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ABSTRACT 

We employed the chemical potential neutralization principle to demonstrate that fractional 

electrons are involved in the electro-inductive effect as well as the vibrational Stark effect. By the 

chemical potential model, we were able to deduce that the frontier molecular orbitals of 

immobilized molecules can provide valuable insight into these effects. To further understand and 
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quantify these findings, we introduced fractional charge density functional theory (FC-DFT), a 

canonical ensemble approach for open systems. This method allows for the calculation of 

electronic energies, nuclear gradients, and the Hessian matrix of fractional electronic systems. To 

correct the spurious delocalization error commonly found in approximate density functionals for 

small systems, we imposed the Perdew-Parr-Levy-Balduz (PPLB) condition through linear 

interpolation of two adjacent integer points (LI-FC-DFT). Although this approach is relatively 

simple in terms of molecular modeling, the results obtained through LI-FC-DFT calculations 

predict the same trend seen in experimental reactivity and the frequency change of immobilized 

molecules. 
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Manipulating the electronic properties of reactants through the use of functional groups is 

a key strategy for controlling chemical transformations and influencing the outcome of reactions. 

By understanding and controlling reaction barriers, chemists can accelerate the rate of desired 

reactions and suppress undesired pathways. For example, electron-donating groups can increase 
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electron density at the reaction center, lowering the barrier for a transition state that develops a 

positive partial charge. These effects have been quantified using the Hammett parameter, which 

measures the electron-donating and -withdrawing strengths of functional groups.1 The use of 

functional groups has limitations, however, such as discontinuity in the Hammett parameters, side 

reactions, and the difficulty of synthesizing functionalized derivatives. 

Recent developments have led to the emergence of a new approach that extends beyond 

the limitations of the traditional use of functional groups.2-7 In 2020, two independent studies were 

reported by the Dawlaty and Baik groups, which provided proof-of-principle evidence for the 

possibility of using electrodes as functional groups with adjustable inductive effects. Target 

molecules were immobilized on a gold electrode, and voltage was applied in order to mimic the 

electron-donating and -withdrawing effects of traditional functional groups. The Baik group was 

able to control a variety of chemical reactions by adjusting the voltage on the electrode, and 

attributed this success to the "electro-inductive effect". In contrast, the Dawlaty group proposed 

that the observed changes in C–N vibrational frequency of aromatic nitriles immobilized on the 

surface were due to the vibrational Stark effect,2 which is caused by the electric field generated by 

the applied voltage. In contrast, the Baumberg group posited that the changes in vibrational 

frequency were a result of ionic field effects,8 wherein local electric fields created by electrolytes 

in the double layer alter the C–N frequency. Despite these competing proposals, the underlying 

mechanism of these effects remains elusive. 

While the focus of the community has been on the electric field effects, we investigated 

whether the observed results can be attributed to electronic effects. In this paper, we propose a 

chemical potential model to demonstrate the role of fractional electrons in governing the observed 
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results, use frontier molecular orbitals to gain insight into the phenomenon, and present a 

computational protocol for modeling the electro-inductive effect in an efficient manner. 

 

Figure 1. (a) Schematic illustration of the Fermi level before (black) and after (red) applying 

voltage. SAM formation between the gold electrode and ‘a’ number of molecules (b) without 

voltage and (c) with voltage.  

Consider the reaction between the electrode and molecules that leads to the formation of a 

self-assembled monolayer (SAM). The application of voltage on the electrode changes the 

chemical potential neutralization condition9-10 by shifting the Fermi level (Figure 1a). When no 

voltage is applied, the reaction proceeds until the chemical potential of the electrode (μelectrode) and 

‘a’ number of molecules (μmol) are equal:  

𝜇𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒(𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 + Δ𝑁) = 𝜇𝑚𝑜𝑙(𝑁𝑚𝑜𝑙 − Δ𝑁/𝑎) (1) 

, where ΔN indicates the number of electrons involved in the reaction. The expression ΔN can be 

obtained by taking the Taylor expansion up to the first order, considering that the absolute hardness 

(η) of conductors is zero:10 

ΔN

𝑎
=

𝜇𝑚𝑜𝑙(𝑁𝑚𝑜𝑙)−𝜇𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒(𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒)

2𝜂𝑚𝑜𝑙
 (2) 
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In contrast, applying voltage (Vapplied) on the electrode changes the condition by shifting the Fermi 

level (Figure 1c): 

μelectrode (𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 + Δ𝑁 + 𝛼(𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑)) − 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝜇𝑚𝑜𝑙 (𝑁𝑚𝑜𝑙 −
Δ𝑁+𝛼(𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑)

𝑎
) (3) 

Note that the application of voltage leads to an additional charge transfer, denoted as α(Vapplied), 

during the formation of the SAM. This additional charge transfer can be represented by the change 

in the number of electrons of the immobilized molecule, which can be further represented by the 

density change of the molecule (Δρmol(r)): 

δρmol(𝒓) =
𝜕𝜌𝑚𝑜𝑙(𝒓)

𝜕𝑁
∙

𝜕𝑁

𝜕𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑
∙ 𝛿𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

= 𝑓𝑚𝑜𝑙(𝒓) ⋅
𝜕𝑁

𝜕𝜇
⋅ 𝛿𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

= 𝑆𝑚𝑜𝑙𝑓𝑚𝑜𝑙(𝒓)𝛿𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (4) 

, where Smol and fmol(r) indicate absolute softness and the Fukui function of the immobilized 

molecule.9, 11 Thus, the final equation reads: 

Δρmol(𝒓) = 𝑆𝑚𝑜𝑙𝑓𝑚𝑜𝑙(𝒓)𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (5) 

We have derived an expression for Δρmol(r) resulting from Vapplied. It is important that 

Δρmol(r) does not necessarily correspond to integer numbers, allowing for fractional electrons that 

move back and forth in response to changes in the applied voltage. This feature makes density 

functional theory (DFT) the method of choice for implementing this model into a quantum 

chemical framework, as fractional charges and non-integer electron densities are well-defined in 

DFT.12 Furthermore, our derivation revealed that Δρmol(r) is directly related to the Fukui 
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function,11 which implies that the experimental observations can be qualitatively understood by 

the frontier molecular orbitals of the immobilized molecule. 

Next, we sought to create a quantitative model that incorporated eq. 5 and explicitly 

considers the presence of fractional, non-integer number of electrons in the molecule. Although 

the concept of non-integer numbered density for molecules has a long history in DFT,12-16 we are 

using it here to establish a connection to the chemical reactivity of such a species. Previously, the 

Arias and Hammes-Schiffer groups presented a model considering the electric field associated 

with the applied voltage.4, 17-20 The Arias group adopted a grand-canonical approach in conjunction 

with joint density functional theory,17-19 and developed an algorithm for the self-consistent field 

method (GC-AuxH) by varying the number of fractional electrons under fixed chemical 

potential.20 While the GC-AuxH algorithm achieved robust convergence that has remained a main 

challenge in fixed-potential GC-DFT, it is not suitable for our purposes as the structure is only 

obtained at Vapplied = 0 due to the lack of analytical nuclear gradients at a given voltage. In contrast, 

the Hammes-Schiffer group utilized a canonical ensemble approach by incorporating fractional 

electrons (fixed-electron) to the system directly and tried to explain Dawlaty's work with a 

discontinuous dielectric constant of the solvent, which is consistent with the Gouy-Chapman-Stern 

model.4 This approach ensures more robust convergence compared to fixed-potential calculations 

and enables the optimization of the structure with various number of fractional electrons, but it can 

suffer from severe delocalization errors caused by these fractional electrons.13-14, 21 In addition, the 

complex experimental condition, the electrode surface and the interface for example, makes 

detailed simulations of electrode-molecule systems challenging to coin the atomic details. 

Inspired by the chemical potential model and previous works mentioned above, we propose 

the fractional charge DFT (FC-DFT) as a canonical ensemble approach for describing the electro-
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inductive effect. In FC-DFT, we use a fixed electron number to determine the properties of the 

system based on the fractional charge total energy E(N+δ) and the associated electron density. 

Unlike the fixed-potential approach in a grand canonical ensemble (GC-DFT), FC-DFT calculates 

the system properties at a fixed average electron number. Electric fields generated by the applied 

voltage can also be included in the FC-DFT through an external potential. While GC-DFT and FC-

DFT should be equivalent, in principle, FC-DFT has several potential advantages over GC-DFT: 

1) FC-DFT allows for effective modeling of the electro-inductive effect with a much smaller model 

system than the much larger system of combined molecule and electrode, which is necessary in 

the GC-DFT approach. 2) FC-DFT leads to a much more efficient approach to self-consistent 

calculations required in DFT energy minimization due to the use of fixed electron numbers. 3) For 

small model systems, FC-DFT can easily bypass the delocalization error commonly encountered 

in density functional approximations (DFAs). 

In our initial implementation, we focused on a small model system and ignored the direct 

electric field effects. We neglect the field effects because of the assumption that the field is 

screened by the metallic electrodes and the solvents, as mentioned above. The next challenge is 

associated with the delocalization error in DFAs,13-14, 21 which can lead to a large systematic error 

in the energy E(N+δ) and charge density for fractional number of electrons. Fortunately, for 

systems small in terms of the number of atoms and physical extent, the total energies for integer 

numbers of electrons are typically accurate,21-22 and we can thus utilize the exact Perdew-Parr-

Levy-Balduz (PPLB) condition12 for calculating systems with fractional electrons, namely 

𝐸(𝑁 + 𝛿) = (1 − 𝛿)𝐸(𝑁) + 𝛿𝐸(𝑁 + 1) (6) 

Commonly used DFA suffer from the delocalization error, where E(N+δ) < (1–δ)E(N) + δE(N+1) 

breaks the linearity of E vs. δ and gives a convex curve.21 Given the size of 4-mercaptobenzonitrile 
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(MBN) and tert-butyl-4-mercaptobenzoate (TBMB), DFAs may produce reasonable results on 

integer points of these molecules. Therefore, we decided to take a linear interpolation approach 

when evaluating E(N+δ). This method, which involves interpolating between two adjacent integer 

points at N+δ, is referred to as linear interpolation FC-DFT (LI-FC-DFT). With LI-FC-DFT, we 

will perform geometry optimization utilizing the nuclear gradient g(N+δ) (eq. 7), and subsequently 

diagonalize the Hessian matrix H(N+δ) derived from the optimized structure as outlined in eq. 8. 

𝒈(𝑁 + 𝛿) = (1 − 𝛿)𝒈(𝑁) + 𝛿𝒈(𝑁 + 1) (7) 

𝑯(𝑁 + 𝛿) = (1 − 𝛿)𝑯(𝑁) + 𝛿𝑯(𝑁 + 1) (8) 
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Figure 2. Workflow of the LI-FC-DFT. 

Figure 2 summarizes the algorithm of LI-FC-DFT calculations. The algorithm is similar to 

that of conventional geometry optimization except for performing two separate SCF cycles in each 

geometry iteration to calculate E(N+δ) and g(N+δ). Once a stationary point is located, H(N) and 

H(N+1) of the optimized structure are computed to obtain H(N+δ), which is then diagonalized to 

estimate vibrational frequencies required for evaluating zero-point energies and the vibrational 

partition function. The LI-FC-DFT algorithm was implemented with python-based geomeTRIC,23 

which is an open-source geometry optimizer, and all DFT calculations16, 24-25 were carried out as 

implemented in Jaguar 9.1.26 For estimating the reaction barrier, the energies of the optimized 

structures were re-evaluated by additional single-point calculations on each optimized geometry 

with Dunning’s correlation consistent triple-ζ basis set cc-pVTZ(-f),27 which includes a double set 

of polarization functions. Solvation energies were evaluated by a self-consistent reaction field 

(SCRF) approach based on accurate numerical solutions of the Poisson-Boltzmann equation. In 

the results reported below, solvation calculations were carried out with the 6-31G** basis28 at the 

optimized gas-phase geometry employing the dielectric constants of ε = 78.4 for water. As is the 

case for all continuum models, the solvation energies are subject to empirical parametrization of 

the atomic radii that are used to generate the solute surface. We employed the standard set of 

optimized radii in Jaguar for H (1.150 Å ), C (1.900 Å ), O (1.600 Å ), and S (1.900 Å ). Analytical 

vibrational frequencies within the harmonic approximation were computed with the 6-31G** basis 

to confirm proper convergence to well-defined minima or saddle points on the potential energy 

surface. The energy components have been computed with the following protocol. The free energy 

in solution-phase, G(sol) has been calculated as follows: 

G(sol) = G(gas) + Gsolv (9) 
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G(gas) = H(gas) – TS(gas) (10) 

H(gas) = E(SCF) + ZPE (11) 

ΔE(SCF) = Σ E(SCF) for products – Σ E(SCF) for reactants (12) 

ΔG(sol) = Σ G(sol) for products – Σ G(sol) for reactants (13) 

 

Figure 3. Voltage-dependent surface-enhanced Raman spectroscopy (SERS) spectra of 4-

mercaptobenzonitrile immobilized on the gold electrode. The SERS spectra were obtained with 

excitation wavelength of 633 nm under in situ electrochemical conditions at 7 different voltages 

(vs. Ag/AgCl). 1 M KCl in deionized water is used as the electrolyte solution. The Au plate 

decorated with SAM was utilized as the working electrode, and the Pt wire served as the counter 

electrode. The vibrational frequency of each mode was extracted by performing a Gaussian fit on 

the spectra. See the Supporting Information for the experimental details. (a) C–N vibrational 

frequency and (b) ring vibrational frequency. (c) DFT-calculated LUMO of 4-

mercaptobenzonitrile (isovalue = 0.05 e/Å 3) at CAM-B3LYP/6-31+G** level of theory.28-29 
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Figure 4. LI-FC-DFT-calculated (a) electronic energy, (b) C–N vibrational frequency, and (c) ring 

vibrational frequency of 4-mercaptobenzonitrile at CAM-B3LYP/6-31+G** level of theory.28-29 

Note that the x-axis (δ) of (b) and (c) is intentionally reversed to be consistent with experimental 

data. 

Figure 4 illustrates the LI-FC-DFT-calculated results for the MBN molecule. To ensure a 

bound state, a range-separated functional and diffuse functions were incorporated in the modeling 

to avoid the presence of unbound electrons caused by a negatively charged molecule. (Figure 4a). 

The calculated C–N stretching and ring vibrational frequencies (Figure 4b and 4c, respectively) 

show a trend that is in good agreement with the experimental observations,2, 8 as depicted in Figure 

3a and 3b, respectively. The LI-FC-DFT calculations predict that these frequencies will become 

blue-shifted as fractional electrons are removed from the MBN molecule starting from a state with 

a partial occupied LUMO. This behavior can be explained by the fractional occupation of the 

frontier molecular orbitals (eq. 5). We estimated that, using eq. 2, the LUMO (Figure 3c), which 

has both C–N antibonding character and two nodes on the ring fragment, is already partially 

occupied by 0.131 electrons during the SAM formation (Table S1) at the absolute zero voltage. As 

the positive voltage is applied, more fractional electrons are taken away from this partially 

occupied orbital, which strengthens the C–N bond. Similarly, the shift in the ring vibrational 
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frequency can be attributed to the same fractional removal of electron density from this MO, which 

possesses ring antibonding character as illustrated by the presence of two nodes. 

 

 

Figure 5. (a) LI-FC-DFT-calculated reaction barriers of the base-catalyzed hydrolysis of tert-

butyl-4-mercaptobenzoate at B3LYP-D3/cc-pVTZ(-f)//6-31G** (SCRF, ε = 78.4 for water) level 

of theory.27, 30-37 Note that the x-axis (δ) is intentionally reversed to be consistent with experimental 

data. (b) DFT-calculated LUMO of tert-butyl-4-mercaptobenzoate (isovalue = 0.05 e/Å 3) at 

B3LYP-D3/6-31G** level of theory.  

Encouraged by the matching shift of vibrational frequencies, we modeled the base-

catalyzed ester hydrolysis reaction to confirm that the application of positive voltage increases the 

reaction rate. Previous study by Wang indicates that the nucleophilic attack by the hydroxide ion 

is rate-determining.38 Thus, we located the transition state where the hydroxide ion attacks the 

ester moiety of TBMB, and the calculated results are illustrated in Figure 5. Unlike what was 

described above, diffuse functions were excluded in the basis set and a hybrid functional was 

employed to accelerate the calculations. Except for the discontinuity at δ = 0.02 caused by the thiol 

rotation, the calculated reaction barrier smoothly decreases as more fractional electrons are taken 

away from TBMB, which is consistent with the experimental observation that positive voltage 
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accelerates the reaction.3 The decrease in the barrier can be rationalized with the fractional 

occupation of what is the LUMO of free TBMB. Before applying a voltage, this MO already 

acquires 0.072 electrons from the electrode during the SAM formation (Table S2), and this orbital 

plays a crucial role in promoting the nucleophilic attack by the hydroxide ion. Thus, in terms of 

Fukui functions, this partially occupied MO still acts mostly as the LUMO of the molecule. As it 

gains more fractional electrons, the reaction rate decreases as the LUMO is unable to moderate the 

interaction with the incoming nucleophile. In other words, the fractionally occupied MO loses 

LUMO character and increasingly gains HOMO character. As this process continues with higher 

negative voltage, the higher-lying LUMO+1 becomes fractionally occupied, which raises the 

transition state energy. 

In summary, our study reveals that the change in both vibrational frequencies and reaction 

barriers constituting the electro-inductive effect can be understood by fractional electrons in the 

frontier molecular orbitals without explicitly considering the electric field effects. Our findings 

were supported by the use of LI-FC-DFT, which represents the initial implementation of FC-DFT. 

Throughout the detailed analysis, we found the presence of electronic effects that is distinctively 

different from the vibrational Stark effect. While LI-FC-DFT has produced satisfactory results for 

small systems, its application to larger systems is currently limited as the E vs. N curve becomes 

linear independent of the delocalization error in the functionals and the energies for the charged 

systems with integer number of electrons having systematic delocalization error. Therefore, for 

large systems, it necessitates developing a general and more robust implementation of FC-DFT 

with the application of the localized orbital scaling corrections, for example.39-41 Additionally, 

calibration of the calculated results with experiments, i.e. how many fractional electrons 
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correspond to the experimentally applied voltage, is necessary in order to make FC-DFT a more 

precise and predictive tool. These studies are ongoing in our laboratories. 
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