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ABSTRACT

Differentiable programming has accelerated the development of force-field (FF) parameterization

techniques. Specifically, automatic differentiation (AD) facilitates energy and force matching by dif-

ferentiating them with respect to the FF parameters; hereinafter, referred to as force differentiation

and matching (FDM). Conversely, crystal structure matching with AD has persisted as a challenge

because the converged structures optimized by the iterative algorithm cannot be differentiated with

respect to the FF parameters. Therefore, in this paper, we propose a structure differentiation and

matching (SDM) method, wherein the converged structures are directly differentiated using the pa-

rameters with implicit function differentiation and matched with the experimental crystal structures.

Subsequently, with a case study, we compared the reproducibility of the crystal structures, internal

atomic coordinates, and lattice energies on eight exemplary molecules with the differentiable Ewald

method for long-range interactions. The results indicated that SDM outperformed FDM on all three

criteria. The FFs generated by SDM reproduced the lattice constants with a mean error of 0.56 %,

the internal atomic coordinates with an error of 0.16 Å, and the lattice energies with an error of 0.14

kcal/mol. The corresponding accuracies obtained with FDM were 1.2 %, 0.22 Å, and 2.40 kcal/mol,

respectively. Furthermore, we performed molecular dynamics simulations on a supercell, containing

more than 3000 atoms, to confirm if the crystal structures were preserved under temperature fluc-

tuations at 300 K. Overall, this method is not limited to Amber-type FFs and can be easily applied

to the other types of FFs. Thus, we believe that SDM will emerge as one of the new standards for

parameterizing FFs with crystal structures.
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1 Introduction

Molecular dynamics (MD) is an essential tool for atomic and molecular modeling of small organic molecules [1–3]. In

structure-based drug design, the characterization of intermolecular interactions is crucial for predicting ligand activity

[4–7]. MD provides vital insights into the fundamental mechanisms governing the condensed matter properties of a

diverse range of materials [8–10]. Moreover, in studies of quantum mechanics (QM) and molecular mechanics (MM),

MD is required to create a realistic MM region [11–19].

In particular, the accuracy of MD relies on three key factors: type of force fields (FFs), reference data, and FF opti-

mization algorithms. Specifically, FFs can be classified into classical FFs, e.g., generated amber force field (GAFF)

[3, 20–22], and neural network potential (NNP) [23–39]. Although NNPs have garnered significant attention in recent

years, classical FFs remain highly interpretable and beneficial owing to its simple equations and fewer parameters

[3, 20–22]. Thus, this study was focused on the generation of classical FFs.

The reference data can be either QM calculations, or experimental data [36]. In case of experimental data, an active

research area includes the FF optimization techniques to reproduce measurable physical properties [36, 40, 41]. In this

regard, the crystal structure obtained from single-crystal X-ray diffraction forms one of the most vital experimental

datasets. This is important for small organic molecules, because it contains intermolecular structure data. The re-

producibility of crystal structures has been generally used to validate FFs [42–44]. , whereas the cohesive properties

(e.g., lattice energy) have been considered to discuss the stability or strength of the intermolecular interactions [45–

47]. Categorically, these crystal structures have been compiled in Cambridge Structural Database (CSD), and the data

on sublimation enthalpies—convertible to lattice energies—is readily accessible as well [48]. Thus, we focus on the

development of FF generation techniques that can reproduce crystal structures and lattice energies.

The FF optimization algorithms can be classified into two categories: non-differentiating and differentiating methods.

In particular, non-differentiating algorithms include Bayesian optimization methods [49–53], evolutionary algorithms

[54], and particle swarm optimization [55, 56], whereas the differentiating methods apply an optimization algorithm

containing derivative coefficients to differentiate a function evaluating the FFs. The coefficients enable an efficient

optimization for numerous variables such as the gradient descent methods or quasi-Newton methods.

For instance, a software package, ForceBalance, has been developed to generate FF using numerical differentiation

[22, 40, 41, 57–60]. More recently, certain methods have been proposed based on automatic differentiation (AD) to

mitigate the approximation errors and improve the efficiency of derivative calculations [61–65]. Accordingly, in this

study, we focused on AD-based FF generation techniques by utilizing the crystal structures and lattice energies as the

reference data.
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However, FF generation with reference to crystal structures is a challenging task, because the crystal structures do

not provide information on the energies and forces acting on atoms. The only information obtainable from them is

that the structure is stable compared to its surrounding structures. In contrast, the energy and force information in

various structures—required as training data in NNP and conventional differentiable FF parameterizations—cannot

be obtained solely from the crystal structures [23–39, 44, 65]. Although the energy and force of structures near the

crystal structure can be evaluated using quantum mechanical formulations, the comprehensive calculation of forces in

unstable structures becomes computationally expensive because of the highly accurate intermolecular interactions. In

addition, FF optimization with AD poses certain limitations in case of using the crystal structure as the reference data.

The crystal structures were evaluated using an iterative structure-optimization algorithm to converge the forces into

zero. Unfavorably, the convergence structures cannot be automatically differentiated with the FF parameters, because

all the iterations must be connected with the chain rule of differentiation in the AD. Thus, it forms an immensely deep

network structure that requires extensive memory and renders the optimization unstable.

To circumvent this issue, a noraml approach utilizes the information that the forces acting on each atom are balanced

to zero. The calculation of forces in stable structures using FFs follows a deterministic algorithm instead of a conver-

gence one, which enables the differentiation of forces on the atoms with respect to FF parameters. By utilizing these

derivative coefficients, the optimization algorithms can be applied using gradients, referred to as force differentiation

and matching (FDM).

However, the optimization goal of zero forces acting on the experimental crystal structures (e.g., FDM) differs from the

objective of ensuring correspondence between the simulated and experimental structures. For optimization algorithms,

this implies the variations among the evaluation functions.

Here, we propose a method based on implicit function differentiation (IFD) to differentiate the simulated crystal

structures with respect to the FF parameters [66].

Using the derivative coefficients, we can optimize the FF parameters to ensure correspondence between the converged

and experimental structures. This method is referred to as structure differentiation and matching (SDM) that developed

an automatic FF generation program with the reference data: (i) stable single-molecule structure, (ii) crystal structure,

(iii) crystallization energy, and (iv) Potential Energy Surfaces (PESs) of free rotating dihedral angles. In the case

study, we compare SDM with FDM with eight materials including anthracene, biphenyl (BIPHEN), and benzoic acid

(BENZAC). In addition, we optimized the charges considering the long-range Coulomb interactions in crystals. To

accurately represent the potential, general MDs employ the Ewald method [67], or its faster version, and the particle

mesh Ewald (PME) method [68]. The optimization problem of FF generation is complicated by the need to optimize

the charge of each atom as a variable to account for the long-range interactions with several charges located outside

the unit cell. Thus, we implemented the Ewald method in its differentiable form.
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Notably, the experimentally derived crystal structure in CSD with single-crystal X-ray diffraction may differ from the

true stable structure, as it must be theoretically measured at absolute zero. In this study, we considered negligible

deviations between the experimental and stable structures.

The optimized parameters can be obtained as an output corresponding with the LAMMPS form [2] which are com-

patible because the energies evaluated by the program and LAMMPS are consistent, with errors less than 1.0× 10−3

kcal/mol. Therefore, the FFs generated by the proposed program are readily applicable to large-scale MD simulations

with LAMMPS.

2 Methods

2.1 Force Field

We used Amber-type FFs to ensure compatibility with the existing MD softwares [1, 2], The FFs are expressed as

Etotal = Ebond + Eangle + Edihed + Evdw + Ecoul, (1)

Ebond =
∑

bond r

Kr(r − req)
2, (2)

Eangle =
∑

angle θ

Kθ(θ − θeq)
2 , (3)

Edihed =
∑

dihed ϕ

4∑
n=1

Vn

2
[1 + cos(nϕ− γn)] , (4)

EvdW =
∑
i<j

4ϵ

[
(
σij

rij
)12 − (

σij

rij
)6
]
, (5)

Ecoulomb =
∑
i<j

qiqj
ϵprij

. (6)

The total energy of the system Etotal comprises bond energy Ebond, angular energy Eangle, dihedral angular energy

Edihed, van der Waals (vdW) force potential Evdw in the Lenard-Jones (LJ) form and Coulomb potential Ecoul. The

variables to be optimized for constructing the FFs are shown in Table 1. A vector with all variables defined in Table 1

as elements is denoted by p. The γn of the dihedral angle was set to 0 or π, because the same effect can be obtained by

optimizing Vn. We adopted the coefficients used in OpenFF [22]. The coefficient of charge qi was set to 0.1 such that

the variation is comparable to that of other variables. Furthermore, a constraint condition was introduced such that the

sum of the charges was zero for each molecule.

In particular, we used as many types of vdW parameters and atomic charges as possible, considering the symmetry

of the molecule, because the optimization efficiency through the differentiation methods will not deteriorate with the

increasing number of variables compared to the non-differentiation methods [49–56]. As an exemplary case, benzoic

acid (BENZAC) is presented in Figure 1. In total, we selected 11 types of atoms—C1 to C5, H1 to H4, O1, and
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Table 1: Regularization factor

Type Regularization factor

bond force constant Kr 100 kcal/mol/Å2

equilibrium bond length req 0.1 Å
angle force constant Kθ 100 kcal/mol−1 rad2

equilibrium angle θeq 20 degrees
dihedral force constant Vn 1 kcal/mol
vdW well depth ϵ 0.1 kcal/mol
vdW lendth σ 1 Å
charge q 0.1 e

Figure 1: Symmetry-based atom type assignment

O2—and generated 22 vdW parameters and 11 atomic charges, considering the symmetry of the molecular structure,

thereby providing a higher degree of freedom to the FFs. This is based on the concept of equivariance that generally

denotes the translational and rotational symmetry, and this concept was extended to equivalent atoms on the molecular

graph. The LJ potentials of various types of atom can be evaluated using arithmetic mixing [1, 2, 21].

In case of calculating the crystal structures with periodic structures in MD, the long-range interactions caused by

the Coulomb potential must be considered. The Ewald method was implemented in a differentiable form. The PME

method is commonly applied because it approximates the Ewald method with a lower computational cost. Nonetheless,

our aim was to propose a new FF construction method reproducing the crystal structures of a small molecule. The FFs

were primarily evaluated for a unit lattice, and large systems were not investigated. This restricts the merit of PME to

small-sized molecules. Therefore, we applied the theoretically simpler Ewald method, which is expressed as

Ecoulomb = ES + EL − Eself (7)

ES =
1

2ϵp

∑
n

N∑
i=1

N∑′

j=1

qiqj
|rij + n · L|

erfc(
|rij + n · L|√

2σ
) (8)

EL =
2π

V ϵp

∑
k ̸=0

e−σ2k2/2

k2
|S(k)|2 (9)

Eself =
1

ϵp

1√
2πσ

N∑
i=1

q2i . (10)
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To ensure compatibility with LAMMPS, we implemented the neighbor lists and special bonds. Furthermore, a

CHARMM-style energy-switching function was applied to EvdW [69]. Expressed as a LAMMPS keyword, the

program implemented "lj/charmm/coul/long"-type non-bonding interactions. The remaining parameters (dielectric

constant ϵp and distance threshold to account for Coulomb potential and LJ potential for atoms within three topolog-

ical distances (special bonds)) were considered to be constants. The dielectric permittivity ϵp was 3.0, the special

bonds was set to the DREIDING type, and the parameters for the improper type of dihedral angles were set to the

same values as those in GAFF. As detailed in Appendix 1 (A1), for all molecules tested herein, the energies calculated

by the proposed program were consistent with LAMMPS, with errors less than 1.0× 10−3. Furthermore, the program

exhibits the capability to output the FFs in the LAMMPS format.

2.2 Evaluation Function

In this study, the evaluation functions for FF optimization comprised the (i) evaluation function LM for the monomer

structure, (ii) crystal structure evaluation function LC, (iii) evaluation function of the lattice energy LE, and (iv) PES

evaluation functionLP
l for dihedral angle l of freely rotating bonds. As more than one dihedral angles can exist in

a molecule, the evaluation function for PESs can be expressed as the summation of the corresponding terms. The

evaluation function is defined as follows.

Lall = wMLM + wCLC + wELE +
∑
l

wP
l L

P
l , (11)

where wM, wC, wE and wP
l denote the weights balancing the corresponding terms. To increase the accuracy of a

particular evaluation item, these weights can be adjusted based on the research objective. In particular, these weights

including the values and its backgrounds are elaborated in Appendix 2 (A2). In addition, we introduced a constraint

that the sum of the charges of the atoms in a molecule equals to the total charge Q. As all the selected molecules were

neutral, Q was set to zero. The constraints defined by the inequalities were introduced to limit the search ranges to

physically reasonable values, as detailed in Appendix 3 (A3). For the conditions of charge constraints and variables

ranges, we adopted the optimization method of sequential least-squares programming (SLSQP) that can optimize the

FF parameters with the constraints and inequality relations.

2.2.1 Evaluation function for single molecule structures

The four terms in Eq. (11) are explained as follows. First,LM quantifies the deviation between the reference single-

molecule structure and the converged structure optimized with a FF. The structure was optimized with the gradient

descent method in JAXOPT [70]. To compare the structures, we used the internal coordinates uM = (r,θ,ϕ) instead

of cartesian coordinates u, where r denotes the bond length, θ indicates the bond angle, and ϕ represents the dihedral

angle. The internal coordinates are symmetric (equivalence) for the translational and rotational operations. Addition-

ally, the Amber-type FF is expressed in a form that presumes the internal coordinates as arguments, thereby rendering

the internal coordinates suitable for evaluating the structural similarity of the individual molecules. The reference
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structure is denoted as u′M and the structure optimized with FF is denoted as ũM. The evaluation function for single

molecule structures can be expressed as

LM = (ũM(p)− u′M)2. (12)

where r, θ, and ϕ indicate the elements in the same vector u′M, despite bearing distinct units. The regularization

coefficients in Table 1 were multiplied with the value of r, θ, and ϕ respectively, to ensure correspondence with the

same vector u′M. For instance, a bond length variation of 0.1 Å and an angular difference of 20◦ pose the same impact

on evaluation function LM [22].

2.2.2 Evaluation function for crystal structures

For crystal structure matching, the lattice vectors matching as well as the atomic coordinates are required. The evalu-

ation function are defined as

LC = (ũ− u′)2 + cL(T̃v − T ′
v)

2. (13)

The coefficient of cL was set to 10, because the variations in the lattice vector Tv influences all atoms in the crystal

and should be regarded as more essential than a coordinate of an atom.

The three lattice vectors T̃v in the converged structures have to be should be fitted to the experimental structures T ′
v .

The equivalency for rotation and translational symmetries is not necessary in the crystal structure matching, because

the crystal lattices induce a loss of symmetries. Thus, the similarity of the crystal structures was compared in terms

of cartesian coordinates u. As stated herein, we used the extended coordinates ũC = (ũT , TT
v )T , where T denotes

transpose. The coefficient of cL was set to be 10, because the variations in the lattice vector Tv influences all atoms in

the crystal and should be regarded as more essential than a coordinate of an atom.

2.2.3 Evaluation function for lattice energy

The lattice energy U ′
lat was computed from the experimental accessible values of the sublimation enthalpy Hsubl that

is correlated with the lattice energy,

Hsubl = −U ′
lat − 2RT (14)

where R denotes the gas constant and T indicates the temperature [48]. Based on the crystal structure energy per unit

cell EC and the single molecule energy EM, the lattice energy Ũlat can also be defined as

Ũlat = EM − EC

Nmol
, (15)

The evaluation function for the lattice energy matching LE can be evaluated as

LE = (U lat − Ũ lat(ũC,p))2. (16)

An FF reproducing both the crystal structure and U lat, enables the simulation of MD with the FF to reflect the stability

of the crystal [48].
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2.2.4 Evaluation function of PESs

The total evaluation function should include the evaluation functions for matching PES of freely rotatable dihedral

angles. The reference data were acquired with the QM calculation of a single molecule. The evaluation functions of

the energy surface PESl along with the rotation of the dihedral angles l can be defined as

LP
l =

∑
u∈PESl

exp(−min(E(u,p), E′(u))/2kBTPES)(E(u,p)− E′(u))2, (17)

where the term exp(−min(E(u,p), E′(u))/2kBTPES) includes the coefficients for prioritizing the points near the

lowest points in the PES. kB denotes the Boltzmann constant, and TPES represents the virtual temperature for prioriti-

zation, which was set to 2000 K according to Ref. [22]. The weight wE was set to 0.25/Natom/Npoints (kcal/mol)−2,

where Npoints denotes the number of points in a PES.

2.3 FF optimization methods

2.3.1 Stable structure Differentiation (SDM)

SDM computes the derivative coefficients of the evaluation function Eq.(11) with respect to the FF parameters by

employing direct differentiation of the stable structures computed with an iterative optimization algorithm. Figure 2

illustrates the block diagram of SDM. The block diagram of SDM is presented in Figure 2, wherein the energy of the

systems evaluated by substituting ũ and p into an Amber-type energy function formula (Eq. (1)) is presented in Figure

2(a). The block diagram for the differentiations of the stable structures with respect to p is illustrated in Figure 2(b).

In the top block, the iterative process was followed to obtain ũ using the block defined in Figure 2(a). In conventional

implementations, AD was repeated with the same number of iterations of the convergence. Despite restricting to

the short-range interaction ES , almost 10,000 varying Coulomb potentials existed between the two atoms in each

layer, which were registered in the neighborhood list. Therefore, if 100 cycles are required for structural structure

optimization, it would constitute an enormous NN comprising at least 1 million neurons.

On the contrary, the following SDM enabled the efficient computation of the derivative. First, the converged structure

ũ satisfies

F(ũ(p),p) ≡ ∂E(ũ(p),p)

∂u
= 0, (18)

Subsequently, both sides of Eq. (18) were differentiated with respect to p to obtain

∂F(ũ,p)

∂p
=

∂F(ũ,p)

∂u

∂u

∂p
+

∂F(ũ,p)

∂p
= 0. (19)

Thus,
∂2E(ũ,p)

∂u2

∂u

∂p
+

∂2E(ũ,p)

∂u∂p
= 0, (20)
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Figure 2: Block diagram of (a) SDM, (b) FDM. AD of the convergence algorithm with IFT in SDM. E(u,p) in (a) is
included in diagram (b). ϵc denotes convergence criterion, and ∆u indicates the updates of ũ. In the bottom block with
bold lines, derivative coefficient ∂ũ/∂p can be computed using the converged structure ũ optimized in the top block.
(c) Block diagram for partial evaluation function of LX(X = M,C). (d) Block diagram for partial evaluation function
of LE. Differentiation of function requires two derivative coefficients of ũM(p) and ũC(p), which are derived with
IFT.

where ∂2E(ũ,p)/∂ũ2 epresents the Hessian defined as the second-order differentiation based on the atomic coordi-

nates ũ. The multiplication of the inverse matrix to both sides of Eq. (20) yields

∂ũ

∂p
= −∂2E(ũ,p)

∂u2

−1
∂2E(ũ,p)

∂u∂p
. (21)

Although ũ can be calculated following the iterative process of the convergence algorithm, the differentiation of ũ

does not have to be an iterative process, as expressed in Eq. (21). The top block computes the structure optimization

using the iterative process to derive ũ, based on the block diagram depicted in Figure 2(a). The bottom block performs

the differentiation with respect to ũ from the top block in a non-iterative process. In Eq. (21), the second term refers

to the differentiation of F with respect to p at u = ũ, and the first term replaces the derivative variable from p to

u. The first term exhibits no considerable differences in the computation costs. The inverse matrix calculation poses

no significant impact. Overall, the IFD facilitates the computation of ∂ũ/∂p with the same order of the cost of a

single ∂F/∂p calculation. As depicted in Figure 2(c), ∂ũ/∂p is embedded in the calculation and differentiation of

LX(X = M,C), and as displayed in Figure 2(d), LE can be explained based on the derivatives.
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2.3.2 Force Differentiation and Matching (FDM)

FDM optimizes an FF by differentiating the force on the atoms with respect to p. The method of matching the energies

and forces obtained from the QM calculation is commonly used in NNP [23–39, 65].

Although, previous studies have considered several types of energies and forces for non-stable structures, the data

from these reference structures cannot be used, except those related to the stable structures. As FDM can utilize only

the condition F(u′,p) = 0 at the reference structure u′, it replaces LM, LC, and LC to derive into

LM,FDM = |FM(u′,p)|2 (22)

LC,FDM = |FC(u′,p)|2 (23)

LE,FDM = (U lat − Ũ lat(u′C ,p))2, (24)

respectively. LM,FDM and LC,FDM reduce the forces on an atom at the reference data as zero. The crystal structure

U lat(u′C,p) is used in Eq. (24) because FDM cannot differentiate any functions including the converged structures

ũC. In summary, the evaluation function of FDM is defined as

Lall
FDM = wM,FDMLM,FDM + wC,FDMLC,FDM + wELE,FDM +

∑
l

wP
l L

P
l . (25)

2.4 Details on Comparative Study of Optimization Methods

The organic molecules that we will be treating considered in this study in this study are depicted in fFigure 3. The

crystal structures of these molecules are documented in the CSD, and the Hsubl data is are reported in previous litera-

ture [48]. The selection of the eight molecules was based on their molecular weights and diversity of the substituents.

Fundamentally, Tthey are composed of π-conjugated systems, such as ANTCEN and PENCEN, those with rotat-

able bonds, such as e.g., BIPHEN and TPHBEN, and other molecules that possessing hydroxyl, carbonyl, and amino

groups.

The reference structure of single molecules and PESs were calculated evaluated using by QM methods on Gaussian 16,

applied with the density functional theory. The basis set employed was 6-311++g(d,p), and the functional ωB97XD

[71]. The PESs of the dihedral angles were created for all of the freely rotatable single bonds by evaluating the energies

of the rotations of the single bonds in the molecule by 5◦. The methyl group was not included excluded in this study

because owing to its weak impact effect on the quality of FFs is small. The initial parameters of FF were taken sourced

from GAFF [21]. For the parameters required by the Ewald methods, we used the values determined with LAMMPS,

with the accuracy set to 1 × 10−4. The FF data generation software Antechamber and Moltemplate were used to

generate the initial FF parameters GAFF calculated with atomic charges from electrostatic potentials using a grid-

based method (CHELG) [2, 21, 72, 73] were used The maximum number of iterations for SLSQP for FDM and SDM

was 100, where each iteration includes approximately five evaluation function calculations. All methods were coded

on Python 3.8.13 and JAX 0.3.13 [62]. The FF parameter optimizations were performed with SLSQP algorithms of

10
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Figure 3: Eight molecules used for evaluation. The six-letter symbols represent CSD identification IDs, and those in
parentheses are generic names. (a) ACANIL, (b) ANTCEN (anthracene), (C) BENZAC (benzoic acid), (d) BIPHEN
(biphenyl), (e) BPHENO (benzophenone), (f) NAPHOL (1-naphthol) (g) PENCEN (pentacene), and (h)TPHBEN
(1,3,5-triphenyl benzene)

SciPy v1.8.1 [74], and the structure optimizations within the SDM algorithm were executed on JAXOPT0.5 [66]. For

instance, on a computer with an Intel Xeon Gold 6230 2.10 GHz CPU and an NVIDIA Georce 2080 Ti GPU, the total

optimization duration of ACANIL with FDM and SDM was 15 and 23 min, respectively.

3 Result and Discussion

3.1 Optimized Evaluation Functions

First, we evaluate the performance of the optimization techniques by assessing the evaluation functions. The values of

the evaluation function Lall after optimization with FDM and SDM are listed in Table 2. In case of FDM, the objective

function to be minimized is represented by Eq. (25), whereas the values were calculated using Eq. (11). The results

Table 2: Values of evaluation functions for GAFF (initial values) and after optimization by FDM, and SDM

CSD ID GAFF FDM SDM

ACANIL 4.457 0.991 0.177
ANTCEN 0.308 0.073 0.041
BENZAC 0.890 0.476 0.026
BIPHEN 0.274 0.208 0.025
BPHENO 1.181 0.347 0.052
NAPHOL 0.445 0.478 0.063
PENCEN 0.221 0.221 0.072
TPHBEN 0.244 0.085 0.039
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Figure 4: Bar chart of evaluation functions for GAFF (initial values) and after optimization by FDM, and SDM

of the minimization via FDM and SDM are depicted in Figure 4 as a bar chart in conjunction with the GAFF method.

For all molecules, the SDM yielded smaller values than FDM. On average, the evaluation functions were reduced to

1/6.6. For BIPHEN, the results varied by a factor of 18. Although the FDM was improved over the GAFF for all

molecules, except for PENCEN, it was less accurate than the SDM. This is because the evaluation function of FDM,

i.e., Lall
FDM differed from the function Lall. Thus, the SDM was more accurate than FDM. Moreover, the Lall function

was used as the evaluation function for optimization and was directly differentiated with respect to the FF parameter

p in SDM. In the following subsections, we compare the accuracy of the crystal structure and lattice energy with the

initial parameter GAFF and the FDM- and SDM-optimized FFs. The comparative analyses with PESs are described

in Appendix 4 (A.4) because the evaluation function of PESs LP
l do not include the iterative process to ensure no

algorithmic differences between the FDM and SDM.

3.2 Crystal structures

A histogram plotting the errors of the lattice constants optimized with the initial GAFF and the FFs optimized by

FDM and SDM is presented in Figure 5. The reproducibility of both the axis length and the angles between the axes

improved increasingly in the following order: GAFF, FDM, and SDM. The variations among all the molecules and

the six lattice constants are detailed in Appendix 5 (A5). The FDM and SDM exhibited an average error of 1.2 % and

0.56 %, respectively. The number of lattice constants with an error greater than 2 % was significantly reduced from 12

in FDM to only one in SDM.

For instance, the variations in angle β of BIPHEN are depicted in Figure 6. The β of GAFF is approximately 90◦,

which generated an orthorhombic lattice, whereas that of SDM was 95.0◦ produced a monoclinic structure in accor-

dance with the reference structure. The error in angle β of FDM was between those of GAFF and SDM.

To quantify the accuracies of the orientation of the molecules and the internal structures of the lattices, we calculated

the mean absolute error (MAE) of the internal atomic coordinates of the molecules in the unit cell, as depicted in

12
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Figure 5: Histogram lattice constants optimized with GAFF, and FF derived with FDM, and SDM. (a) Histogram
of error of lengths of axis: a, b, and c, wherein smallest area represents 0–1 % and largest area represents >5 %. (b)
Histograms of error of angles between axes of b–c, c–a, and a–b: α, β, and γ, respectively, wherein smallest area
represents 0–0.25 % and largest area represents >1.5 %.

Figure 6: The crystal structures of BIPHEN. (a) Reference structure derived from CSD. The optimized structure (b)
with GAFF, (c) the FF optimized by FDM, and (d) the FF by SDM

Figure 7. Across all molecules, the average MAE was 0.23 Å for GAFF, 0.22 Å for FDM, and 0.16 Å for SDM, which

corresponds to similar improvement in the accuracy of the lattice constants.

In four molecules out of eight, FDM failed to improve the accuracy of the internal coordinates from GAFF. As depicted

in Figure 8, FDM exhibited a distorted molecular structure; the red arrows indicate that the hydrogen atom attached to

an aromatic carbon atom of the benzene ring is not in the plane of the benzene ring, and the planar molecule including

the carboxyl group is oriented in an oblique manner. This is caused by the evaluation function for FDM, which is

an overdetermined system with a smaller number of variables than the number of independent equations in Eq. (25).

Consequently, it failed to yield a solution of Lall = 0. Therefore, the optimized FF contained nonzero residual forces

at the reference structure u′, and the residual forces prevented the FF in ensuring that the stable structure ũ exists near

the reference structure u′.
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Figure 7: Crystal structures of BIPHEN. (a) Reference structure derived from CSD. Optimized structure (b) with
GAFF, (c) FF optimized by FDM, and (d) FF by SDM

Figure 8: Optimized structures of a single BENZAC molecule by FF derived via (a) FDM and (b) SDM

3.3 Lattice Energies

In addition to the errors derived from the reference data, the lattice energies in GAFF, FDM, and SDM are presented in

Table 3. As observed, SDM exhibited the highest accuracies. As GAFF is not specifically designed to reproduce U lat

for single molecules, it produced large errors. In contrast, the results of FDM for ANTCEN and TPHBEN were more

consistent to the reference data than those of SDM. However, for ACANIL, NAPHOL and PENCEN, the errors were

large at 6.6, 4.6, and 3.4 kcal/mol, respectively. The MAE of the lattice energies derived by FDM was 2.40 kcal/mol.

Conversely, on average, SDM exhibited greater reproducibility with an MAE of 0.14 kcal/mol and the highest error of

0.34 kcal/mol for BENZAC.

Table 3: GAFF (initial values), FDM and SDM lattice energies and errors (in parentheses) from experiments
(kcal/mol).

CSD ID Reference GAFF FDM SDM

ACANIL -25.04 -19.95 (5.09) -31.65 (-6.61) -24.99 (0.05)
ANTCEN -25.13 -20.46 (4.68 ) -25.08 (0.05) -25.05 (0.08)
BENZAC -22.50 -16.27 (6.23 ) -24.38 (-1.88) -22.17 (0.34)
BIPHEN -21.07 -17.56 (3.51) -20.31 (0.77) -20.97 (0.10)
BPHENO -22.48 -19.44 (3.04) -20.53 (1.95) -22.59 (-0.11)
NAPHOL -22.98 -18.41 (4.57) -18.42 (4.56) -22.88 (0.10)
PENCEN -30.11 -33.52 (-3.41) -33.52 (-3.41) -29.98 (0.14)
TPHBEN -36.51 -33.33 (3.18) -36.51 (0.00) -36.74 (-0.23)
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Table 4: Lattice constants of supercell model after MD simulations at 300 K and NPT conditions and errors (in
parentheses) from experimental crystal structures (kcal/mol). The lengths were divided by the multiples to effectively
compare the supercells with the lattice constants of unit cells.

CSD ID a ( Å) b ( Å) c ( Å) α (degree) β (degree) γ (degree)

ACANIL 19.49 (-0.02) 9.27 (-0.09) 7.63 (-0.15) 89.82 (-0.19) 90.01 (0.01) 90.01 (0.01)
ANTCEN 16.98 (-0.15) 6.13 (0.10) 11.16 (-0.02) 90.25 (0.25) 123.95 (-0.75) 89.85 (-0.15)
BENZAC 10.87 (-0.15) 5.18 (0.02) 22.11 (0.14) 90.10 (0.10) 98.30 (0.89) 90.16 (0.16)
BIPHEN 8.18 (0.06) 5.62 (-0.02) 9.46 (-0.01) 89.88 (-0.12) 95.04 (-0.36) 90.03 (0.03)
BPHENO 7.62 (-0.12) 10.32 (0.07) 11.84 (-0.20) 90.19 (0.19) 89.71 (-0.29) 89.99 (-0.01)
NAPHOL 13.24 (0.06) 4.77 (-0.03) 13.25 (-0.03) 90.06 (0.06) 117.35 (0.23) 89.89 (-0.11)
PENCEN 15.92 (0.12) 6.03 (-0.03) 16.05 (0.04) 100.57 (-1.33) 111.91 (-0.69) 85.95 (0.15)
TPHBEN 7.30 (-0.31) 19.69 (-0.08) 11.27 (0.02) 90.03 (0.03) 90.00 (0.00) 89.44 (-0.56)

Figure 9: A supercell structure of ACANIL Crystal Structure after 1 ns of 300K MD using the SDM-optimized FF

3.4 Crystal Structure Reproducibility on Supercells and at Finite Temperature

After performing MD on supercells containing more than 3000 molecules with a time step of 1 fs, we confirmed

that all crystal structures were preserved. Utilizing the SDM-optimized FFs, we performed MD at 300 K and NPT

conditions, with heating from 10 K to 300 K for 0.1 ns, holding for 1 ns, and cooling to 10 K for 0.1 ns. The lattice

constants of the eight molecules of crystals after simulation with supercells are summarized in Table 4. The lengths of

the axes were converted to those in unit cells.

Despite the weak hydrogen bonding between the amino and carbonyl groups of ACANIL, we succeeded in reproducing

the crystal structure, as depicted in Figure 9. As we employed an Amber-type FF, expressed by Eq. (1), the hydrogen

bonds were not explicitly included. However, the intermolecular interactions resulting from the vdW and Coulomb

forces, including the indirect correlations between the bond, bond angle, and dihedral angle, successfully reproduced

the hydrogen bonds in an implicit manner. The additional seven structures obtained from the MD simulations under

the same conditions are presented in Appendix 6 (A6).
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4 Conclusion

Here, we propose SDM as a method for generating FFs of small organic molecules using reference data of the (i) stable

monomer structure, (ii) crystal structure, (iii) lattice energy of the structure, and (iv) PESs of the dihedral angles. In

principle, SDM utilized IFD to differentiate the converged structures of iterative algorithms with respect to the FF

parameters, which identified the direction in which the FF parameters should be adjusted to ensure correspondence

between the converged structure and the experimental crystal structure. In addition, to accurately consider the long-

range interactions for optimizing the atomic charges, the Ewald method was implemented in its differentiable form.

The performance of SDM was compared with that of the FDM using eight molecules as test cases. As observed for

all molecules, SDM was more accurate than FDM, which reduced the MAE of the lattice constants to 0.56 % from

the corresponding error of 1.2 % for FDM. The MAE of internal atomic coordinates within the lattice was 0.16 Å for

SDM and 0.22 Å for FDM. Similarly, the lattice energies were reproduced with an error of 0.14 kcal/mol for the SDM

and 2.40 kcal/mol for the FDM. The MD simulations with the FFs generated by SDM for 1 ns at 300 K and NPT

conditions using LAMMPS confirmed that the crystal structures were retained for all eight molecules. Thus, SDM can

automate the FF optimization of small organic molecules with crystal structures as reference data. In future, studies

should aim to bridge the gap between stable and experimental structures at finite temperatures.

This method is not limited to Amber-type FFs and can be easily applied to polarized FFs and special interactions

explicitly described as an energy function, such as hydrogen bonding. Thus, we believe that SDM will emerge as one

of the new standards for parameterizing FFs with crystal structures.
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Appendix

A1. Reproducibility of each type of energy of LAMMPS

The energy of a unit lattice obtained by LAMMPS and the proposed program are comparatively presented in Table 5.

In addition to the total energy, each type of energy is compared. As observed, all types of energies were identical to

each other with a maximum error of less than 1.0× 10−3. Relatively, the errors in FF optimization with the proposed

program were subsequently smaller than those obtained with LAMMPS.

Table 5 compares the energy of the unit lattice between LAMMPS and the program in this study. In addition to the

total energy, a comparison of each type of energy is also shown. All energies were identical to each other with The

maximum error is less than 1.0× 10−3 kcal/mol. The errors are sufficiently small enough to transfer the FF optimized

byusing our program to LAMMPS.

Table 5: Comparison of various energies between LAMMPS and the FF generation program created in this study
[kcal/mol]

program Etotal ES EL − Eself EvdW Ebond Eangle Edihed Eimproper

ACANIL
LAMMPS -846.96937 -307.06212 -310.05089 -7.69170 22.35649 64.39087 -309.48220 0.57019
This study -846.97020 -307.06241 -310.05143 -7.69170 22.35649 64.39087 -309.48221 0.57019
difference 0.00083 0.00029 0.00054 0.00000 0.00000 0.00000 0.00001 0.00000

ANTCEN
LAMMPS 464.24117 77.30488 -45.07281 82.78989 34.95561 56.02923 258.16100 0.07337
This study 464.24126 77.30504 -45.07289 82.78989 34.95561 56.02923 258.16100 0.07337
difference 0.00009 0.00016 0.00007 0.00000 0.00000 0.00000 0.00000 0.00000

BENZAC
LAMMPS 30.13130 60.25193 -165.00981 102.52778 57.52837 5.30274 -30.47399 0.00428
This study 30.13149 60.25222 -165.00991 102.52779 57.52837 5.30274 -30.47399 0.00428
difference 0.00019 0.00028 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000

BIPHEN
LAMMPS 122.75928 5.09149 -2.89838 71.24001 26.75678 13.56645 9.00133 0.00160
This study 122.75928 5.09149 -2.89839 71.24001 26.75678 13.56645 9.00133 0.00160
difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

BPHENO
LAMMPS -1230.34900 40.78411 -29.84355 29.88174 16.31054 4.63192 -1292.11520 0.00146
This study -1230.34895 40.78419 -29.84358 29.88174 16.31054 4.63192 -1292.11521 0.00146
difference 0.00005 0.00008 0.00003 0.00000 0.00000 0.00000 0.00001 0.00000

NAPHOL
LAMMPS 31.66049 -6.22532 -58.50986 24.88325 16.69255 78.60605 -23.94086 0.15467
This study 31.66041 -6.22530 -58.50996 24.88325 16.69255 78.60605 -23.94086 0.15467
difference 0.00008 0.00002 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000

PENCEN
LAMMPS -577.03574 107.29435 -80.22260 134.51915 41.65793 236.04115 -1016.32620 0.00052
This study -577.03585 107.29463 -80.22299 134.51916 41.65793 236.04115 -1016.32624 0.00052
difference 0.00011 0.00028 0.00039 0.00001 0.00000 0.00000 0.00004 0.00000

TPHBEN
LAMMPS 94.82632 29.68179 -18.89986 87.29577 33.82538 21.35936 -58.44956 0.01345
This study 94.82637 29.68185 -18.89987 87.29577 33.82538 21.35936 -58.44956 0.01345
difference 0.00005 0.00006 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
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A2. Weights multiplied to each element in total evaluation function

(1) wM was set to 1.0/Natom, where Natom denotes the number of atoms in the single molecule.

(2) wC was defined as 1.0/Natom/Nmol, where Nmol indicated the number of molecules in a unit cell. The denomi-

nator Nmol is introduced to maintain the balance of multiple evaluation function types LM and LC.

(3) wE was set 0.25/Natom (kcal/mol)−2. Unlike structure matching with LM and LC, LE represents an energy-

matching function in a distinct unit of LM and LC. The weights permit a uniform treatment of the evaluation functions.

For instance, a bond with the typical force constant of Kr = 200 (kcal/mol/Å2). the difference of the length of 0.1

Å (=the 1 unit after regularization) increases wMLM by 1.0/Natom. This difference of 0.1 Å affects 4.0 (kcal/mol)2

(= 1.0/Natom[200× 0.12]) to LE, or 1.0/Natom to wELE. This is identical to the variations in wMLM.

(4) wM,FDM was set to 1.0/Natom/20
2 (kcal/mol/Å)−2. The deviation of the bond length of 0.1Å from the equilibrium

length with the typical force constant of Kr = 200 (kcal/mol/Å2) generates a residual force of 20 (kcal/mol/Å)

[= 1/2× 2×Kr × 0.1] for each atom on the both sides of the bond. The difference of 0.1 Å affects 400 (kcal/mol)2

Å−2 to LM,FDM, or 1.0/Natom to wM,FDMLM,FDM.

(5) Similar to wM,FDM, wC,FDM was set to 1.0/Natom/Nmol/20
2 (kcal/mol/Å)−2.

A3. Boundary of each FF parameter type

Both FDM and SDM methods employ bounds to limit the range of the FF parameters as shown in Table 6. They are

primarily used to avoid the structure optimization errors caused by excessively large or negligibly small FF parameter

values, especially in the initial stages of FF parameter optimization.

Table 6: Inequality constaraints of FF optimization for maintaining the parameters within the physically valid values

Type Inequality conditions

Bond force constant Kr 0 < Kr < 2Kr0

Equilibrium bond length req 0 < req < 2req0
Equilibrium angle θeq −180◦ < θeq < +180◦

dihedral force constant Vn −5kcal/mol < Vn < +5kcal/mol
vdW well depth ϵ 0kcal/mol < ϵ < 2kcal/mol
vdW length σ 0 < σ < 2σ0

Charge q q0 − 0.5e < q < q0 + 0.5e
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A4. All PESs calculated with SDM-optimized FF

As the evaluation function of PESs (Eq. (17)) does not include structure optimizations and compares only the energy

of specific and fixed structures, we focus on the validity of PESs derived from SDM instead of a comparison between

FDM and SDM. The reproducibility of PES ϕA is indicated in the inset of Figure 10(a). The PES of GAFF is unsuitable

for MD simulations owing to the discrepancy between the most stable point and the reference data. Conversely, SDM

reproduces the agreement of the minima as well as the curvature near the minima and the height of the peak near from

90◦. As plotted in Figure 10(b), the vdW and Coulomb potentials contribute to these reproductions. In addition to the

bond between the aromatic carbon atom and nitrogen atom, the intramolecular hydrogen bond between the oxygen

atom of the carbonyl group and the hydrogen atom at the ortho-position of the benzene ring must be considered for

the dihedral angle. In SDM, these effects are effectively represented by a combination of the FF parameters. Similar

to ACANIL, SDM could accurately reproduce the minima and its curvature for all PES in the eight molecules. The

results of the optimized PESs are displayed in the following figures, i.e., Figures 10–16.

Figure 10: PES of dihedral angle ϕA in ACANIL (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM

Figure 11: PES of dihedral angle ϕB in ACANIL (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM
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Figure 12: PES of dihedral angle ϕC in BENZAC (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM

Figure 13: PES of dihedral angle ϕD in BENZAC (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM

Figure 14: PES of dihedral angle ϕE in BPHENO (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM
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Figure 15: PES of dihedral angle ϕF in NAPHOL (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM

Figure 16: PES of dihedral angle ϕG in TPHBEN (a) comparison of reference data, GAFF, and SDM, (b) each energy
type in FF derived using SDM
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A5. Heatmaps of errors in lattice constants

The heatmap of the lattice constants errors optimized with the initial GAFF and the FFs optimized by FDM and SDM

are illustrated in Figure 17. The background color is assigned according to each value, where green indicates a smaller

evaluation function value and red denotes a larger value.

Figure 17: Heatmap of lattice constants errors optimized with GAFF, and the FF optimized with FDM, and SDM
(Errors (%) in axis lengths a,b, and c; and angles between axis of b–c, c–a, and a–b: α, β, andγ)
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A6. All Crystal Structures Reproducibility on supercells and Finite Temperature

The following Figure 18–24 include all supercell structures after the MD with the same condition described in the

section 3.4. The figure for ACANIL has already shown in Figure 9.

Figure 18: A supercell structure of ANTCEN after 1 ns of MD at 300 K with SDM-optimized FF

Figure 19: A supercell structure of BENZAC after 1 ns of MD at 300 K with SDM-optimized FF
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Figure 20: A supercell structure of BIPHEN after 1 ns of MD at 300 K with SDM-optimized FF

Figure 21: A supercell structure of BPHENO after 1 ns of MD at 300 K with SDM-optimized FF
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Figure 22: A supercell structure of NAPHOL after 1 ns of MD at 300 K with SDM-optimized FF

Figure 23: A supercell structure of PENCEN after 1 ns of MD at 300 K with SDM-optimized FF
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Figure 24: A supercell structure of TPHBEN after 1 ns of MD at 300 K with SDM-optimized FF
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