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Abstract 

Due to the limitation of solvent models, quantum chemistry calculated solution-phase molecular 

properties often deviates from experimental measurements. Recently, Δ-machine learning (Δ-ML) 

was shown to be a promising approach to correcting errors in the quantum chemistry calculation 

of solvated molecules. However, this approach's applicability to different molecular properties and 

its performance in various use cases are still unknown. In this work, we tested the performance of 

Δ-ML in correcting redox potential and absorption energy calculations using four types of input 

descriptors and various ML methods. We sought to understand the dependence of Δ-ML 

performance on the property to predict, the quantum chemistry method, the data set 

distribution/size, the type of input features, and the feature selection techniques. We found that Δ-

ML can effectively correct the errors in redox potentials calculated by density functional theory 

(DFT) and absorption energies calculated by time-dependent DFT. For both properties, the Δ-ML 

corrected results showed less sensitivity to the DFT functional choice than the raw results. The 

optimal input descriptor depends on the property, regardless of the specific ML method used. The 

solvent-solute descriptor (SS) is the best for redox potential, whereas the combined molecular 



fingerprint (cFP) is the best for absorption energy. A detailed analysis of the feature space and the 

physical foundation of different descriptors well explained these observations. Feature selection 

did not further improve the Δ-ML performance. Finally, we analyzed the limitation of our Δ-ML 

solvent effects approach in data sets with molecules of varying degrees of electronic structure 

errors. 

1 Introduction 

The accurate and rapid prediction of chemical properties in the solution phase, where a large 

portion of real-life chemistry happens, is an essential ingredient toward rational compound design 

and discovery.1-4 Although quantum mechanical (QM) methods combined with implicit and 

explicit solvent models have made significant progress to model solvated molecules,5-7 it is still 

challenging to make accurate predictions. In implicit solvent approaches, solvent molecules are 

treated implicitly as a polarizable continuum, and the solvation free energy is evaluated as the 

electrostatic interaction between the solute and the continuum plus some cavitation energy 

contribution. Such models are efficient but not accurate enough compared to experimental results. 

In contrast, explicit solvent models can produce more accurate results by treating the solvent 

explicitly and performing ensemble averages on solvation configurations sampled by molecular 

dynamics or Monte Carlo simulations. However, the higher computational costs related to 

configuration sampling8 and force field parameterization9 make it harder to be used for high-

throughput prediction. 

In the last few years, machine learning (ML) has emerged as an invaluable tool to improve the 

efficiency and accuracy of molecular property prediction in the solution phase. ML can directly 

map a molecule structure to its property, leading to the rapid prediction of molecular properties at 



almost no computational costs compared to QM calculations. It has been used to predict the 

aqueous properties such as solvation free energy,10-12 photophysical properties,13, 14 and pKa,15  etc.  

However, such ML models rely on the availability of large, high quality training sets of molecular 

properties in the solution phase, which are scarce compared to the many gas-phase molecular 

datasets available. The prediction is expected to have decent accuracy for molecules inside 

chemical space spanned by the training set molecules. For molecules with distinct chemistry from 

the training set, QM calculations are still needed. 

A different approach to utilizing ML is to train models to improve the QM calculation accuracy. 

Such an idea, usually referred to as delta machine learning (Δ-ML), was originally introduced by  

Ramakrishnan et al.16 to improve the accuracy of gas-phase electronic structure calculations. For 

electronic structure calculations, most of the related physics has already been accounted in the 

low-level methods, such as density functional theory (DFT), but the correlation energy can only 

be accurately obtained from the computationally demanding high-level methods. Hence, by 

training a Δ-ML model to predict the electronic energy difference between the low-level and high-

level method, one can reach chemical accuracy at a low cost. Since the remaining deviations from 

reference results are typically smaller and possibly smoother, Δ-ML models have demonstrated 

unprecedented chemical accuracy and transferability.16 Δ-ML is recently generalized to QM 

calculations in the solution phase by different research groups, where the models were trained to 

predict the difference between the implicit solvent model calculated and experimentally measured 

properties in the solution phase. For example,  Weinreich et al. built a Δ-ML model to predict 

solvation free energy and achieved an accuracy par with state-of-the art physics-based approaches 

on the FreeSov dataset.11 Our recent work applying Δ-ML to reduce errors relative to experimental 



results in redox potential calculations has also exhibited improved accuracy compared to 

previously reported calculations without ML correction.17 

Despite our previous successful application of Δ-ML in redox potential prediction, many 

fundamental questions remain to be answered. (1) Can this approach be generalized to improve 

excited-state molecular property prediction? (2) For other properties, how sensitive are the Δ-ML 

models to DFT functionals and ML method choice?  (3) Which input descriptors are most suitable 

for Δ-ML solution-phase property? (4) Does the optimal choice of descriptors depend on the 

property of interest, dataset size, or other facts about the dataset? (5) What are the limitations of 

this Δ-ML solvent effects approach? In this work, we aim to answer these questions by comparing 

Δ-ML models built based on four types of molecular descriptors. We will analyze the performance 

of the Δ-ML models for predicting a ground-state property, redox potential, and an excited-state 

property, UV/vis absorption energy. Detailed discussions will be made to answer the questions 

above. 

2 Computational methods 

2.1 Organization of data set 

Machine learning model training was carried out on two datasets of ground- and excited-state 

molecular properties in the solution phase. The ROP31318 data set was employed to test the 

performance of Δ-ML models for a representative ground-state property, redox potential. It is 

composed of 313 experimental redox potential records of organic and organometallic redox 

couples in four different solvents, including acetonitrile (MeCN, ϵ = 35.69), water (ϵ = 78.36), 

dichloromethane (ϵ = 8.93) and dimethylformamide (DMF, ϵ = 37.22). The computational redox 

potentials were calculated in our previous work17 by the Nernst equation given by: 



Here, ∆𝐺!"#° 	is the free energy change of the reduced or oxidized process at standard conditions. 

𝑛% is the number of electrons transferred in the process, which is 1 in our dataset. 𝐹 is the Faraday 

constant. 𝐸°(REF)	is the absolute potential of the ferrocene/ferrocenium (Fc+/Fc) redox couple, 

which is used as the internal reference for this dataset to reduce experimental19, 20 and 

computational errors.21, 22 ∆𝐺!"#°  was estimated as: 

where 𝐸&'((red) and 𝐸&'((ox)	are the single-point energy of the reduced and oxidized species 

from PCM calculations, respectively, including electronic energy and solvation energy. The 

thermodynamic correction terms were omitted here because of their limited contributions to 

accuracy and the high computational cost of frequency analysis.17 Due to the larger errors in the 

calculation of organometallic system, ROP313 data set was divided into an organic (OROP) subset 

and an organometallic (OMROP) subset with 193 and 120 individual redox couples, respectively18.  

The refined optical absorption spectra (ROAS) data set was employed to test the performance of 

Δ-ML models for a representative excited-state property, the peak of solution-phase UV/vis 

absorption spectra. The ROAS data set is a subset of the optical absorption spectra (OAS) data 

set,23 which contains 1447 individual molecules extracted from the auto-generated absorption 

energy database.23 We performed time dependent density functional theory (TDDFT) calculations 

in the implicit solvent on the OAS data set to obtain the computational absorption energies. To 

ensure the quality of the Δ-ML model training, we carefully refined the OAS data set by excluding 

 𝐸° = 	−
∆𝐺!"#°

𝑛%𝐹
− 𝐸°(REF) 
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records with high uncertainties. The excluded records include 15 single atom structures with 

disproportionately large difference between experimental and computational results, 28 incorrect 

molecular information, 4 molecules with TDDFT convergence problems, 4 molecules without 

available experimental data and 1 molecule containing 5th row transition metals. After cleaning 

the dataset, we obtained 1395 valid unique records in nine solvents. This refined dataset possesses 

molecules with the number of atoms ranging from 2 to 242 and total electrons ranging from 18 to 

922 (Table 1). The types of molecules include simple inorganic compounds (such as sodium 

methoxide), organic compounds, and organometallic compounds.  

Table 1 Characteristics of each data set: metal identity, molecular net charge, spin multiplicity, 

molecular size in number of atoms, and the number of solvents. 

 

 

 

 redox potential (313) absorption energy 

 OROP (193) OMROP (120) ROAS (1395) 

metal none 
Ni, Mn, Co, Cr, Rh, 

Ru, Ti, Os, Fe, Ir 

In, Ag, Ti, Se, Fe, Ru, 

Cd, Zn, Mg 

charge -2 to 2 -3 to 3 0 

spin 1 and 2 1 to 6 1 

size 5 to 82 13 to 79 2 to 242 

solvent type 2 4 9 

notation E° Eabs 



2.2 DFT calculation methods 

Terachem quantum chemistry software24 was used to perform all geometry optimizations and 

single-point energy calculations. Solution-phase geometry optimizations were carried out using 

TRIC optimizer25 with the default tolerance of 4.5 × 10−4 hartree/bohr for the maximum gradient 

and 1 × 10−6 hartree for the change in self-consistent field (SCF) energy between steps. We used 

the conductor-like polarizable continuum model (C-PCM), implemented in TeraChem,5, 26 for all 

solution-phase calculations. The solute cavity was built using default Bondi’s van der Waals radii27 

for available nonmetal elements in TeraChem,  standard van der Waals radii from literature28 for 

metals, both scaled by a factor of 1.2, and default PCM cavity density (17 – 110 points/atom). 

For the geometry optimization calculations of redox potential, we used optimal functional/basis 

set combination shown in our previous paper17, including the B3LYP functional with the DFT-D3 

empirical dispersion correction,29 combined with LANL2DZ30 effective core potentials for the 

transition metals, I, or Br and the 6-31G* basis for the remaining. To test the sensitivity of different 

ML models for various DFT functionals, we used the B3LYP optimized geometries but a series of 

range-corrected hybrid (ωb97,31 ωb97X,32 ωPBEh,33 CAM-B3LYP)34 and hybrid (B3LYP,35 

PBE0)36 functionals with D3 van der Waals corrections37 to calculate single-point energies to 

obtain redox potentials. The standard range-separation parameters, ω=0.2 bohr-1 and ω=0.3 bohr-

1, were used for ωPBEh and CAM-B3LYP functionals, respectively. 

For absorption energy calculations in the solution phase, we performed time-dependent density 

functional theory (TDDFT) calculation with Tamm-Dancoff approximation (TDA),38 with non-

equilibrium solvation treated with the linear response polarizable continuum model (LR-PCM).39 

For each molecule, the solute geometry was first optimized at the ground state with DFT, followed 



by LR-PCM TDA calculation with the respective DFT functional to obtain the excitation energies 

and oscillator strengths of the ten lowest singlet excited states. A closed-shell Kohn-Sham 

reference is always used because all molecules in the ROAS dataset have singlet ground states. A 

broadened spectrum was then generated by convoluting the stick spectra with a Gaussian function 

of a full width at half maximum (FWHM) of 0.25 eV. The peak absorption energy of the 

convoluted spectrum was read out to be compared with the experimental spectrum peak.  To test 

the sensitivity of ML models, the calculations were also repeated for a set of exchange-correlation 

(XC) functionals (B3LYP, PBE0, ωb97, ωb97X, ωPBEh with ω=0.2 bohr-1, CAM-B3LYP with 

ω=0.3 bohr-1), with the basis set kept the same as used in redox potential calculations. For each 

ROAS record, the solvent static dielectric constant, 𝜀, and the “fast” or optical dielectric constant, 

𝜀) were obtained from the literature,40 with 𝜀)	calculated as the square of the solvent’s refractive 

index. 

2.3 Machine learning models 

We investigated the performance of machine learning (ML) models to correct errors in redox 

potential and absorption energy calculations. We tested four types of molecular descriptors as input 

features and the calculation errors as the output. Different types of ML models were trained with 

scikit-learn,41 including linear regression (lin), random forest regression (RF), gradient boost 

regression (GB), kernel ridge regression (KRR), and artificial neural network (ANN). Input 

features were first normalized to have zero mean and unit variance. The data set was then randomly 

split into a training set (80%) and a test set (20%). The hyperparameters for all models were tuned 

using Hyperopt42 by 5-fold cross-validation on the training set (Table S19, Supporting 

Information), i.e., 64% overall data as the sub-training set and 16% overall as the validation set. 

With the optimized hyperparameters, the model’s performance was then evaluated by retraining 



the whole training set while predicting the test set. The mean absolute error (MAE) was used to 

gauge all the performance. 

3 Feature construction 

In order to correct the errors in solution-phase property calculations, the information encoded in 

the error source needs to be converted into an appropriate number of input features. Unlike gas-

phase property predictions, where errors can only come from the electronic structure methods and 

experimental measurements,43 solvent models can also potentially contribute to the errors in 

solution-phase property predictions. Due to the limited size of our data set, we focused on the 

classes of features meeting the criteria of (1) providing expressive information for both the solute 

and the solvent and (2) satisfying requirements of low dimensionality and low cost of acquiring.44 

Specifically, we tested the following four types of descriptors for solvated molecules (Figure 1): 

 

Figure 1 Diagram of four types of descriptors for solvated molecules.
 



3.1 Physics-inspired solute and solvent descriptors 

This solute and solvent (SS) descriptor is a physically inspired descriptor for solvent-solute 

interactions in molecular systems. It was first introduced in our work for correcting the errors in 

redox potential calculation,17 and will also be used to correct the errors in calculated solution-phase 

UV/vis absorption energy in this work. The solute net charge, dipole moment, spin multiplicity, 

and nuclear repulsion energy of the molecule are included to describe the solute molecule. The 

solvent is described by the implicit solvation cavity surface area and volume, PCM solvation 

energy, and the dielectric constant. 

3.2 Energy component descriptors 

The components of the solvent-solute interaction energy in the PCM were used by Alibakhshi et 

al.12 as input features of ML models to predict solvation free energy, resulting in the ML PCM 

model. We extracted 10 energy components (EC) from the original 15 well-defined PCM energy 

components to reduce the feature redundancy and avoid overlapping with the SS descriptor (Text 

S1, Supporting Information). These 10 features encode various types of interactions in quantum 

chemistry calculations of a solute molecule in PCM field, including the total energy of an 

unpolarized solute without a PCM field and with a polarized or unpolarized PCM field, the total 

energy of a polarized solute with and without a PCM field, the interaction energy of the 

unpolarized solute and polarized solvent, the solute polarization energy, the total potential energy, 

the total kinetic energy, and the solvation free energy.  

3.3 Coulomb matrix 

Coulomb matrix (CM) is a class of widely used molecular geometric features leading to well-

performing models of molecular properties.45-47 The matrix elements of CM are given by 



where 𝑍* 	and 𝑟* 	are the nuclear charges and Cartesian coordinates position of the 𝑖+, atom. The 

off-diagonal elements represent the Coulomb repulsion between nuclei 𝑖 and 𝑗, and the diagonal 

elements have been fitted to atomic energy as to nuclear charge. Although the CM is invariant to 

rotations and translations, it is not invariant to atomic reordering. Several approaches were 

proposed to address the dependence on atomic indexing, such as ordering the coulomb matrix by 

the magnitude of norms of the rows, generating randomly-sorted Coulomb matrices, and using the 

eigenspectrum representation (the sorted eigenvalues of the CM).45, 46 The eigenspectrum 

representation of the CM was employed in our case because the dimensionality of the feature will 

reduce to just d (the number of atoms in the molecules), and thus will alleviate the risk of 

overfitting48 in our training set. The molecular coordinates were optimized under the PCM field to 

include both solute and solvent information. 

3.4 Molecular fingerprints 

Molecular fingerprints were initially designed for substructure searching in chemical databases, 

and later were used for analysis tasks, such as similarity searching in virtual screening.49, 50 Modern 

implementations [e.g., Extended-connectivity fingerprints (ECFPs)] designed to encode molecular 

features relevant to molecular activity have recently been proven well-suited as input features for 

ML models.14, 51 Here, we proposed a combined fingerprint descriptor (cFP) that describes the 

solute with Morgan fingerprint (also known as ECFP452) and the solvent with ET(30)53 along with 

four other empirical scales (dipolarity, polarizability, acidity, basicity).54 The Morgan fingerprint 

(FP), as one of the best-performing fingerprints among small molecules, can perceive the circular 

 𝑀*- =	:
0.5𝑍*..0, 𝑖𝑓	𝑖 = 𝑗	
𝑍*𝑍-

|𝑟* − 𝑟-|
, 𝑖𝑓	𝑖 ≠ 𝑗	 

 

(3) 

 



substructure around each atom in a solute molecule. Considering the size of our data sets, the 

Morgan fingerprint used in cFP was generated by RDKit55 of 128, 64, 1024 bits for OROP, 

OMROP, ROAS, respectively. 

When training Δ-ML models, the raw QM calculated molecular property is always added to each 

of the aforementioned molecular descriptors to form the input feature. The reason is that, the raw 

QM calculated result is the crude property estimator, which has been shown to be a crucial input 

feature in ML chemistry studies56 and also has a high feature importance score in our previous 

study.17 

4 Result and discussion 

In the following sections, we will analyze the performance of the four types of molecular 

descriptors on both redox potential and absorption energy corrections. Specifically, we intend to 

answer the following questions: 

1. Which types of descriptors have the best performance for Δ-ML models to correct errors in 

quantum chemistry calculation of solution-phase molecular properties?  

2. Does the optimal choice of descriptors depend on the predicted molecular property, dataset size, 

or other factors about the dataset? 

3. How sensitive are the Δ-ML models to DFT functionals and ML method choice? 

4. What are the limitations of this Δ-ML solvent effects approach? 

 

 



4.1 Δ-ML for Redox Potential 

Recent work in our group17 has shown that the SS descriptor can efficiently encode solvent-solute 

information to correct the redox potential calculation errors, which are believed to be mainly 

caused by C-PCM’s imbalanced treatment of differently charged species. In that work, PBE0-D3 

functional combined with corrections of KRR and RF can generate the best correction results for 

OROP and OMROP set, respectively. Here, we seek to understand whether other types of 

descriptors (CM, EC, and cFP) can outperform SS for Δ-ML redox potential. As the first step, we 

kept our previous choice of optimal DFT functional (PBE0-D3) and optimal ML methods (KRR 

for OROP and RF for OMROP) and compared the Δ-ML performance of the four descriptors. As 

shown in Figure 2, all four types of descriptors can greatly reduce the errors, reducing the MAE 

from 0.263 V to less than 0.200 V for OROP, and from 0.817 V to less than 0.577 for OMROP. 

For OROP corrected with KRR, the MAE of CM (0.163 V) is only marginally better than the other 

three descriptors by up to 0.04 V.  

Similarly, for OMROP corrected with RF, the best-performing SS descriptor is only slightly better 

than the others in MAE by 0.04-0.12 V. Since the Δ-ML performance depends on the choice of 

Figure 2 Test set MAE of Δ-ML corrected redox potential (calculated with PBE0-D3 functional) 
for (left) OROP and (right) OMROP dataset. The Δ-ML models were trained with different 
combinations of descriptors and ML models.



the descriptor (how efficiently the local environments can be encoded) and the ML framework (the 

functional flexibility in mapping descriptors to outputs), we then varied the ML methods to 

investigate the impacts. We compared the descriptors by their performance when combined with 

the respective optimal ML method. We also compared the variations of performance caused by 

different ML methods. SS has the best performance when combined with RF, for both OROP 

(MAE: 0.161 V) and OMROP (MAE: 0.460 V). Furthermore, SS has the most stable performance, 

as its worst-case scenario is always better than that of the other descriptors. In summary, SS has 

the best performance for Δ-ML redox potential on the tested data sets, although the performance 

difference among different descriptors is not significant.  

4.2 Δ-ML for Absorption Energy 

Although the SS descriptor has shown the overall best performance in correcting calculated redox 

potential, it remains unknown whether it is also the best descriptor for Δ-ML of other chemical 

properties. To answer this question, we applied the same Δ-ML strategy to correct the calculated 

absorption energies of the ROAS dataset and compare the performance of the four types of 

descriptors. Traditionally, the calculated absorption energies of a dataset are corrected by first 

categorizing the dataset into a few groups, such as according to their chromophoric unit57 or 

ground-state electronic configurations,58 and then using linear regression for the respective groups. 

Although such a method can provide relatively accurate results on an organic dye dataset with less 

than a hundred data points,57, 58 it may be less effective for larger and more diverse data sets.  

Here, we investigated the Δ-ML performance on ROAS, a diverse set with ca. 1400 organic dyes. 

As the starting point, we fixed the XC functional used in the TD-DFT/TDA calculations of 

absorption energies and investigated the Δ-ML performance of different descriptors in 



combination with different ML methods. Here, PBE0 functional was used due to its decent 

estimation for organic’s electronic transition energies at low cost.57 Discussions about other XC 

functionals (e.g., range-corrected hybrids) will be covered in Section 4.3. As Figure 3 shows, the 

raw calculated absorption energies of the ROAS dataset have a systematic overestimation and 

many big-error outliers. The Δ-ML results (cFP descriptor combined with GB) distribute more 

evenly on both sides of the diagonal of the parity plot. Both the systematic and the outlier errors 

Figure 3 (top) Parity plots of the calculated (PBE0) vs. experimental Eabs. Top left: raw data from 

TD-DFT calculations. Top right: ML corrected data obtained with the best-performing cFP 

descriptor combined with the GB model. As indicated by the color bar on the right, data points are 

colored by kernel density estimation (KDE) density values. (bottom) Histograms of errors of the 

Eabs before (bottom left) and after ML correction (bottom right). 



are greatly alleviated, resulting in significantly reduced MAE. All Δ-ML models can significantly 

reduce the MAE by more than 34%, regardless of the descriptors or ML methods (Table S10-S13, 

Supporting Information). In contrast to the Δ-ML redox potential results, we can see a significant 

performance dependence on the descriptor choice. The cFP descriptor has its best-case 

performance (combined with RF, MAE: 0.318 eV) significantly better than others (MAE: 0.437-

0.501 eV), and even its worst-case performance (combined with the linear model, MAE: 0.483 

eV) is still close to or better than CM and EC’s best-case performance (Table 2).  

Table 2 PBE0 functional test set prediction errors (MAE/eV) for Eabs using different combinations 

of descriptors and ML models compared to raw calculated results. 

 

4.3 Sensitivity of Δ-ML to DFT Functional Choices 

This section discusses the sensitivity of Δ-ML performance on computational data sets calculated 

with various XC functionals. The choice of XC functionals is known to strongly influence the 

accuracy of redox potential and absorption energy calculations in the implicit solvent.57, 59 As a 

results, the optimal range-correction parameter of long-range corrected XC functionals needs to 

be tuned case by case, making it hard to accurately predict a large and diverse dataset using a single 
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raw 

 

linear 

 

KRR 

 

GB 

 

RF 

 

ANN 
best reduction (%) 

SS 
 

0.908 

 

0.586 0.460 0.460 0.437 0.518 51.9 

CM 0.596 0.458 0.477 0.462 0.570 49.6 

EC 0.604 0.521 0.501 0.510 0.527 44.8 

cFP 0.463 0.394 0.318 0.330 0.442 65.0 



fixed XC functional. In our previous work,17 we already saw the large variation in MAE for the 

redox potential calculations by different functionals (0.263 V-0.618V) and that Δ-ML corrected 

results (SS descriptor combined with KRR) had significantly less sensitivity to XC functional 

choice. Here, we further tested: (1) whether Δ-ML also reduces the functional sensitivity in DFT 

calculations of other properties, such as the absorption energy, and (2) whether Δ-ML using other 

descriptors also reduces the sensitivity to functional choice. 

For the absorption energy calculation, the MAE of the best-performing B3LYP (0.843 eV) differs 

from the worst ωPBEh (1.231 eV) by 0.388 eV (Table S10-S13, Supporting Information). In 

contrast, utilizing ML models to correct the calculations is less sensitive to DFT functional choice 

regardless of the descriptors used (Figure 4). All the ML models can greatly reduce the MAE, and 

Figure 4 Comparison of MAE for redox potential (left) and absorption energy (right) correction 

before and after Δ-ML for various descriptors and DFT functionals. For each functional, the best-

performing ML model’s results are reported. OROP (top left) and OMROP (bottom left) data sets 

were used to test redox potential prediction, whereas the ROAS dataset was used for absorption 

energy prediction. 



the accuracy of the ML corrected result is not directly related to the original MAE. Instead, the 

improvement is affected by the data distribution, ML models, and descriptors. For example, 

although the MAE of absorption energy calculated by B3LYP is the best among all functionals, it 

becomes the worst in many cases after ML corrections.  

In general, RF and GB are the most suitable ML models for all DFT functionals and descriptor 

choices, with a few exceptions when using CM and cFP as descriptors. Based on the overall 

performance using various ML models, the best descriptor for redox potential prediction is SS 

(MAE: 0.131 V), whereas the best descriptor for absorption energy is cFP (MAE: 0.306 eV). 

Although the DFT functional choice has less impact after ML correction, ωb97, ωPBEh, and PBE0 

are overall the best after ML corrections across all the data sets. Therefore, ωb97 calculated results 

were used in later sections’ analysis. 

4.4 Interpretation of the impact of descriptors on Δ-ML performance 

We first applied principal component analysis (PCA) to understand how well the datasets are 

represented in the feature space spanned by different descriptors. (Figure 5). In general, the feature 

space with more evenly distributed data points and apparent clustering of ΔE° (or ΔEabs) has greater 

ML predictability. For the OROP data set, SS and EC are more predictive than CM, where data 

points are not well separated. Although cFP projection has well-separated data points and a 

gradually varying ΔE° along the PC1 direction, it has a relatively bad Δ-ML performance. It is 

likely due to the low ratio (35%) of feature space variance encoded in the first two components of 

cFP, in contrast to SS, CM, and EC, where the majority of feature space variation (over 92%) can 

be encoded into PC1 and PC2. For the OMROP data set, EC and cFP both present a string-like 

distribution with little separation of data along one of the principal components, leading to a worse 



performance compared to the SS descriptor. As for ROAS, although cFP still has the string-like 

distribution as in OMROP, the strings are more evenly distributed in the PC1 direction, and the 

ΔEabs can be well distinguished along the PC2 direction. These observations in PCA can partially 

explain the varying of performance for different descriptors in different data sets.  

We then sought the physical explanation for the performance variation of different descriptors 

when applied to different datasets. The reason for SS’s better performance in correcting errors in 

redox potential than absorption energy is likely to be the different molecule characters in the two 

data sets. ROAS data set contains only neutral spin-singlet species. As a result, the charge and spin 

Figure 5 Projection of OROP, OMROP, and ROAS data set (from the first to the third row of 

panels) onto the first two principal components for the SS, CM, EC, cFP descriptors. The PCA 

plots are colored by the ωb97(-D3) calculation error with respect to experimental results.  



feature in SS will be ineffective for ROAS. The all-neutral species will also lead to a significantly 

narrower range of solvation energy distribution (Figure 6) because the C-PCM solvation energy 

magnitude depends on the net charge of the solute. Therefore, it is even harder for an ML model 

to map SS to the target absorption energy. Similarly, we can explain the poorer performance of 

EC descriptors when applied to correcting excitation energies of ROAS data sets. The energy 

components of EC are extracted from the ground-state equilibrium solvent calculations and thus 

lack the direct description of the non-equilibrium solvation process upon excitation. In addition, 

neither SS nor EC provides as much molecular structure information as cFP, which can also be 

critical for encoding excited-state properties.14  

 

 

Figure 6 C-PCM solvation energy (in eV) distribution for OROP, OMROP and ROAS. 



4.5 Impacts of feature selection 

In previous sections, we have seen the limitations of the four types of descriptors for correcting 

different properties for our Δ-ML solvent effects approach. This inspires the fine-tuning of the 

feature set to improve the Δ-ML performance further. It is known that performing feature selection 

can decrease the training complexity and time for nonlinear models and increase the model 

stability, transferability, and out-of-sample performance for linear models.60 Based on the 

characters of our three benchmark datasets and the molecular property to predict, we tested three 

different feature selection strategies as elaborated below.  

First, for Δ-ML redox potential on the OROP and OMROP set, SS descriptors have already 

reached decent performance (section 4.1). Hence, we sought to further improve the performance 

by using a hybrid feature set combining SS with different types of descriptors. The Random Forest-

ranked Recursive Feature Addition (RF-RFA)60 was used to select features from SS and EC 

descriptors. CM and cFP were not included in RF-RFA because they both encode the geometric 

information of a whole molecule and are not physically very meaningful to be partially selected as 

features in an additive manner. To perform RF-RFA, we first combined the SS and EC descriptors 

and ranked them with the RF feature importance scores. The raw calculated redox potential was 

set as the initial feature due to its highest importance score, whereas other SS and EC descriptors 

were added one at a time based on ranking. During each feature addition cycle, the ML model was 

retrained with hyper-parameter tuning, with the performance evaluated by a 5-fold cross-validation 

score (CVS). The RF-RFA was stopped when no improvement in validation score (MAE) was 

observed (Table S15, S16, Supporting Information). Only the ANN model trained on OROP got a 

significantly smaller MAE of 0.155 V after feature selection, compared to the original MAE of 

0.253 V. All other ML models did not benefit much from the feature selection process. 



Second, for Δ-ML absorption energy, cFP, the descriptor composed of Morgan FP plus some 

additional features for solvent, has the best performance. Here, we focus on optimizing the length 

of Morgan FP used in cFP. Since previously reported optimal Morgan FP length varies based on 

the training sets,51, 61, 62 our model using 1024 bits of Morgan FP may not reach its best 

performance. Considering our dataset size (1395), we restricted the range of Morgan FP length to 

no more than 1024 bits to avoid overfitting caused by the high dimension of the descriptor. We 

compared the performance of cFP composed of Morgan FP of different lengths generated in two 

approaches. In the first approach, we used RDKit to generate Morgan FP of 1024, 512, 256, and 

128 bits. In the second approach, we generated a long Morgan FP with 3072 bits, whose dimension 

is then reduced to 1024, 512, 256, and 128 bits by the univariate feature selection method, 

“SelectKBest”, in scikit-learn.63 We found that for the same length of bits, the cFP generated with 

the second approach (dimension reduction) has worse performance than the cFP generated by the 

first approach (direct generation) (Table S17, S14, Supporting Information). For the directly 

generated cFP, the best-performing one has 1024 bits, which happened to be the length we initially 

selected. 

Third, we further tested whether the performance of Δ-ML absorption energy can be further 

improved by adding SS or EC features to cFP. This strategy still did not present a significantly 

better outcome. A detailed description of this method and results can be found in Supporting 

Information Text S2 and Table S18. 

All the final performances after feature selection were evaluated by training on the full training set 

(80% of the whole data set) and testing on the set-aside test set (20%). The above results indicate 

that additional feature engineering is not necessary in our cases. One possible reason is that the 

chemical information encoded by different descriptors may be similar. Besides, the inherent 



regularization methods (e.g., the L2 regularization in KRR) may have already prevented the model 

from overfitting. 

4.6 Dependence of Δ-ML performance on data set size 

We then looked into the potential dependence of different descriptors’ Δ-ML performance on 

training set size, which helps us understand the applicability of different descriptors for differently 

sized datasets. The training set size dependence was tested on all three data sets (OROP, OMROP, 

ROAS). For each data set, 20% data were set aside as the test set and the rest data (80%) as the 

training set. A series of sub-training sets were then formed by extracting different portions of data 

from the training set (20% -100% training, or 16%-80% total). RF models were then trained based 

on these sub-training sets using various descriptors as input features (Figure 7) but were always 

tested on the same test set (20% total).  

As the sub-training set size increases, the Δ-ML performance improves for almost all models, 

regardless of the targeting property (redox potential or absorption energy) or the descriptors used. 

However, for models trained on OMROP, the improvement slows down significantly after the sub-

training set size reaches 40% (or 32% total), indicating that overfitting may happen after that point. 

This potential overfitting is especially prominent for the EC descriptors, where the curve reaches 

a plateau for sub-training set size > 40%. A similar issue is seen for the ROAS data set, where the 

EC slope is much flatter than other descriptors. The reason may be that the EC descriptor cannot 

encode the calculation errors for OMROP and ROAS data sets well. Hence, further increasing 

training data does not improve the Δ-ML performance. 

For each data set, the relative performance of different input descriptors can change as the training 

set size increases. For Δ-ML redox potential (OROP and OMROP sets), CM or EC has the best 



performance when trained with fewer data (<40%), but SS outperforms all others when more 

training data become available (>=40%). However, such a change of relative performance is not 

Figure 7 Change of MAE with the increase of training set portion for different descriptors and 

data sets (top: OROP, middle: OMROP, bottom: ROAS) using ωb97 for DFT or TDDFT 

calculation and RF for Δ-ML. For each data point on the plot with sub-training set size X %, the 

sub-training set was formed by randomly selecting X % data from the full training set (80% total) 

and was trained and predicted on the fixed set-aside test set (20% total).  For each data point, the 

random selection of sub-training set was repeated for ten times. Each color dot shows the average 

performance (MAE) of the ten tests, with the error bar indicating the highest and lowest MAE 



seen for Δ-ML absorption energy (ROAS), where the cFP descriptor always has the best 

performance regardless of the training set size.  

4.7 Limitations of the Δ-ML solvent effects approach 

The error in calculated solution-phase properties compared to experimental results is mainly 

attributed to the inaccuracy of solvent models and the approximate electronic structure methods. 

Although the errors of solvent models can potentially be fixed by Δ-ML with solvent-solute 

interaction descriptors as input features, the electronic structure errors are harder to be encoded by 

our descriptors. Such a drawback is expected to be more prominent when electronic structure error 

dominates, such as transition-metal-containing systems64, 65 or electronically excited molecules.  

For transition metal complexes, the prevalent degenerate orbitals (d or f orbitals) lead to a 

significant multireference character of their electronic structure, which cannot be accurately 

described by Kohn-Sham DFT.66 The strength of multireference character varies in different 

transition metal complexes. We hypothesize that our Δ-ML approach may have worse performance 

in molecules with significant multireference characters, where electronic structure errors dominate 

over solvent model errors. To test our hypothesis, we carried out the multi-reference (MR) 

character analysis67 on the OMROP data set, trying to correlate the Δ-ML performance with the 

MR diagnostic values. The specific MR diagnostic used is the rND diagnostics, which reflects the 

relative ratio of static and dynamic electron correlation in the molecule and can be efficiently 

obtained from finite-temperature DFT calculations. We used the ratio between the calculation error 

after (eML) and before (eraw) Δ-ML correction to quantify the Δ-ML performance (Figure 8). Hence, 

0< eML/eraw <1 indicates an improved result after Δ-ML; -1< eML/eraw <0 indicates a slight 

overcorrection, but the absolute error is still reduced; eML/eraw >1 indicates a worse result; and 



eML/eraw <-1 indicates a severely overcorrected result. To our surprise, the overall Δ-ML 

performance is better for molecules with more MR character (rND>0.3), because the Δ-ML models 

significantly overcorrect the E° error in some lower-MR-character molecules. A possible reason 

is that our Δ-ML approach empirically corrects all errors in the calculated results relative to 

experiments, including both electronic structure and solvation errors. The OMROP data set has 

Figure 8 Dependence of Δ-ML performance on the multireference (MR) character of the 

molecules. Δ-ML performance is measured by the ratio, eML/eraw, for the errors before and after Δ-

ML. The clustered bar charts show the normalized distribution (left) and direct count (right) of 

molecules with eML/eraw in different ranges. (-∞, -1]: red, (-1,0]: green, (0,1]: orange, (1, ∞): blue. 

In each panel, the statistic was done separately for molecules with low MR characters (rND<0.3) 

and high MR characters (rND≥0.3). Each row of panels is the result of one type of descriptor (SS, 

CM, EC, or cFP from top to bottom). 



more molecules (67%) with high MR-character, so the trained Δ-ML models bias towards 

appropriately correcting high-MR systems but overcorrecting the low-MR molecules. A potential 

solution to this problem is to develop separate Δ-ML models for correcting electronic structure 

errors and solvent model errors. However, this is beyond the scope of this work and will be 

investigated in the future.  

5 Conclusions 

This work exploits the Δ-ML solvent effects approach to reduce the errors in DFT-calculated 

solution-phase molecular properties compared to experimental measurements. We sought to 

understand the dependence of Δ-ML performance on the type of molecular property to predict 

(ground or excited-state), the type of input descriptors (SS, CM, EC, cFP), data set distribution, 

data set size, and feature selection. 

For the prediction of the ground-state redox potential of organic compounds (OROP data set), the 

SS, EC, and CM descriptors demonstrated a better performance than cFP. For the OMROP data 

set composed of organometallic compounds, the SS descriptor was the best descriptor. The 

transferability of the Δ-ML approach to excited-state properties was then tested on the ROAS data 

set of solution-phase UV/vis absorption spectra, for which the cFP descriptor had the best 

predictivity. Δ-ML always reduces the sensitivity of calculated properties to DFT functional 

choice, no matter which descriptor or ML model was used. We then analyzed why the optimal 

descriptor depends on the type of property to predict and data distribution. PCA analysis showed 

that the distribution of data in different feature spaces impacted the Δ-ML performance. 

Additionally, we analyzed based on the physical foundation of various descriptors. The SS 

descriptor is expected to have better performance for data sets with diverse net charges, whereas 



cFP is expected to be better at distinguishing neutral molecules. The EC descriptor is obtained 

from ground state molecules in equilibrium solvation and cannot give satisfactory predictions for 

absorption energy, which depends on excited states in non-equilibrium solvation. 

We also investigated the dependence of Δ-ML performance on the data set size. As the training 

set size increased, overfitting happened for a few cases where the chosen descriptor could not 

encode the variation in the data well. Typical examples are the Δ-ML models using the EC 

descriptor on OMROP and ROAS data sets. 

Furthermore, we sought to optimize the feature set using different feature-engineering strategies, 

including RF-RFA and SelectKbest. None of them resulted in a better Δ-ML performance (in terms 

of MAE) than directly using the best-performing feature set.  

Finally, we analyzed the limitation of our Δ-ML solvent effect approach. Although developed to 

correct errors caused by the inaccuracy of solvent models, our Δ-ML models empirically corrected 

all types of errors in the calculated properties, including electronic structure errors. For a diverse 

data set like OMROP, our Δ-ML approach may be biased towards correcting electronic structure-

related errors in molecules with significant multireference character and therefore overcorrecting 

other molecules. This motivates future developments of a multiple-step Δ-ML approach that 

corrects electronic structure errors and solvent effects related errors separately. 
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