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Abstract

Would you rather search for a line inside a cube
or a point inside a square? Physics-based simula-
tions and wet-lab experiments often have symme-
tries (degeneracies) that allow reducing problem di-
mensionality or search space, but constraining these
degeneracies is often unsupported or difficult to im-
plement in many optimization packages, requiring
additional time and expertise. So, are the possible
improvements in efficiency worth the cost of imple-
mentation? We demonstrate that the compactness
of a search space (to what extent and how degener-
ate solutions and non-solutions are removed) affects
Bayesian optimization search efficiency. Here, we use the Adaptive Experimentation (Ax) Platform by
Meta™ and a physics-based particle packing simulation with eight or nine tunable parameters, depending
on the search space compactness. These parameters represent three truncated log-normal distributions
of particle sizes which exhibit compositional-invariance and permutation-invariance characteristic of for-
mulation problems (e.g., chemical formulas, composite materials, alloys). We assess a total of four
search space types which range from none up to both constraint types imposed simultaneously. In
general, the removal of degeneracy through problem reformulation (as seen by the optimizer’s surrogate
model) improves optimization efficiency. We recommend that optimization practitioners in the phys-
ical sciences carefully consider the trade-off between implementation cost and search efficiency before
running expensive optimization campaigns.

Keywords: constrained Bayesian optimization, constrained adaptive design, concurrency scheduler,
Ax platform, particle packing fraction, machine learning invariance

1. Introduction

1.1. Background

Materials informatics tasks are characterized by
small, sparse, noisy, multi-scale, heterogeneous,
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and high-dimensional datasets [1]. The search
spaces associated with these tasks are often non-
linearly correlated, discrete, and/or non-linearly
constrained. Some representative examples are
dopant concentration interactions, experimental in-
strument limitations, and adherence to chemical
parsimony (i.e., the unlikelihood of finding materi-
als with more than 5 or 6 elements present), respec-
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tively. Due to small/expensive-to-sample datasets,
Bayesian optimization (BO) is often chosen for ma-
terials discovery and process optimization problems
[2–11] for its excellent search efficiency. BO is an
adaptive design technique that involves leveraging
prior belief about the solution to a problem and up-
dating the belief in the context of new information.
One of the greatest strengths of Bayesian models
via e.g., Gaussian processes is the elegant trade-off
between exploiting high-performance regions and
exploring high-uncertainty regions through acqui-
sition functions1.

BO has been used to create and adaptively re-
fine surrogate models for physics-based simulations
whether acting directly as the surrogate model
[2, 4, 5, 9, 12–20] or tuning hyperparameters of a
surrogate model [3, 21]. Other examples include
experimental discovery [7, 9, 11] and crystal struc-
ture prediction [22–25]. A review of Bayesian opti-
mization applied to materials science in general is
given in Kotthoff et al. [26] with a review of ad-
vanced Bayesian optimization methods applied to
materials science given in Arróyave et al. [27].

In addition to BO, there are other global opti-
mization algorithms, each with strengths and weak-
nesses. A non-exhaustive list of popular global
optimization schemes, in order of typically in-
creasing efficiency and computational complexity
is given: manual tuning, grid search, random sam-
pling, Sobol sampling, genetic algorithms, and BO.
For inexpensive evaluations (hundreds of thousands
of evaluations), random or Sobol sampling is typ-
ically preferred. For moderately expensive evalu-
ations (tens of thousands of evaluations), genetic
algorithms and scalable BO are typically preferred.
Finally, for expensive-to-evaluate functions (hun-
dreds to thousands of evaluations), BO is typ-
ically preferred. Exact BO scales poorly with
dataset size, for which variational Gaussian Pro-
cess models or scalable surrogate models may be

1“Acquisition functions are mathematical techniques
that guide how the parameter space should be explored dur-
ing Bayesian optimization. They use the predicted mean
and predicted variance generated by the Gaussian process
model” (https://tune.tidymodels.org/articles/acqui
sition functions.html).

used instead [28–31]. Likewise, for its straight-
forward implementation and low computational re-
quirements, quasi-random sampling is preferred for
large datasets. Grid-based searches in high dimen-
sional spaces tend to be inefficient due to system-
atic sparse regions in the center of hyperboxes that
make up the high-dimensional grid. Manual tuning
by humans can often lead to local optimization and
inefficient searches.

1.2. Related Work

Recently Liang et al. [32] benchmarked Bayesian
optimization techniques for several materials sci-
ence tasks. They raised awareness of the utility of
anisotropic kernels over isotropic kernels2. They
found that certain algorithms may perform well
on certain tasks while performing poorly on oth-
ers, highlighting the need for a careful task-based
choice of models. In addition, they mentioned the
computational advantages of random forest models
relative to Gaussian processes despite being slightly
less efficient overall.

Similar to Liang et al. [32], Hickman et al. [33]
observed the effect of model choice and task on
single- and multi-objective search efficiency, except
with a constraint imposed. Hickman et al. [33] per-
formed tests on analytical objective functions and
emulators (i.e. models) trained on experimental
data and demonstrated favorable performance of
the Gryffin [34] and Dragonfly [30] optimization
packages under constrained conditions.

It is well-known in the mathematical program-
ming (optimization) community that problem for-
mulations can introduce degeneracy or symme-
try [35]. Moreover, alternate model formulations
that break symmetry/degeneracy are essential for
many integer programming (optimization) algo-
rithms [36]. Much effort in the operations research
community focuses on how to model problems to
avoid degeneracy/symmetry and how these features
can impact algorithm performance. Likewise, sym-
metries have also been addressed for traditional de-

2Incidentally, anisotropic kernels are used by default in
this work and are a default of the Ax platform.

2

https://tune.tidymodels.org/articles/acquisition_functions.html
https://tune.tidymodels.org/articles/acquisition_functions.html


sign of experiments3 [36] (e.g., using discrete search
spaces with constraints imposed in advance). In a
similar vein, we devote attention to avoiding degen-
eracy and symmetry in a materials-specific context.

1.3. Contributions

Here, we focus on a single adaptive design
method and a single task (maximizing volume frac-
tion of physics-based particle packing simulations)
with up to two simultaneous constraints and in-
stead seek to determine the effect of search space
choices on efficiency. In this work, we pose the
question:

How does creating an irreducible repre-
sentation for an adaptive design search
space affect search efficiency for small
search budgets and a high-variance par-
ticle packing objective function?

Solid rocket fuel propellants consist of several
different types of particles (i.e. a formulation),
where the size mean and standard deviation gen-
erally follow a log-normal distribution and are con-
trolled by milling parameters and milling time, re-
spectively. In particular, longer milling times tend
towards lower standard deviations. High packing
fractions are important when increased stability of
solid rocket fuels is desired. Physics-based simula-
tions are often used prior to experimental synthesis
due to the energetic nature of the formulation con-
stituents (in particular, ammonium perchlorate),
made soberingly apparent in the PEPCON disas-
ter in 1988, a chemical explosion that caused two
fatalities, hundreds of injuries, and ∼$100 million
worth of damage [38].

While necessary and useful, physics-based simu-
lations are often expensive. In addition to increas-
ing approximately with the square of the number
of particles, computational runtime for a converged
particle packing simulation can vary by orders of
magnitude (e.g. 20 CPU min to 20+ CPU hours)
as a function of frictional force computations which
in turn depend on surface contact area. In general,

3Cao et al. [37] addresses traditional design of experi-
ments in a materials context.

an appropriate combination of small and large par-
ticles leads to additional surface contact area com-
pared to homogeneous particle sizes and high pack-
ing fractions. Incidentally, the simulations which
are most favorable in terms of high packing frac-
tions are also the most expensive in terms of com-
putational runtime. However, this is not mutually
exclusive—computationally expensive simulations
can also lead to undesired, low packing fractions.
These points suggest the need for efficient optimiza-
tion of the simulation search space.

In prior work [39], several iterations of adaptive
design (also referred to as sequential learning) con-
sisting of exploratory data analysis were followed
by a classification-based approach. For the latter,
rather than perform regression and take candidates
with the best numerical predictions, solutions were
classified based on their likelihood of being “ex-
traordinary” [40], meaning falling in a top x% of all
candidates in terms of performance. This resulted
in 13 330 packing simulations and and a maximum
packing fraction of 0.826. In this work, we instead
focus on a small search budget with no pre-existing
training data and carry out concurrency-limited4

BO to maximize packing fraction using low-fidelity
(noisy) packing simulations. These characteristics
mimic common materials informatics datasets and
tasks. We emphasize that the packing fractions
reported in Hall et al. [39] should not be com-
pared directly with the packing fractions reported
in this work. This is due to significant differences
in how the distributions were parameterized and
translated into ParPack simulation input files. See
Appendix C and Section S1 for discussion and other
content related to the differences. Another sig-
nificant difference arises from the use of far fewer
number of particles in this work (25 000 instead of
1.5× 106). See Section S3 for the convergence be-
havior of volume fraction vs. number of particles
which shows an initial steep rise in the mean volume
fraction. Additional information related to packing
fractions as a function of the number of particles
may be found in V̊agberg et al. [41], Baranau and

4Concurrency refers to multiple processes occurring si-
multaneously without explicitly depending on each other.

3



Tallarek [42].

2. Methods

We seek to maximize particle packing fraction,
fvolFrac, (Section 2.1) subject to any combination
(including none) of up to two invariance constraint
types totaling four search spaces. Each search
space represents the same unique solutions but
with varying levels of degeneracy/symmetry (Sec-
tions 2.1 and 2.2). The optimization problem is
summarized as:

max
fvolFrac

fvolFrac(X̃, S, P )

x̃i ∈ X̃, si ∈ S, pi ∈ P
s.t. p1 + p2 <= 1.0, p3 = 1− (p1 + p2)

(composition invariance constraint),

s1 < s2 < s3

(permutation invariance constraint(s)),

(1)

where X̃ and S represent vectors of truncated
log-normal size distribution parameters (x̃i and si)
and P represents a vector of fractional prevalences
of each of three particle types (pi), totaling eight or
nine degrees of freedom depending on the combina-
tion of constraints. We will refer to the composi-
tional and permutation constraints as “comp” and
“order”, respectively. Log-normal distributions are
computed as given in scipy.stats.lognorm with
x̃ ≡ scale and s ≡ shape (Appendix B). The trun-
cated probability density function is given by:

Pr(x ,x̃i, si) =
e
−

log2( x
x̃i

)
2s2

i

√
2πxsi

(2)

where x , x̃i, and si represent particle radius, log-
normal median of the i-th particle type, and log-
normal shape parameter of the i-th particle type,
respectively.

Truncation is carried out by subjecting Eq. (2)
to:

1√
m
x̃i≤x≤

√
mx̃i (3)

where x, x̃i, and m represent particle radius, log-
normal median of the i-th particle type, and max
allowable ratio between any two particle sizes, re-
spectively. In this work, m is fixed to the value of
16 to limit computational complexity.5

Converting to a discretized distribution is car-
ried out by computing the percent point function
(scipy.stats.lognorm.ppf) for particle radii at
uniformly spaced quantiles within quantile bounds
derived from Eq. (3) (see Section S1 for details).
The final set of particle radii is then the sum of
the three distributions weighted by the fractional
prevalences:

3∑
i=1

Prd (xi, x̃i, si,m) pi (4)

where Prd(xi, x̃i, si,m) and pi represent truncated
discrete log-normal size distribution of the i-th par-
ticle type and fractional prevalence of the i-th par-
ticle type, respectively.

A summary of the 9 original simulation param-
eters and the bounds used in this work are given
in Table 1. See Appendix B for additional de-
tails of the reparameterizations applied and con-
straints imposed in this work. A visual summary
of these constraints and their corresponding degen-
erate search spaces are given in Figure 1.

We also describe our Bayesian optimization
strategy in Section 2.3. Finally, we describe our
validation setup involving running repeat simula-
tions using the parameter combinations predicted
as best for each search space in Section 2.4.

2.1. Particle Packing Simulations

The simulations involve dropping particles sam-
pled from a predefined distribution of particle sizes
inside of a cylinder at randomized locations [39].
Theoretical details of the particle packing simula-
tions are given in Davis and Carter [43] and Webb
and Davis [44], for which a summary is provided in
the second paragraph of the motivation section in
Hall et al. [39]. A proprietary Windows executable

5As discussed in Section 1.3, large ratios can lead to high
packing fractions, yet cumbersome frictional force computa-
tions.
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Table 1: Summary of 9 non-reparameterized simulation pa-
rameters and their bounds. x̃i, si, and pi correspond to
log-normal median of particle radii, log-normal shape pa-
rameter, and fractional prevalence (i.e. composition) for
each of the three particle distributions. For additional de-
scription, see Appendix B.

Name Min Max

x̃1 1 5
x̃2 1 5
x̃3 1 5
s1 0.1 1
s2 0.1 1
s3 0.1 1
p1 0 1
p2 0 1
p3 0 1

for ParPack was used. While the executable is not
made available, the functions and scripts provided
at https://github.com/sparks-baird/bayes-

opt-particle-packing can be adapted to other
problems or used as a reference for custom imple-
mentations. Additionally, we describe qualitative
differences between the representation of particle
distributions in this work vs. prior work [39] in
Appendix C.

2.2. Reducible and Irreducible Search Spaces

In this work, a reducible search space is a search
space that exhibits identical solutions for different
parameterizations that can be collapsed to a single
solution and a single parameterization (i.e. an ir-
reducible search space) through reparameterization
or imposition of constraints. Baird et al. [45] found
that mapping symmetrically related sets of param-
eters to an irreducible representation (i.e. a funda-
mental zone in crystallographic terms6) exhibited
distinct advantages related to accuracy and compu-

6A fundamental zone in crystallography, which contains
only one parameter combination out of a set of symmetri-
cally related parameter combinations (e.g. crystal misorien-
tation and/or grain boundary plane normal directions)

tational efficiency of distance calculations.7 Similar
to the crystallographic representation, reducibility
in this work focuses on leveraging domain knowl-
edge about the relationship between input parame-
ters of an otherwise “black-box” objective function
to restrict the search space through reparameteri-
zation. Examples are a set of parameters that is
represented as a composition or formulation (i.e.
Al2O3 ≡ 0.4Al + 0.6O where 0.4 + 0.6 = 1.0)
[46–57] (referred to as “comp”) or a set of pa-
rameters that exhibits permutation invariance (e.g.
Al2O3 ≡ O3Al2) [45, 47, 58] (referred to as “or-
der”). When no additional parameter constraints
other than lower and upper limits are used, we refer
to this as “Bounds-only”.

Other examples of formulation-type optimization
problems that exhibit compositional and permuta-
tion invariances include:

• Hygiene products

• Dental composites

• Chemistry reactions

• Metal alloys

• Additive manufacturing resins

• Foods

Other types of constraints exist, such as rota-
tional invariance for certain image processing tasks
which have often been addressed via data augmen-
tation [59]. Another example applicable to but
not addressed in this study is a simulation that
exhibits size invariance (e.g. unitless simulations)
[60, 61]. This is not addressed due to the nonlin-
ear transformation of the search space bounds that
would be required to ensure the search space is not
expanded or reduced relative to the other search
spaces. The effect of distribution parameters on
distribution shape in the context of size invariance
is explored in Section S2.

7The symmetry degeneracy is separate from the inclu-
sion or exclusion of a degenerate dimension via rigid prin-
cipal component analysis transformation which did not sig-
nificantly impact model accuracy
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We note that the reparameterizations and impo-
sition of constraints in this work are separate from
(usually) lossy dimensionality reduction techniques
such as Uniform Manifold Approximation and Pro-
jection [62] or t-distributed stochastic neighbor em-
beddings [63] in that only redundant information is
lost and that parameters retain domain-specific, in-
terpretable meaning.

The SearchSpace objects used by our optimiza-
tion package of choice, Meta’s Adaptive Experi-
mentation (Ax) Platform, corresponding to each of
the four search spaces explored in this work are
given in Section S8. More details about our usage
of the Ax Platform are given in Section 2.3.

2.3. Adaptive Experimentation Platform and Ray-
Tune

While many excellent packages for BO exist, we
choose Meta’s (formerly Facebook) Adaptive Ex-
perimentation (Ax) platform for “its relative ease-
of-use, modularity, developer support, and model
sophistication” [21] and refer to this as Ax. We
refer readers interested in learning advanced opti-
mization topics to the official Ax tutorials (https:
//ax.dev/tutorials/) and to a set of tutorials
geared towards chemistry and materials science (ht
tps://github.com/sparks-baird/self-drivi

ng-lab-demo/blob/main/notebooks/README.md)
via a minimal working example for autonomous sci-
entific discovery [64].

In terms of optimization steps, 10 Sobol itera-
tions precede 40 Bayesian optimization iterations.
All Sobol iterations were required to be completed
before moving on to the Bayesian optimization iter-
ations. Alternatively, setting the number of Sobol
iterations to the default of twice the number of pa-
rameters and/or reducing min_observed_trials

(i.e. able to evaluate second step trials before
completing first step) may have been appropriate
choices which we do not expect to significantly im-
pact the findings in this study.

In this work, we use a scheduler method (first
in, first out) for the Bayesian optimization trials.
A maximum of five workers were made available to
the scheduler, and candidate generation had addi-
tional CPU RAM resources available.

Because trial runtimes can vary between a few
CPU minutes to over a CPU day as a function of
the trial parameters, using a scheduler algorithm
with multiple CPUs is likely more efficient in terms
of clock time8 than sequential optimization and
batch optimization. Sequential optimization is a
straightforward implementation where only one it-
eration runs at a time, and candidate generation for
the next iteration does not occur until the results
from the previous iteration are available. Batch op-
timization, by contrast allows for multiple trials to
run in parallel and necessitates using batch condi-
tioning9. Batch optimization is related to sched-
uler optimization in that multiple trials can run
simultaneously, but is better suited for tasks where
runtimes within a batch are approximately simi-
lar. This is because all trials within a batch have
to complete before moving onto the next batch it-
eration which can result in poor utilization of the
compute devices (e.g. CPU cores left in an idle
state). A scheduler mitigates this issue by generat-
ing new candidates and assigning them to “work-
ers” (i.e. CPU cores) as soon as one is available.
During the generation step, all currently available
data (including recently completed trials) is consid-
ered. The scheduler can be thought of as a manager
that dynamically assigns tasks of varying difficul-
ties to employees to maximize throughput.

More sophisticated scheduling algorithms also
exist, for which we refer the reader to the Ray-
Tune Trial Schedulers documentation. These types
of scheduling algorithms can be applied to any com-
bination of offline/online10 and computational/ex-
perimental tasks, especially when there are multi-

8Clock time is the real time between start and finish
rather than the total CPU time used (possibly across mul-
tiple devices).

9Because joint acquisition is not always tractable, con-
ditioning is often used such that later suggestions are con-
ditioned on the predicted outcomes of earlier suggestions
in the batch. See Appendix F.2 of Balandat et al. [65] for
two types of conditioning: sequential greedy approaches and
“fantasy” models. See also Wilson et al. [66].

10Offline vs. online adaptive design can be thought of
as whether or not a script needs to be restarted multiple
times or is closed-loop where all iterations can be run to
completion without exiting the script.
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(a) Bound constraints only
(bounds-only)

(b) p1 + p2 ≤ 1.0, p3 = 1− (p1 + p2)
inequality composition (comp)

(c) p1 + p2 + p3 = 1.0
equality composition (not implemented)

(d) Bound constraints only
(bounds-only)

(e) s1 < s2 < s3
permutation (order)

Figure 1: Top row: composition degeneracy (Appendix B.1). Bottom row: permutation symmetry (Appendix B.2). Simple
visualization examples of how imposing various types of constraints affects the solution space and search dimensions.
Irreducible (b,c,e) and reducible (a,d) search spaces for compositional (b,c,a) and permutation (e,d) invariance constraints
are given. Solutions are given in red, and the search space bounds are given in black. Applying a linear equality
compositional constraint to a line solution in a cube (a) results in a point solution on a triangle embedded in a cube
(c). This requires an additional rigid transformation to represent it in only two dimensions. Also in the middle row,
reparameterizing the linear equality compositional constraint as a linear inequality constraint and imposing that on a
line solution in a cube (a) results in a point solution in a triangle (b), albeit with some distortion introduced. Imposing
two permutation-invariance constraints on a set of symmetric point solutions in a cube (d) reduces the search space to a
smaller polyhedron and a single point solution (e). For additional description of parameters, see Table 1, Section 2, and
Appendix B.
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ple “workers” (e.g., CPUs, robots, experimental-
ists); however, the most straightforward and per-
haps most ubiquitous application of scheduler al-
gorithms is for online computational optimization
tasks (e.g., simulations). Likewise, readers may be
interested in the many state-of-the-art search algo-
rithms supported via the RayTune interface.

2.4. Validation

Validation procedures carried out for the maxi-
mization of packing fraction via repeat evaluations
of the objective function and a description of in-
sample model predictions are given in Section 2.4.1.
Cross-validation procedures used to assess model
accuracy are described in Section 2.4.3.

2.4.1. Repeat observations

Each optimization campaign is repeated 10 times
(each using a unique, fixed seed for the random
number generator) with the fixed design budget
and setup as described in Section 2.3. The best in-
sample predictions11 are validated by running the
particle packing simulation for the best candidate
50 times.

We run repeats of the simulations using the
best-predicted parameters because the the objec-
tive function is noisy for a low number of simulated
particles. This validation of best in-sample predic-
tions allows us to provide a fair comparison of the
effect of each representation on search efficiency rel-
ative to each other.

2.4.2. In-sample predictions

Computing the in-sample predictions once all
data has been collected for a given optimization
campaign provides an alternative method to com-
pare performance across different search spaces, es-
pecially when evaluating an objective function re-
peatedly is not feasible. To elaborate, a single ob-
servation is unlikely to be the same as the mean
response if the same parameter set were tried mul-
tiple times. Rather than choose the sample with
the best observed data, an alternative is to take a

11In-sample predictions (meaning predictions for trials
that completed) are used rather than the raw observed data
due to noise in the latter.

fitted model that is robust to noise and avoids over-
fitting, and of the samples that have been tested so
far, choose the sample with the highest predicted
(rather than observed) objective function value.

This validation step is central to the findings of
this study in determining the efficiency of search
spaces. If the mean validated packing fraction for
a given optimization campaign is higher than that
of another optimization campaign, use of this val-
idation approach bolsters our confidence that, on
average, the former campaign is more efficient.

See Figure S7 for details related to the conver-
gence behavior of the particle packing simulations
as a function of particle size for a specific high-cost
set of parameters.

2.4.3. Model Accuracy

As an additional perspective, leave-one-out
cross-validation (LOO-CV) [67], is performed for
each final optimization dataset and visualized via
parity plots (Figure S25). This is a technique where
one datapoint is held out from a model for evalu-
ating performance and the model is trained on the
rest of the datapoints, and the process is repeated
for every datapoint. For more information on LOO-
CV, see https://scikit-learn.org/stable/mo

dules/generated/sklearn.model selection.L

eaveOneOut.html. The average LOO-CV mean
absolute error (MAE) is computed at the end of
each optimization campaign and is the model ac-
curacy referred to in Section 3.1.

3. Results and Discussion

We present predicted and validated outcomes
(Section 3.1) and interpretable model characteris-
tics for the search spaces (Section 3.2).

3.1. Effect of Search Space Irreducibility on Effi-
ciency

We summarize validated performance (Sec-
tion 2.4.1), predicted performance (Section 2.4.2),
and model accuracy (Section 2.4.3) in Figure 2.
Figure 2a represents the situation where the best
performing candidate (as determined by the sur-
rogate model and restricted to the set of samples
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(a) Validation (b) Validation t-test

(c) In-sample predictions (d) In-sample predictions t-test

(e) Cross-validation MAEGPEI
MAEdummy

(f) Cross-validation MAEGPEI
MAEdummy

t-test

Figure 2: Packing fraction box plots and raw data of (a) validated (using 50 repeat runs) and (c) best in-sample predicted
results for each of the four search space types and 10 seeded optimization campaigns, sorted by decreasing mean packing
fraction. (e) LOO-CV scaled MAE, where MAE is normalized by MAE of a “dummy model” MAE (predictions are the
mean of the observed values). Pairwise t-test p-values for (b) validated, (d) best in-sample predicted results, and (f)
LOO-CV scaled MAE. Lower p-values indicate a higher statistical significance that the means of the two distributions
being compared are different from each other.
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Table 2: Validation particle packing fraction mean and stan-
dard deviation (std) across 10 campaigns for each of the four
search spaces.

type mean std

comp-order 0.726 0.02
comp 0.731 0.014
order 0.73 0.011
bounds-only 0.722 0.015

Table 3: Best in-sample predicted particle packing fraction
mean and standard deviation (std) across 10 campaigns for
each of the four search spaces.

type mean std

comp-order 0.747 0.015
comp 0.748 0.015
order 0.742 0.014
bounds-only 0.734 0.022

that were actually probed) is run again on the ob-
jective function using 50 repeats (see Section 2.4).
Since each campaign was run 10 times, 10 “best”
samples each had 50 validation repeats, resulting in
500 total evaluations of the objective function per
search space. First the mean within each campaign
is taken (i.e., mean of 50 repeats) and then box
plots and raw data for the 10 means are reported
in the figure. On the other hand, Figure 3 repre-
sents the raw observed data across each of the cam-
paigns. There are 50 iterations in each campaign
and 10 campaigns, so each validation of a search
space includes 500 evaluations of the objective func-
tion. Likewise, Figure 2c represents the best in-
sample predictions (i.e., the sample predicted to be
best after all 50 iterations have completed) aver-
aged across each of the 10 campaigns. The distinc-
tion between Figure 2c and Figure 3 is that Fig-
ure 2c shows model predictions at the completion of
the optimization campaign whereas Figure 3 shows
raw data as the optimization progresses. Finally,
Figure 2e shows scaled model error.

In general, the constrained search spaces tend
to have better performance than the bounds-only
search space. For example, the “comp-order”,

Table 4: LOO-CV MAE mean and standard deviation (std)
across 10 campaigns for each of the four search spaces.

type mean std

comp-order 0.396 0.077
comp 0.544 0.126
order 0.428 0.121
bounds-only 0.503 0.066

“comp”, and “order” validated (Table 2 and Fig-
ure 2a) and best in-sample results (Table 3 and Fig-
ure 2c) exhibited higher mean packing fractions
than bounds-only. In the case of validation results
for “comp” and “order”, the difference in distri-
bution mean relative to bounds-only had t-test p-
values of 0.19 and 0.20 (Figure 2b). We interpret
this to mean that the true means for “comp” and
“order” are likely to be greater than the bounds-
only case. However, the p-value for “comp-order”
was much higher (0.59), indicating less certainty
that the means of the two distributions are un-
equal. Likewise, “comp-order” and “order” exhib-
ited lower model error than bounds-only, though
“comp” typically had a larger model error. This in-
dicates that the model has a more difficult time ac-
curately predicting objective function values when
permutation symmetries are left unreduced; how-
ever, it is interesting that the same behavior is not
reflected in the optimization performance.

The “comp-order”, “comp”, and “order” search
spaces typically exhibited differences in the mean
relative to bounds-only with a higher statistical sig-
nificance for the best in-sample predictions (Fig-
ure 2d) compared with the validation results (Fig-
ure 2b). The statistical significance was also greater
(lower p-value) for the model error (Figure 2f) rel-
ative to the validation results (Figure 2b).

While these results show that in general it is bet-
ter to remove degeneracies, we think it is likely
that an explicit treatment of the composition con-
straint as a linear equality constraint (rather than
a linear inequality constraint) (Appendix B.1) and
treatment of the permutation constraint through
data augmentation or a permutation-invariant ker-
nel (Appendix B.2) will reveal an even more pro-
nounced superiority over the bounds-only case.
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In situations where the validation is much more
expensive or infeasible to perform, optimization
practitioners must carefully consider whether they
can “trust” the best in-sample predictions when the
objective function is subject to large levels of noise.
We think it is likely that in a reduced-noise envi-
ronment, the predicted and validated outcomes will
be better aligned.

Given the use of a low-budget, high-dimensional
Bayesian optimization task, it may be reasonable to
assume that the points sampled during each opti-
mization campaign tend more towards exploration
rather than exploitation. However, for datasets
that are highly concentrated (e.g. due to local
optimization or exploitation search behavior), the
model accuracy may appear unrealistically high.
In an extreme case, if the same parameterization
is sampled at every iteration, the cross-validated
accuracy will only be limited by the stochasticity
of the objective function. Thus, use of LOO-CV
scaled MAE is better suited for comparing results
where exploration is present and the choice of hy-
perparameters does not cause significant clustering
of sampled points. To circumvent this, an alter-
native cross-validation scheme may be used where
domain-informed clusters or groups are used to
define cross-validation splits [68–70]. The direct
analogue to LOO-CV is leave-one-group-out cross-
validation (also referred to as leave-one-cluster-out
cross-validation), which is used to “[prevent] overly
optimistic extrapolative predictive performance”
[71].

While performing validation via repeated runs
of the same parameters is the most robust of the
three sets of summarized results (Figure 2) in terms
of comparing different search spaces, it is also the
most expensive because it requires additional ob-
jective function evaluations. When performing vali-
dation through repeated runs of best in-sample pre-
dictions for objective functions with large variance
is not feasible during the optimization design phase,
we encourage optimization practitioners to use mul-
tiple “notions-of-best” to assess superiority of one
model configuration vs. another. While there are
differences between the ranking trends of best in-
sample predictions (Figure 2c) and the LOO-CV
scaled errors (Figure 2e), the search space with only

order constraints (“order”) performs well in both of
these cases. Interestingly, this search space is also
the one that performs the best in the high-fidelity
notion of best, the validated volume fractions.

As mentioned previously in this section, we think
it is likely that use of data augmentation will result
in better performance than simply removing mirror
images; implementation difficulties and limitations
of a data augmentation approach are discussed in
Appendix B.2.

Individual optimization results for each of the
seeded runs is given in Section S5.

3.2. Interpretable Model Characteristics

In this subsection, we probe some interpretable
characteristics of the GPEI model through feature
importances (Section 3.2.1) and 2D contours for
two of the compositional variables (Section 3.2.2).
Particle size distribution visualizations are given in
Section S3.1) and LOO-CV results are provided
in Section S6. Plots with additional information
for particle size distribution visualizations, feature
importances, and 2D contours are given in Sec-
tions S1, S4 and S7, respectively.

3.2.1. Feature Importances

Average feature importances12 across 10 seeded
runs are given in Figure 4. Note that each search
space is characterized by different sets of features
with eight or nine total features.

One of the characteristics that stands out is the
large standard deviations for many of the features.
In other words, separate optimization runs did not
necessarily assign the same features as being most
important, and this behavior was observed across
many search spaces. The large variances observed
for many of the search spaces indicate that no one
parameter is universally important for the simu-
lations. This can be explained by the represen-
tation of parameters as fractional contributions of
distributions. Since we know that the physics-
based simulation takes an intermediate representa-
tion of the combined, discrete particle size distribu-
tion (Eq. (4)), and each parameter affects this final

12Feature importances are based on based on the inverse
lengthscales of an anisotropic Gaussian kernel.
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(a) Bounds-only (b) Composition (comp)

(c) Permutation (order) (d) Composition (comp) and permutation (order)

Figure 3: Average best observed objective vs. iteration for each of the four search spaces using Gaussian process expected
improvement (GPEI). The individual observations are subject to noise. Standard deviations for each of the 10 campaigns
are plotted as colored bands.

12



distribution, there are strong dependencies between
parameters. Additionally, in the cases where the
permutation constraint is not imposed, the model
is just as likely to assign one set of distribution pa-
rameters as important compared with another.

We would have expected that for search spaces
with the best predicted and validated outcomes,
the feature importances would have tighter stan-
dard deviations than others; however, this does not
appear to be the case. This may be reflective of
the interactions of the problem formulations with
the mechanics of the physics-based particle packing
simulation, where the parameters are highly inter-
dependent.

Individual feature importances based on the fit-
ted, inverse lengthscales of the anisotropic Gaus-
sian kernels for for seeds 10, 11, 12, 13, and 14 are
given in Section S4.

3.2.2. 2D Contours through Parameter Space

2D contour plots of comp2 (y-axis) vs. comp1 (x-
axis) for each of the four search spaces (rows) and
each of the first five (out of a total of 10) seeded
optimization runs are given in Figure 5. Only the
first five are shown for brevity. The “comp-order”
search space exhibits the greatest homogeneity be-
tween the five repeat campaigns compared with the
other three search spaces (“comp”, “order”, and
bounds-only), perhaps owing to the fact that it is
the most compact representation of the four search
spaces.

2D contours through parameter space with ad-
ditional features such as estimated standard devia-
tion error for seeds 10, 11, 12, 13, and 14 are given
in Section S7.

4. Future Work

While in general, more compact design spaces
tend to be more efficient, this work reveals an ex-
ample where the intuitive design spaces choices do
not always correspond to the most efficient design
spaces. We surmise that this may also be the case
in similar high-dimensional tasks involving complex
physics-based simulations subject to large amounts
of noise. In this section, we provide further topics

of study that can help to elucidate the root causes
of the phenomena described in this work.

We plan to address the following topics in future
work:

1. Are these results corroborated by alternative,
open-source particle packing simulations? [72–
75]

2. To what extent can multi-fidelity optimization
reduce total search cost? [27, 30, 75–80]

In addition to the two above, a number of ques-
tions may be interesting to explore in future work:

• What is the effect of irreducibility for high-
dimensional optimization (i.e. 20+ parame-
ters)? [6]

• In a reduced noise environment (i.e. bet-
ter convergence through a larger number of
dropped simulation particles), do the inter-
pretable model characteristics follow more con-
sistent trends across repeated campaigns?

• Do the results generalize to optimization of
model accuracy (i.e. without regard to high-
performance)? (e.g. via Negative Integrated
Posterior Variance acquisition function13)

• Do the results generalize to wetlab experi-
ments (as opposed to physics-based simula-
tion)?

• How do these findings compare to other op-
timization algorithms (e.g. random search,
genetic algorithms, random forest based BO
[81])?

• Do larger datasets follow the same trend?

• Is there a significant difference in search effi-
ciency when using a predefined list of candi-
dates (i.e. supply candidates sampled from an
irreducible search space)?

13For Negative Integrated Posterior Variance acquisition
function usage in Ax, see https://github.com/facebook/

Ax/issues/930
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(a) Bounds-only (b) Composition (comp)

(c) Permutation
(order)

(d) Composition (comp) and per-
mutation (order)

Figure 4: Average feature importances for the four search spaces across 10 seeded optimization runs using GPEI with
standard deviations as error bars.

• How does search space reducibility scale to
multi-objective problems?

• Does replacing the Bayesian model with sparse
axis-aligned subspaces Bayesian optimization
(SAASBO) perform better on average and/or
change the ranking results?

• Could using a heteroskedastic noise assump-
tion [82] improve the performance of the size-
reparameterized search space?14

14The objective function may be subject to heteroskedas-
tic noise. In the limit of infinite particles, it seems likely
that the variance of repeat sampling from the objective
function for a fixed set of parameters will tend towards
zero. Treatment of heteroskedastic noise is a promising
avenue for future work, since heteroskedastic noise may
be (at least one) reason for the surprising behavior for
a few of the search space combinations. One way this
can be implemented is by specifying the standard devia-
tion (SEM in Ax terms) of repeat observations directly or
using a model that infers heteroskedastic noise (see e.g.,
https://github.com/facebook/Ax/issues/244 and
https://github.com/Ryan-Rhys/Heteroscedastic-BO)

• Could regularization terms or optimization
algorithms geared towards ill-posed inverse
problems mitigate degeneracy issues?

• Do results hold for objective functions (other
than packing fraction) that use the same
underlying physical system? (e.g., average
coordination numbers, standard deviation of
Voronoi volumes around particles, asymptotic
α-relaxation times [83])

5. Conclusion

The removal of degeneracies for a physics-based
particle packing simulation tended to improve per-
formance as assessed by three different judging cri-
teria: best in-sample predictions, repeated evalu-
ations of the best suggested parameter set, and
cross-validated model accuracy. Simultaneous use
of multiple judging criteria may be more robust
when making decisions related to problem repre-
sentation for optimization tasks. The methods and
analysis applied in this work are applicable to mate-

14
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Figure 5: 2D contour plots of comp2 (y-axis) vs. comp1 (x-axis) for each of the four search spaces (rows) and the first five
seeded optimization runs using GPEI.
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rials science formulation problems such as compos-
ite materials, alloys, and composition-based mate-
rials discovery. We caution optimization practition-
ers in the physical sciences to carefully assess the in-
fluence of linear and non-linear constraints or repa-
rameterizations on their search spaces, especially
when expensive physics-based simulations or wet-
lab experiments and noisy objectives are involved.
Pairing efficient search spaces with state-of-the-art
optimization algorithms can improve optimization
success relative to more standard approaches.

Appendix A Bayesian Optimization Meth-
ods

In prior work [21], a high-dimensional scheme
named SAASBO was used to optimize 23 hyper-
parameters within a design budget of 100 itera-
tions and demonstrated superior performance over
a more traditional (default) Bayesian optimization
approach. Here, we use the default BO model,
GPEI to limit the computational expense.15

We refer to the GPEI implementation within
the Ax platform as GPEI.16 As the name suggests,
GPEI uses a Gaussian process surrogate model in
conjunction with the expected improvement acqui-
sition function. Gaussian process regression is a
non-parametric Bayesian regression method that
can be thought of as fitting an infinite-dimensional
multivariate normal distribution to observed data.
The expected improvement acquisition function as-

15SAASBO is computationally expensive especially for
larger design budgets. Normally, this would be fine for ex-
pensive simulations and experiments as well as comprehen-
sive benchmarking (this work); however, we are limited to
using a Windows executable to run the simulations with no
set timeline for a corresponding Linux executable. Running
parallelized repeat campaigns using University of Utah’s
Center for High-Performance Computing (CHPC) resources
is straightforward using Linux software, but we are subject
to additional constraints (i.e. fewer resources) when using
Windows. Thus, a full campaign running 10×90×4 = 7200
SAASBO iterations might require several months of usage
on CHPC’s Beehive (Windows) machine compared with a
few weeks of usage using GPEI iterations.

16Generally, when referring to theory, we refer to the full
name or abbreviation, and when referring to the model as
implemented within Ax we use code formatting.

sists in selecting the next point(s) to evaluate in a
way that manages the trade-off between exploita-
tion of candidates with high predicted performance
and exploration of regions with high uncertainty. In
the GPEI model, a Matern 5/2 kernel is used by de-
fault which allows for somewhat less smooth behav-
ior than the radial basis function. Parameters are
mapped to a range between 0 and 1 and the objec-
tive values are standardized (subtract mean, divide
by standard deviation) per default transformation
behavior within Ax, and parameter constraints are
imposed as hard constraints. With BoTorch as the
backend for Ax, Ax leverages auto-differentiation
to perform gradient-enhanced optimization of ac-
quisition functions. Finally, maximum a-posteriori
estimation is used on the marginal log likelihood
during acquisition function optimization. For ad-
ditional details, please see Balandat et al. [65].

In this work, we have chosen to represent the pa-
rameters as continuous variables rather than evalu-
ating the acquisition function on a predefined list of
candidates. Some optimization packages preferen-
tially treat search spaces as fully discrete whereas
others preferentially treat search spaces as contin-
uous. The Ax Platform is designed and config-
ured in a way that favors optimization of contin-
uous spaces. To optimize over a predefined list
of candidates in the Ax Platform requires digging
into lower level components in order to evaluate
the acquisition function directly (see e.g., https:
//github.com/facebook/Ax/issues/771). In
addition to requiring more user expertise, evaluat-
ing quasi-random predefined candidates is typically
less efficient than relying on internal maximization
of the acquisition function. In cases where the
problem is high-dimensional, the number of pre-
defined points required to effectively sample the
acquisition function may be prohibitive compared
to the continuous case. This is not to suggest
that evaluating acquisition functions over prede-
fined points is undesirable, but rather that there are
non-negligible implementation and computational
costs associated with it. In the context of this work,
this discussion applies to invariances that do not
involve a change of variables (i.e., a linear equality
constraint. See discussion in Appendix B.1).
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Appendix B Reparameterizations and
Constraints

B.1 Compositional Constraint

The linear equality compositional constraint is
given in Eq. (5):

n∑
i=1

pi=1 (5)

where pi and n represent fractional prevalence of
the i-th particle type and number of particles, re-
spectively.

However, linear equality constraints are not di-
rectly supported by most optimization packages17

due to the difficulty of sampling from slices in
higher-dimensional spaces (e.g. a triangle embed-
ded in three dimensions, where a triangle naturally
has zero volume). A straightforward solution is to
reparameterize a linear equality constraint, albeit
with some distortion of the original search space,
as a linear inequality constraint [77] as Eq. (6):

n−1∑
i=1

pi≤1 (6)

where pi and n represent fractional prevalence of
the i-th particle type and number of particles, re-
spectively.

This is subject to the additional constraint that
Eq. (7):

pn=1-
n−1∑
i=1

pi (7)

where pn, pi, and n represent fractional prevalence
of the n-th particle type, fractional prevalence of
the i-th particle type, and number of particles, re-
spectively.

A user needs to decide if applying the lin-
ear equality constraint through e.g., a predefined

17Supporting linear equality constraints is on Meta’s
Adaptive Experimentation Platform wishlist. Linear equal-
ity constraints are, however, supported on the Adaptive Ex-
perimentation dependency, BoTorch, via proper sampling
from a d-simplex. See https://github.com/facebook/Ax

/issues/903 for additional context.

search space, is worth the implementation and com-
putational cost given their optimization package of
choice (whether this is Ax, another package, or
a custom implementation). Other solutions such
as Lagrange multipliers may also be used to im-
plement linear equality constrained Bayesian opti-
mization [84].

B.2 Permutation Invariance

An example of permutation invariance is given in
Eq. (8):(

fvolFrac [x̃1, x̃2, x̃3, s1, s2, s3, p1, p2, p3]=
fvolFrac [x̃2, x̃1, x̃3, s2, s1, s3, p2, p1, p3]

)
(8)

where x̃, s, p, and fvolFrac[·] represent log-normal
median, log-normal shape parameter, fractional
prevalence, and volume fraction function/simula-
tion, respectively.

One option to address the degeneracy here is to
impose an order constraint Eq. (9):

si ≤ si+1 ∀ i ∈ {i ,n-1} (9)

where si and n represent log-normal shape parame-
ter of the i-th particle type and number of particles,
respectively.

An alternative, though not particularly amenable
to BO (at least when data scaling is an issue) and
in general intractable when the number of per-
mutations is large, is to perform data augmenta-
tion in the original search space by including the
repeat permutation data at “no additional cost”.
Additionally, we did not choose to perform data
augmentation due to the difficulty of simultane-
ously implementing both reparameterizations/con-
straints within an AxSearch first in, first out sched-
uler framework.

The practical implementation of data augmen-
tation for this work’s optimization task is not
straightforward and is of limited use in terms of
combinatorial explosion when many variables are
involved as well as data scaling limitations. This
results in a high-cost scenario for possibly murky
results and applicability to a more limited range of
tasks (i.e. small data, few variables in the permu-
tation constraint). Thus, we choose to focus on or-
der constraints in this work. However, the effect of
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using data augmentation vs. order constraints on
search space efficiency in combination with other
constraints may be an interesting topic for future
study.

Appendix C Differences Between This
Work and Prior Work (Parti-
cle Size Distributions)

We note that the datasets in Hall et al. [39] used
a positive linear relationship between mass frac-
tion and particle size, which is opposite to what
is described in Fig. 2 of Hall et al. [39] due to
an error in how the distributions were processed
in internal scripts. We formalize the representa-
tion of particle size distributions in this work as
truncated, log-normal distributions. We emphasize
that there is little to no correspondence between
the parameters reported in this work and that of
Hall et al. [39] due to the differences in distribu-
tion sampling. For a comparison of Hall et al. [39]
vs. this work, see Figure S1 and Figure S2, re-
spectively. To avoid any ambiguity, we define our
parameters as x̃ (scale in ) and s (shape) as used
within scipy.stats.lognormal via e.g.:

lognorm.pdf(x, shape , scale=scale)

Infinite random sampling from the log-normal dis-
tribution as defined by x̃ results in an empirical
distribution whose median is equal to x̃.

We provide representative examples of the trun-
cated distributions sampled in this work in Fig-
ure S2, as well as log-normal distributions de-
rived from grid-sampled parameter combinations
Figures S3 and S4 based on the search bounds in
Table 1 to give a better sense of distributions sam-
pled in this work. Additionally, we demonstrate the
convergence behavior of volume fraction as a func-
tion of number of particles per simulation in Sec-
tion S3. There is a moderate run-to-run variation
for simulations using this distribution and 25 000
particles Figure S7.

Glossary

BO Bayesian optimization 2, 3, 6, 13, 16, 17

GPEI Gaussian process expected improvement
12, 14–16

LOO-CV leave-one-out cross-validation 8–11

MAE mean absolute error 8–11

SAASBO sparse axis-aligned subspaces Bayesian
optimization 14, 16
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