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Abstract 

 

      The interaction energies of five pairs of interactions: CH3OH-CH3OH, CH3OH-CO2, 

CO2-CO2, CH3OH-CH3CH2OH, and CH3CH2OH-CH3CH2OH were obtained using MP2, 

B3LYP, and B3LYP-D3 methods. Activity coefficients of CH3CH2OH-CH3OH and 

CH3OH-CO2 systems were calculated using the UNIQUAC equation and the phase diagrams 

of these binary systems were constructed based on the Raoult's law. The B3LYP-D3 

methanol/ethanol isothermal phase diagram at 298K is in good agreement with the 

experimental data and the agreement is slightly better than the MP2 result and much better 

than the B3LYP result. Thus, the B3LYP-D3 method is promising to obtaining activity 

coefficients and illustrates the promise of molecular simulation of phase diagram of binary 

systems. A carbon dioxide/ethanol isothermal phase diagram at 230K was constructed. The 

current results showed that CO2 and CH3OH are hardly mixed under the simulation 

conditions. 
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1. Introduction 

 

For efficient and sustainable industrial processes, rational design of separation 

operations is essential. This requires knowledge of the activity coefficients of fluid mixtures 

and phase diagrams[1-4]. Therefore, although studies of catalysis[5-13], reactions[6, 14], 

various properties of molecules[15-20] and aggregates[21, 22] and design of new 

materials[23-28] for specific applications[29, 30] have garnered a lot of attention, 

considerable efforts have been devoted to the studies of binary systems[31, 32]. 

Investigations using various theories[33] and models[34] were carried out to obtain binary 

interaction parameter[35] and phase behaviors[36-38]. A particularly useful equation, 

UNIQUAC becomes a useful tool for process-design engineers to calculate fluid-phase 

equilibria as required in the design of distillation, extraction, and similar operations[39]. The 

UNIQUAC equation, using only two adjustable parameters per binary in addition to the 

pure-component parameters reflecting the sizes and outer surface areas of the molecules, is 

applied widely to calculate activity coefficients.  

The UNIQUAC equations based on the representation of liquid-liquid interaction 

contain two parts: combinatorial and residual. The combinatorial part is a function of mole 

fraction, and molecular area and segment fractions. These structural parameters are based on 

the types and numbers of each component, and from the Van der Waals volume and surface 

areas of each component. The residual part of the activity coefficient is computed from mole 

fractions, molecular areas, and the energy of interactions between molecules. In this part, 

there are two parametersτij andτji representing the energy of interactions which are not able 

to be measured but must be evaluated empirically from vapor-liquid or liquid-liquid 
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equilibrium data[40]. Based on experimental data, Kato, et al[41] proposed that the values of 

the interaction energies can be correlated with a fourth- order function of (qj-qi)/qj, where qi 

and qj denote the molecular surface area of the solute i and j, which represents binary 

alkane/alkane systems. 

These interaction parameters could be obtained by fitting to experimental Vapor Liquid 

Equilibrium data, but it is not easy to obtain these parameters through experiments in the 

UNIQUAC equation. It is significant to find an alternative way to determine these parameters 

because considerable difficulty or even unfeasibility for some systems. Molecular simulation 

provides a promising approach to calculate the UNIQUAC parameters. Jonsdottir[42] and his 

coworkers found a new way to obtain these parameters, based on Molecular Mechanics (MM) 

with the consistent force field (CFF). In CFF model, two main types of interaction between 

atoms are considered: bonded interactions (chemical bonds) and non-bonded interactions 

(vander Waals and electrostatic), and parameters are optimized from experimental structural 

and spectroscopic data for pure components without any experimental data for mixtures. 

Interaction parameters for the UNIQUAC method have successfully been determined for 

n-butane/n-pentane, n-hexane/c-hexane, n-petane/n-hexane, n-pentane/acetone, 

acetone/cyclohexane, cyclohexane/cyclohexanone. Rasjuussen, et al[43] studied phase 

equilibria of carbohydrades in polar solvent with molecular mechanics method, the 

calculations applied in glucose/water and sucrose/water are in agreement with experiments. 

Theoretical Interaction Energy Calculation (TIEC) was proposed by Cooke, et al[44] 

to model and measure solid-liquid and vapor-liquid equilibria of polyols and carbohydrates in 

aqueous solution. In this method, interaction parameters are determined between the solvent 
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and a model compound of similar size as the solvent molecule that contains one or two repeat 

units of the polymer molecule. The solubilities of monosaccharides xylose and galactose, and 

the disaccharides maltose monohydrate, cellobiose and trehalose dehydrate in water were 

measured at various temperatures in good agreement with experiment. Kjeld Rasmussen, et 

al[45] used this method to calculate solvent activities for the diethylketone/polypropylene 

system, giving results in good agreement with experimental values. 

A search algorithm denoted as the Boltzmann Jump Procedure (BJP), which Klein, et 

al[46] and coworkers employed to determine UNIQUAC interaction parameters for 

alkane/amine system, was a more efficient method for sampling conformational space than 

the existing method before. The advantages of the BJP algorithm are that it uses a stochastic 

selection criterion, as in Monte Carlo simulations, in which up-hill jumps in energy are 

allowed, and it is thus possible to jump over energy barriers or saddle points. The temperature 

effect is included by calculating the Gibbs free energy at certain temperature for each pair of 

different locally stable conformers and using Boltzmann statistics to determine their relative 

probabilities. They also applied this method to carry out simulation for 1,2-ethanediol, 

1,2-propanediol and glycerol, surrounded by water molecules[47]. This simulation was 

efficient and gave results in good agreement with the experimental data. 

 Due to the importance of CO2 capture and utilization, many models for CO2 

adsorption[48-51] and capture[52-58] were proposed. Investigations were made on super 

critical CO2[59-62] and of CO2 interacting with various organic molecules[63-86]. Studies 

were carried out for the CO2-CH3CH2OH binary system using MD simulation[87, 88] or 

artificial neural network approach[89-92]. Studies of CO2-CH3OH binary system[93, 94] 
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were also reported, as CH3OH plays an important role in the super critical CO2 system. The 

role of CH3OH has been to increase the polarity and solvent strength while retaining the 

sensitivity of solubility with respect to pressure and temperature. Moreover, CH3OH can 

improve the selectivity of separation by preferentially interacting with one or more 

components and facilitating selective fractional separation[95]. Fluid phase equilibria of 

CO2-CH3OH[96] using Peng-Robinson and Soave-Redlich-Kwong mixing rules. 

In this work, we utilize electronic structure theory calculations to study the interaction 

of two binary systems, CO2-CH3OH and CH3OH-CH3CH2OH. The objectives of the work are 

to determine the accuracy of MP2, B3LYP, and B3LYP-D3 in calculating the interaction 

energy by comparing calculated phase diagrams of the CH3OH-CH3CH2OH binary system 

and the experimental results, and to calculate the activity coefficients and phase diagram of 

CO2-CH3OH binary system to explore whether it is feasible to study the performance of 

co-solvent in supercritical system using molecular simulation. 

2. Method 

Activity coefficients and constructions of phase diagrams of binary systems rely 

heavily on the accuracy of the results of interaction energy, which is often the character of 

dispersion interaction. Dispersion interactions are generally defined as the interaction 

between instantaneous dipole moments within the electron distributions of two atoms or 

molecules[97, 98]. These interactions are ubiquitous, long-range attractive forces which act 

between separated molecules even in the absence of charges or permanent electric 

moments[99]. The dispersion interactions, so-called “weak interactions” are usually 

underestimated in most electronic structure based computations. However, their neglect may 
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sum up to significant relative contributions and then lead to qualitatively wrong conclusions. 

This will become more important with the size of the system, because dispersion effects have 

a much longer range than the opposite exchange repulsion. 

Density functional theory (DFT) has gained attention as an ideally cost-effective 

method for calculations of many chemical systems. However, conventional DFT has 

problems in describing weak Van der Waals interactions. The general drawback of all 

common density functionals such as hydrids like the popular B3LYP, is that they cannot 

describe long-range electron correlations that are related for the dispersion forces[100]. The 

problem stems from the insufficiency of both exchange and correlation functional[101]. 

Lacks and Gordon[102] described the issue with the exchange functionals that the behavior 

of the exchange energy density at the low-density-high-gradient region had the crucial 

unignorable influence on the interaction energies. 

Lot of effort has been exerted to develop a robust dispersion correction that can be 

applied to common standard density functionals without any specific fitting procedure. The 

approach should be as simple as possible, and in particular allow the easy calculation of 

energy gradients for efficient geometry optimization. DFT-D method (atom pairwise sum 

over C6R
-6 potentials[103, 104]) is this kind of dispersion correction, and has been improved 

by lots of researchers. The DFT-D3 (recent version of DFT-D) approaches have been quite 

successful in describing weak dispersion interactions among carbonic systems or organic 

materials[105-107]. The DFT-D3 method with B97-D or BLYP functionals yields interaction 

energies that are very close to the best CCSD(T) reference data. The approaches have been 

quite successful in describing weak dispersion interactions among carbonic systems or 
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organic materials. One of the improvements of DFT-D3 is that the complicated, non-additive 

and system-dependent exchange-repulsion, electrostatic, and induction effects are very 

accurately described by the DFT-D3 density functionals[108]. The development of DFT-D3 

has provided chemists with a valuable tool for modeling a great number of systems. 

In this work, MP2, B3LYP, and B3LYP-D3 calculations were performed with the 

6-311+g(d,p)) basis set using the Gaussian software to obtain the interaction energy of five 

pairs of interactions: CH3OH-CH3OH, CH3OH-CO2, CO2-CO2,CH3OH-CH3CH2OH, and  

CH3CH2OH-CH3CH2OH. Convergence criteria are the same as these used in our previous 

work.[109-111] To obtain the most stable complex configuration, we used MD simulations to 

generate about 10 conformations for each pair and performed electronic structure calculations 

to determine the most stable ones.   

The obtained interaction energies, uij, were used to calculate the activity coefficients 

from the UNIQUAC equations: 

 

where R is the gas constant, T is temperature, xi is mole fraction of component i, γi is activity 

coefficient of i, ri is a parameter related to the Van der Waals Volume, qi is a parameter 

related to the Van der Waals surface area, and uij is the interaction energy between molecules 

i and j. 
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      In order to obtain activity coefficients, in addition to the interaction energy mentioned 

above, two other fundamental structural parameters ri and qi, are required. We used the 

method proposed by Bondi A, et al[112] to calculate them: 

 

 

where Vi
＊, Ai

＊ are mole Van der Waal volume and surface area. These two parameters are 

obtained in Materials Studio. The three parameters, vdW Scale factor, Connolly radius, 

solvent radius, were needed for the calculations of these parameters. The vdW scale factor is 

a factor specified to uniformly modify all van der Waals radii, representing a hard shell into 

which a probe may not pass. The Connolly radius is the radius of the Connolly probe used in 

calculating the atom volume field. The solvent radius is the solvent probe radius used to 

display solvent and accessible solvent surfaces. The van der Waals volume and surface are 

the volume and surface that intersect with the vdw radii of the atoms in the structure. This is 

equivalent to a solvent surface with a solvent probe radius of zero, a Connolly surface with a 

Connolly probe radius of zero and vdW scale factor of 1. The phase diagrams were generated 

based on the Raoult's law. 

3. Result and discussion 

3.1. The van der Waals parameters related to the volume (ri) and area (qi) of methanol, 

ethanol, and carbon dioxide 

The van der Waals’ contours of three molecules, methanol, ethanol, and carbon 

dioxide were obtained from the Materials Studio and are depicted in Figure 1. The results of 

ri, qi are provided in Table 1. These parameters together with the interaction energies will be 
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used to determine the activity coefficients that are used to construct the phase diagram. As 

shown in Table 1, the values of both parameters decrease from ethanol to methanol then to 

carbon dioxide.   

       

Figure 1. Description of ethanol (left), methanol (middle), and carbon dioxide (right). 

 

Table 1. Values of r and q for ethanol, methanol, and carbon dioxide  

Molecule ri qi 

CH3CH2OH 2.1281 1.9483 

CH3OH 1.4603 1.4279 

CO2 1.3213 1.2747 

3.2. methanol-ethanol system 

In this research, methanol-ethanol system was studied to examine the accuracy of 

interaction energy using three methods and the results are provided in Figures 2-5 and Tables 

2-4. For the methanol-ethanol binary system, three uij pairs are required: uethanol-ethanol, 

uethanol-ethanol, uethanol-ethanol. Take uethanol-ethanol for an example, it represents the energy difference 

between the ethanol-ethanol stable dimer and the sum of two single ethanol molecules. 

Figures 2-4 show the stable structures of ethanol-ethanol, methanol-ethanol, and 

methanol-methanol pairs. For each pair, two different stable structures are shown after 
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optimizing plentiful different initial structures. It is revealed that the same character of the six 

stable structures is the H-bond formation. As such, the H-bond contributed dominantly to the 

interaction energy of the pairs. The difference between configuration a and b is on the spatial 

angles of alkyl groups. To illustrate each structure more clearly, we also show each structure 

at a different angle of view: in first one (for example a) the H-bond is parallel to the paper, 

while the second one (like a’) is perpendicular. The optimized energies from three methods 

are shown in Tables 2-4. For each pair, structure b is more stable than a with MP2 and 

B3LYP calculations; but when adding dispersion energy, structure a is more stable than b, 

and one exception is that MP2 and B3LYP results for methanol-methanol are almost the same 

under similar structures. 

 

 

 

 

a                  a’ 

 

b                   b’ 

Figure 2. (a) the optimized structure of ethanol-ethanol interaction. (a’).the same structure to a, but 

from different angle of view. (b) the second optimized structure of ethanol-ethanol interaction. 

(b’).the same structure to b, but from different angle of view. 
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Table 2. Interaction energy (kJ/mol) of ethanol-ethanol pair 

 Structure a Structure b 

MP2 -22.09 -22.14 

B3LYP -12.69 -13.27 

B3LYP-D3 -27.77 -21.87 

 

 

a                  a’ 

 

 

b                   b’ 

Figure 3. (a) the optimized structure of methanol-methanol interaction. (a’).the same structure to a, 

but from different angle of view. (b).the second optimized structure of methanol-methanol interaction. 

(b’) the same structure to b, but from different angle of view. 

 

Table 3. Interaction energy (kJ/mol) of methanol-methanol pair 

 Structure a Structure b 

MP2  -18.91 -18.91 

B3LYP  -14.97 -14.98 

B3LYP-D3  -22.72 -20.36 
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a                  a’ 

 

b                   b’ 

Figure 4. (a) the optimized structure of methanol-ethanol interaction. (a’).the same structure to a, but 

from different angle of view. (b).the second optimized structure of methanol-ethanol interaction. 

(b’).the same structure to b, but from different angle of view. 

 

Table 4. Interaction energy (kJ/mol) of methanol-ethanol pair 

 Structure a Structure b 

MP2  -19.99 -20.75 

B3LYP  -13.27 -14.96 

B3LYP-D3 -24.29 -21.87 

 

Based on the ri, qi, uij results and the Raoult's law, phase diagrams of 

methanol-ethanol system are generated. Figure 5 shows the isotherm phase diagrams under 

three calculation methods comparing to experimental data (for each uij, the more optimized 

one is selected). From the diagrams, it is obvious that the MP2 and B3LYP-D3 calculation 

are in better agreement with the experimental data. The results from B3LYP-D3 is even 

better than that from MP2. 
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Figure 5. Isothermal phase diagram of methanol-ethanol system at 298K, where the black lines show 

experimental results, red, green, and blue lines denotes the results based on the MP2, B3LYP, and 

B3LYP-D3 calculations, respectively. Lines with squares are for liquid phase and lines with circles 

are for gas phase.  

       

 

3.3 methanol-carbon dioxide system  

The most stable structures for CO2-CO2 and CO2-CH3OH pairs are shown in Fig. 6. It 

is found that carbon atoms and oxygen atoms are on the same plane to form the most stable 

structures. Table 5 shows the interaction energy obtained by MP2, B3LYP, and B3LYP-D3, 

and MP2 results are more similar to that from B3LYP-D3 than that from B3LYP. We also 

show in Table 5 the MP2 results from different basis sets. 
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a                        b 

Figure 6. The optimized structure of (a) carbon dioxide-carbon dioxide interaction, (b) carbon 

dioxide-methanol interaction. 

 

Table 5. Interaction energy (kJ/mol) of CO2-CO2 and CO2-CH3OH pair 

Interaction energy CO2-CO2 CO2-CH3OH Reference 

MP2 -5.04 -13.8 This work 

B3LYP -1.42 -8.81 This work 

B3LYP-D3 -4.95 -15.1 This work 

MP2/CBS -5.78 

 

[113] 

MP2/8s6p4d1f -4.94 

 

[114] 

MP2/6-311+G(2df)  -5.40 

 

[115] 

 

 

 

Based on the parameters obtained from electronic structure calculations, we 

constructed the phase diagram for the methanol-carbon dioxide phase diagram. Figure 7 

shows the Isothermal phase diagram of CO2-CH3OH system under 230K. Based on the 

results from methanol-ethanol binary system, the results from B3LYP-D3 prediction is the 

best. Indeed, the results in Fig. 7 shows that B3LYP-D3 predicted the low solubility, which is 

the case experimentally.[116] 
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Figure 7. Isothermal phase diagram of methanol-carbon dioxide system at 230K, where the red, green, 

and blue lines denotes the results based on the MP2, B3LYP, and B3LYP-D3 calculations, 

respectively. Lines with squares are for liquid phase and lines with circles are for gas phase.  

  

Figure 8 summarizes all uij calculation results from the five pairs obtained from the 

three methods. It is obvious that both the difference between B3LYP and MP2 and the 

difference between B3LYP-D3 and MP2 increase with the increment of interaction energy. It 

seems that B3LYP-D3 captures the H-bond better than MP2. 
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Figure 8. Comparison of the interaction energy among the MP2, B3LYP, and B3LYP-D3 

calculations on five pairs of binary systems: 1:CO2-CO2, 2:CO2-CH3OH, 3:CH3OH-CH3OH, 4: 

CH3OH-C2H5OH, and 5: C2H5OH- C2H5OH. Red, blue, and green lines denote the B3LYP, the MP2, 

and the B3LYP-D3 results, respectively. 

 

4. Conclusions 

Electronic structure calculations using MP2, B3LYP, and B3LYP-D3 methods were 

carried out to obtain interaction energies for five pairs of interactions: CH3OH-CH3OH, 

CH3OH-CO2, CO2-CO2, CH3OH-CH3CH2OH, and CH3CH2OH-CH3CH2OH. Activity 

coefficients and phase diagrams were constructed for two binary systems: 

CH3CH2OH-CH3OH and CH3OH-CO2. Comparison of CH3CH2OH-CH3OH phase diagrams 

between the calculated and the experimental results indicate that B3LYP-D3 is the best to 

obtain the interaction energies. The general agreement between the B3LYP-D3 and the 

experimental phase diagram illustrates the promising feature of molecular simulation of 
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phase diagram of binary systems. Compared to the experimental data of CH3CH2OH-CH3OH 

system, we show that the molecular simulation approach is promising to obtaining activity 

coefficients. The current results showed that CO2 and CH3OH are hardly mixed under the 

current simulation conditions. 
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