performance of
co-solvent in supercritical system using molecular simulation.

2. Method

Activity coefficients and constructions of phase diagrams of binary systems rely
heavily on the accuracy of the results of interaction energy, which is often the character of
dispersion interaction. Dispersion interactions are generally defined as the interaction
between instantaneous dipole moments within the electron distributions of two atoms or
molecules[97, 98]. These interactions are ubiquitous, long-range attractive forces which act
between separated molecules even in the absence of charges or permanent electric
moments[99]. The dispersion interactions, so-called “weak interactions” are usually

underestimated in most electronic structure based computations. However, their neglect may



sum up to significant relative contributions and then lead to qualitatively wrong conclusions.
This will become more important with the size of the system, because dispersion effects have
a much longer range than the opposite exchange repulsion.

Density functional theory (DFT) has gained attention as an ideally cost-effective
method for calculations of many chemical systems. However, conventional DFT has
problems in describing weak Van der Waals interactions. The general drawback of all
common density functionals such as hydrids like the popular B3LYP, is that they cannot
describe long-range electron correlations that are related for the dispersion forces[100]. The
problem stems from the insufficiency of both exchange and correlation functional[101].
Lacks and Gordon[102] described the issue with the exchange functionals that the behavior
of the exchange energy density at the low-density-high-gradient region had the crucial
unignorable influence on the interaction energies.

Lot of effort has been exerted to develop a robust dispersion correction that can be
applied to common standard density functionals without any specific fitting procedure. The
approach should be as simple as possible, and in particular allow the easy calculation of
energy gradients for efficient geometry optimization. DFT-D method (atom pairwise sum
over CsR® potentials[103, 104]) is this kind of dispersion correction, and has been improved
by lots of researchers. The DFT-D3 (recent version of DFT-D) approaches have been quite
successful in describing weak dispersion interactions among carbonic systems or organic
materials[105-107]. The DFT-D3 method with B97-D or BLYP functionals yields interaction
energies that are very close to the best CCSD(T) reference data. The approaches have been

quite successful in describing weak dispersion interactions among carbonic systems or



organic materials. One of the improvements of DFT-D3 is that the complicated, non-additive
and system-dependent exchange-repulsion, electrostatic, and induction effects are very
accurately described by the DFT-D3 density functionals[108]. The development of DFT-D3
has provided chemists with a valuable tool for modeling a great number of systems.

In this work, MP2, B3LYP, and B3LYP-D3 calculations were performed with the
6-311+g(d,p)) basis set using the Gaussian software to obtain the interaction energy of five
pairs of interactions: CH3OH-CH3OH, CH30OH-CO;, CO.-CO2,CH3OH-CH3CH20OH, and
CH3CH20OH-CH3CH,OH. Convergence criteria are the same as these used in our previous
work.[109-111] To obtain the most stable complex configuration, we used MD simulations to
generate about 10 conformations for each pair and performed electronic structure calculations
to determine the most stable ones.

The obtained interaction energies, uij, were used to calculate the activity coefficients

from the UNIQUAC equations:
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where R is the gas constant, T is temperature, X; is mole fraction of component i, yi is activity
coefficient of i, ri is a parameter related to the Van der Waals Volume, (i is a parameter
related to the Van der Waals surface area, and uij is the interaction energy between molecules

iand j.



In order to obtain activity coefficients, in addition to the interaction energy mentioned
above, two other fundamental structural parameters ri and qi, are required. We used the
method proposed by Bondi A, et al[112] to calculate them:

r=V"(15.17cm’mol™)

q, ~A' (2.5x10°cnr'mol ):
where Vi*, A" are mole Van der Waal volume and surface area. These two parameters are
obtained in Materials Studio. The three parameters, vdW Scale factor, Connolly radius,
solvent radius, were needed for the calculations of these parameters. The vdW scale factor is
a factor specified to uniformly modify all van der Waals radii, representing a hard shell into
which a probe may not pass. The Connolly radius is the radius of the Connolly probe used in
calculating the atom volume field. The solvent radius is the solvent probe radius used to
display solvent and accessible solvent surfaces. The van der Waals volume and surface are
the volume and surface that intersect with the vdw radii of the atoms in the structure. This is
equivalent to a solvent surface with a solvent probe radius of zero, a Connolly surface with a
Connolly probe radius of zero and vdW scale factor of 1. The phase diagrams were generated
based on the Raoult's law.

3. Result and discussion
3.1. The van der Waals parameters related to the volume (ri) and area (g;) of methanol,
ethanol, and carbon dioxide

The van der Waals’ contours of three molecules, methanol, ethanol, and carbon
dioxide were obtained from the Materials Studio and are depicted in Figure 1. The results of

ri, i are provided in Table 1. These parameters together with the interaction energies will be



used to determine the activity coefficients that are used to construct the phase diagram. As
shown in Table 1, the values of both parameters decrease from ethanol to methanol then to

carbon dioxide.

Figure 1. Description of ethanol (left), methanol (middle), and carbon dioxide (right).

Table 1. Values of r and q for ethanol, methanol, and carbon dioxide

Molecule ri Qi
CH3CH,0OH 2.1281 1.9483
CH3OH 1.4603 1.4279
CO; 1.3213 1.2747

3.2. methanol-ethanol system

In this research, methanol-ethanol system was studied to examine the accuracy of
interaction energy using three methods and the results are provided in Figures 2-5 and Tables
2-4. For the methanol-ethanol binary system, three ujj pairs are required: Uethanol-ethanol,
Uethanol-ethanol, Uethanol-ethanol. TaKe Uethanol-ethanol TOr an example, it represents the energy difference
between the ethanol-ethanol stable dimer and the sum of two single ethanol molecules.
Figures 2-4 show the stable structures of ethanol-ethanol, methanol-ethanol, and

methanol-methanol pairs. For each pair, two different stable structures are shown after



optimizing plentiful different initial structures. It is revealed that the same character of the six
stable structures is the H-bond formation. As such, the H-bond contributed dominantly to the
interaction energy of the pairs. The difference between configuration a and b is on the spatial
angles of alkyl groups. To illustrate each structure more clearly, we also show each structure
at a different angle of view: in first one (for example a) the H-bond is parallel to the paper,
while the second one (like a’) is perpendicular. The optimized energies from three methods
are shown in Tables 2-4. For each pair, structure b is more stable than a with MP2 and
B3LYP calculations; but when adding dispersion energy, structure a is more stable than b,
and one exception is that MP2 and B3LYP results for methanol-methanol are almost the same

under similar structures.

Figure 2. (a) the optimized structure of ethanol-ethanol interaction. (a’).the same structure to a, but
from different angle of view. (b) the second optimized structure of ethanol-ethanol interaction.
(b).the same structure to b, but from different angle of view.
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Table 2. Interaction energy (kJ/mol) of ethanol-ethanol pair

Structure a Structure b
MP2 -22.09 -22.14
B3LYP -12.69 -13.27
B3LYP-D3 -27.77 -21.87

?
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Figure 3. (a) the optimized structure of methanol-methanol interaction. (a’).the same structure to a,
but from different angle of view. (b).the second optimized structure of methanol-methanol interaction.
(b) the same structure to b, but from different angle of view.

Table 3. Interaction energy (kJ/mol) of methanol-methanol pair

Structure a Structure b
MP2 -18.91 -18.91
B3LYP -14.97 -14.98
B3LYP-D3 -22.72 -20.36
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Figure 4. (a) the optimized structure of methanol-ethanol interaction. (a’).the same structure to a, but
from different angle of view. (b).the second optimized structure of methanol-ethanol interaction.
(b*).the same structure to b, but from different angle of view.

Table 4. Interaction energy (kJ/mol) of methanol-ethanol pair

Structure a Structure b
MP2 -19.99 -20.75
B3LYP -13.27 -14.96
B3LYP-D3 -24.29 -21.87

Based on the ri, @i, uj results and the Raoult's law, phase diagrams of
methanol-ethanol system are generated. Figure 5 shows the isotherm phase diagrams under
three calculation methods comparing to experimental data (for each ujj, the more optimized
one is selected). From the diagrams, it is obvious that the MP2 and B3LYP-D3 calculation
are in better agreement with the experimental data. The results from B3LYP-D3 is even

better than that from MP2.
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Figure 5. Isothermal phase diagram of methanol-ethanol system at 298K, where the black lines show
experimental results, red, green, and blue lines denotes the results based on the MP2, B3LYP, and
B3LYP-D3 calculations, respectively. Lines with squares are for liquid phase and lines with circles
are for gas phase.

3.3 methanol-carbon dioxide system

The most stable structures for CO2-CO; and CO,-CH3OH pairs are shown in Fig. 6. It
is found that carbon atoms and oxygen atoms are on the same plane to form the most stable
structures. Table 5 shows the interaction energy obtained by MP2, B3LYP, and B3LYP-D3,
and MP2 results are more similar to that from B3LYP-D3 than that from B3LYP. We also

show in Table 5 the MP2 results from different basis sets.
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Figure 6. The optimized structure of (a) carbon dioxide-carbon dioxide interaction, (b) carbon
dioxide-methanol interaction.

Table 5. Interaction energy (kJ/mol) of CO,-CO> and CO»-CH3OH pair

Interaction energy C0O2-CO2 CO2-CH30H Reference
MP2 -5.04 -13.8 This work
B3LYP -1.42 -8.81 This work
B3LYP-D3 -4.95 -15.1 This work
MP2/CBS -5.78 [113]
MP2/8s6p4d1f -4.94 [114]
MP2/6-311+G (2df) -5.40 [115]

Based on the parameters obtained from electronic structure calculations, we
constructed the phase diagram for the methanol-carbon dioxide phase diagram. Figure 7
shows the Isothermal phase diagram of CO.-CH3OH system under 230K. Based on the
results from methanol-ethanol binary system, the results from B3LYP-D3 prediction is the
best. Indeed, the results in Fig. 7 shows that B3LYP-D3 predicted the low solubility, which is

the case experimentally.[116]
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Figure 7. Isothermal phase diagram of methanol-carbon dioxide system at 230K, where the red, green,
and blue lines denotes the results based on the MP2, B3LYP, and B3LYP-D3 calculations,
respectively. Lines with squares are for liquid phase and lines with circles are for gas phase.

Figure 8 summarizes all uj; calculation results from the five pairs obtained from the
three methods. It is obvious that both the difference between B3LYP and MP2 and the
difference between B3LYP-D3 and MP2 increase with the increment of interaction energy. It

seems that B3LYP-D3 captures the H-bond better than MP2.
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Figure 8. Comparison of the interaction energy among the MP2, B3LYP, and B3LYP-D3
calculations on five pairs of binary systems: 1:CO,-CO,, 2:CO»-CH3;OH, 3:CH3;OH-CH3;OH, 4:
CH30H-C;Hs0H, and 5: C,HsOH- C;HsOH. Red, blue, and green lines denote the B3LYP, the MP2,
and the B3LYP-D3 results, respectively.

4. Conclusions

Electronic structure calculations using MP2, B3LYP, and B3LYP-D3 methods were
carried out to obtain interaction energies for five pairs of interactions: CH3OH-CH30H,
CH30H-CO2, CO02-CO,, CH3OH-CH3CH.OH, and CH3CH,OH-CH3CH.OH. Activity
coefficients and phase diagrams were constructed for two binary systems:
CH3CH20H-CH30H and CH30OH-CO,. Comparison of CH3CH,OH-CH30H phase diagrams
between the calculated and the experimental results indicate that B3LYP-D3 is the best to
obtain the interaction energies. The general agreement between the B3LYP-D3 and the

experimental phase diagram illustrates the promising feature of molecular simulation of
16



phase diagram of binary systems. Compared to the experimental data of CHsCH>OH-CH3;0OH

system, we show that the molecular simulation approach is promising to obtaining activity

coefficients. The current results showed that CO, and CH3OH are hardly mixed under the

current simulation conditions.
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