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ABSTRACT 

Papain-like protease (PLpro) is one of the most promising targets for anti-SARS-CoV drugs. In this study, a bioactive 

library of FDA-approved drugs has virtually been screened using a new successful computational pipeline in the 

framework of the ensemble docking to identify potential binding molecules of  PLpro. Based on our protocol, 20 

FDA-approved drugs were found to bind the target enzyme with significant affinities and good geometries, 

suggesting their potential to be utilized against the virus. Our computational studies identified IMATINIB, a well-

characterized drug used in the treatment of lymphoblastic and chronic myeloid leukemia, as a potential inhibitor 

against PLpro. Subsequently, SIMEPREVIR, NALDEMEDINE, TUCATINIB, and some other FDA-approved drugs 

exhibit great affinities to the PLpro. These drugs are used in the treatment of several diseases such as cancer, 

schizophrenia, hypertension, hepatitis C, HIV infection, and AIDS showed high affinities in the screening. The high 

affinity of ligands was rationalized by the newly identified allosteric site named “BL2 groove”. Occupying this 

groove may disrupt access to the catalytic site and affect the protein function. The best binding mode and the 

efficacy of hydrogen bonds and hydrophobic interactions on inhibitory activities of ligands were also disclosed. 

Furthermore, our studies provide significant molecular insight into PLpro inhibition that could aid in the development 

of new drugs for COVID-19 treatment. 

Keywords: COVID-19, Virtual Screening, Ensemble Docking Simulations, FDA-approved drugs, Drug Discovery, 

Papain-like protease (PLpro). 

1. Introduction 

For months, an ongoing pandemic caused by a single-stranded RNA virus (SARS-CoV-2) has been one of the major 

challenges facing the world. However, efforts are underway to keep up with the flood of coronavirus and no 

definitive cure has been reported to date. In general, the multiple stages of the SARS-CoV-2 life cycle provide 

potential targets for drug therapy [1-10].  

 To fight the current pandemic, major attempts have been made to target the SARS-CoV-2 spike protein, RdRp 

(RNA-dependent RNA polymerase), and cysteine proteases (Chemotrypsin-like protease or main protease 

(3CLpro or Mpro) and Papain-like protease (PLpro)). In contrast to others, there are very few potent inhibitors of PLpro 



with efficacy validated experimentally [11]. The PLpro encoded within non-structural proteins (nsps) during the viral 

life cycle is one of the most promising targets for anti-SARS-CoV drugs [12]. Available crystal structures of PLpro 

reveal that this functional protein is composed of three domains: (a) a classic catalytic triad cysteine cleavage 

domain (Cys111, His272, Asp286) (b) a Zn-binding domain (Cys189, Cys192, Cys224 and Cys226) and (c) 

ubiquitin domain (Asp164, Arg166, and Glu167). Besides these significant domains, distal from the cysteine active 

site, a newly identified binding pocket, “BL2 groove”, has been identified in recent articles (consisting of residues 

Leu162, Asp164, Arg166, Glu167, Pro247, Pro248, Tyr264, Gly266, Asn267, Tyr268, Gln269, Tyr273, and 

Pro299) [13-15]. Varieties of potent natural and synthetic compounds, from natural herbal ones or diverse antiviral 

drugs, are introduced as therapeutic compounds (e.g. Remdesivir designed for the Ebola virus, Lopinavir/Ritonavir 

designed for the HIV, chloroquine and hydroxychloroquine designed for anti-malarial action etc.). These 

compounds are found to be effective but their efficacy still remains disputed. In this way, exploring the repurposing 

of existing drugs and developing new drugs are both of considerable interest [16].  

Computer-aided drug design has been a reliable technique in designing novel and potent therapeutics. The 

availability of multiple experimental protein structures has led to coping with the challenge of protein flexibility and 

induced fit at a lower computational cost via the ensemble docking technique. In this way, trial compounds are 

docked into binding sites of the protein ensemble and then ranked according to their strength of binding to identify 

initial hits for further experimental studies [17, 18].  

The development of new antiviral drugs is time-consuming [19]. Therefore, to speed up the process, we used a new 

docking protocol in the framework of the ensemble docking strategy to identify SARS-CoV-2 PLpro inhibitors from 

an unbiased existing bioactive library containing 1916 FDA-approved drugs [20]. Since the safety of these drugs is 

well established and their efficacy can be quickly tested, drug repurposing could be an efficient approach to find 

potential inhibitors against COVID-19. The performance of the docking protocol has been evaluated in predicting 

the correct binding modes for the available crystal structures of PLpro-ligand complexes.  

2.  Methods 

2.1. PLpro Structure Preparation 

To create a conformational ensemble of PLpro, 45 PLpro structures in the Protein Data Bank (PDB) were selected 

[21]. All protein chains were characterized and analysed based on information  which recorded in their PDB files 

(e.g. mutated/modified residues, missing atoms/residues, ligands information, resolution, alternate locations etc.) 

(Table S1 in the Supporting Information). It is noteworthy that 12 protein-ligand complex were covalently bonded to 

the thiol group of Cys111 side chain in an irreversible manner. In addition, Cys/Ser mutation were observed in 

Cys111 catalytic residue in 16 protein-chain structures (6WRH_A, 6XG3_A, 6YVA_A, 7CJD_D, 7CJD_A, 

7CJD_B, 7CJD_C, 7CJM_B, 7D47_A, 7D47_B, 7JIR_A, 7JIT_A, 7JIV_A, 7KOJ_A, 7KOK_A, 7KRX_A). The 87 

monomeric chains were identified from the 45 PDB files of the PLpro, which 36 of the chains were discarded due to 

having the missing functionally important segments in the catalytic pocket of the PLpro (which includes a Cys111-

His272-Asp286 catalytic triad). 

The intersection of residues involved in the formation of β-sheets in the thumb and palm domains which contain 41 

residues was used to drive the structural alignment process (Table S2). All PLpro monomeric chains were aligned on 

the Cα atoms of the selected residues of 6WRH chain A as a reference structure, which is a high-quality crystal 

structure of the PLpro with a resolution of 1.6 Å. The pairwise RMSD values for all above Cα atoms between every 



pair of the aligned protein structures of the PLpro did not exceed 0.48 Å.Even though we are all aware that the 

average nature of the RMSD measure does not capture local structural changes/dissimilarities between structures 

[22], this small amount of RMSD indicates the significant conformational stability of β-sheets (in the presence or 

absence of ligands) for use in alignment staging. In the following sections, to gauge conformational changes and 

structural differences between two protein structures, pairwise RMSD values between individual the same pairs of 

residues (including all backbone and side-chain atoms) belonging to various pairs of the aligned protein structures 

were evaluated. This subject will be clarified more in the next sections. 

2.2. Defining PLpro Active Site  

The structural analysis of protein structures showed that 46 out of 51 protein chains were in complex with at least 

one ligand - from very small molecular fragments to very large peptidomimetic inhibitors. All the ligands were 

characterized by their approximated center and size that were defined by the centroid and the longest distance 

between two atoms of the ligands, respectively (Table S3). The distribution of ligands’ position in the protein 

structure based on their scaled approximate bounding sphere is shown in Figure 1a. To create a lucid and tangible 

2D-representation of ligand distribution in the Cartesian space of protein structure, a principle component analysis 

(PCA) was down on ligands’ centroid [23, 24]. Figure 1b shows the projection of the ligands’ centroid distribution 

onto the subspace spanned by the first two principal components (PC1 and PC2) obtained from PCA. In Figure 1b, 

closed and overlapped circles occupy the same region on protein surface. By considering Figures 1a and 1b, six 

separate regions are observed on the protein space, the most populated one (33 out of 46) is located at the same 

region that is known as the PLpro binding site - a cleft between the thumb and palm domains [13-15]. Other sparsely 

distributed ligands should be discarded for the binding site analysis. 

  
 

Figure 1: (a) Representation of ligands’ position distribution in protein structure and PLpro binding site. Defined active site is shown in orange and 

surface wired-frame representation. (b) Projection of ligands centroid distribution to the subspace spanned by PC1 and PC2 on Cartesian 

coordinates of ligands centers. 

In order to define PLpro general active site, for all holo forms, all interacting amino acids that had even one heavy 

atom at a cutoff 3.5 Å were included in the definition. Therefore, a pocket that was defined with 21 unique amino 

acids were considered as general binding site of PLpro to use in further calculations (Table S4 and Figure 1a). This 

binding pocket definition is in good agreement with other studies based on different methods [15, 16]. It should be 

a  b



noticed that after defining the general active site, 6W9C chain A was omitted from protein structure data due to 

existing some missing residues in the active site. 

 The “relative importance” of the general binding site residues was determined by the percentage of occurrence 

contacts of the residue in 33 protein-ligand complexes (see Table S4). For example, based on the “contact-

importance” factor, Asp164 is the most important residue in PLpro active site. This amino acid is located at ubiquitin 

domain of PLpro and plays a crucial role in protein activity [14,15]. Considering Table S4 shows that the general 

binding site includes all previous definitions of different PLpro domains (cysteine domain, ubiquitin domain, and  

BL2 groove) and is in good agreement with recent studies on PLpro active site [15, 25]. Relative importance data 

could be employed to select an optimal sub-set of PLpro residues for performing quantum mechanics (QM) 

calculations, especially for studying covalent inhibition mechanism [6, 26].  

Another notable parameter for the active site residues is their flexibility. Accordingly, “residue flexibility” (RF) was 

defined as 𝑅𝐹 ൌ 100 ∗ 𝑁ோெௌ஽ ൫𝑁஼௢௠௣௟௘௫
ଶ െ 𝑁஼௢௠௣௟௘௫൯⁄ , where 𝑁ோெௌ஽ is the number of pairwise RMSD matrix 

elements with values more than 0.7 Å and 𝑁௖௢௠௣௟௘௫ is the number of complex that RMSD calculation was done for 

their general binding site residues (33 complex). In this way, the more flexible residues would have more RMSD 

matrix elements with values higher than 0.7 Å. The “relative importance” and the “residue flexibility” of the 

residues belonging to the general binding site have been displayed in Figure 2. For example, based on values 

reported in Figure 2 and Table S4 Asp164, Tyr268, Tyr264, Gln269, Gly163 and Pro248 residues in more than 75% 

of the complexes have effective contacts with their ligands (within the distance cutoff 3.5 Å). consequently, such 

residues are important and should be considered for determination of the binding pocket that this finding is in 

excellent agreement with recent studies [13-15]. Moreover, Thr301, Gly163, Asp164, Tyr264, Glu167, Gly271, and 

Pro242 have RF values lower than 60% and the loop structure. it did not seem farfetched that these most flexible 

residues belong to the BL2 groove. On the other hand, in comparison with other residues, Cys111 in the catalytic 

triad has the lowest flexibility. It is important to note that quantifying flexibility results can be used to identify and 

select an optimal set of flexible binding site residues for induced-fit docking (IFD) and flexible docking methods 

[27, 28]. 

 

Figure 2. The “relative importance” and the “residue flexibility” of the residues belonging to the general binding site. 



2.3. Conformational Ensemble Generation 

In this step, the pairwise RMSD matrix of general binding site residues were calculated for all 51 PLpro chains and 

the single-linkage hierarchical agglomerative clustering method based on the Ward Variance Minimization 

Algorithm was employed to detect representative protein structures [29-30]. A conformer belongs to a cluster if not 

only the pairwise RMSD average values with all members of the cluster are less than 1.2 Å but also the number of 

the pairwise RMSD values greater than 2.0 Å is less than three. The clustering result is depicted in Figure 3. As can 

be seen in this figure, the clustering yields 8 clusters that the population of each cluster is mentioned in the boxes. 

As it turns out, by loosening the clustering criteria clusters will merge and the number of them will decrease. Given 

the clustering constraints and the computational cost of calculations simultaneously, choosing eight conformers 

seems optimal for constructing a conformational ensemble of PLpro. In each cluster, structures with the lowest 

average RMSD than the others were selected as representatives. In cases where there were more than one 

representative conformer ones that had better resolution was chosen.  PDB IDs and their corresponding chains for 

the representative structures were depicted in Figure 3.  

 

Figure 3: Bottom-up tree dendrogram of the clusters obtained using the Ward’s hierarchical method. The population of each cluster is given in 

each box and the PDB IDs of the representative structures for each cluster are also displayed below the boxes. 

2.4. Ensemble docking  

For representative PLpro structures, hydrogen atoms and missing atoms were retrieved using REDUCE software [31] 

and PSFGEN package within VMD software [32], respectively. During retrieving hydrogen atoms, side-chain 

flipping was considered based on the hydrogen-bonding patterns and the chemical environment, most of the 

histidine residues were protonated at Nε (i.e., HSE) and some of them were protonated at Nδ (e.g. His275). The 

prediction of protonation states and side-chain flips for the histidine residues found near the substrate-binding region 

can be found in Table S5. In addition, the basic residues (Arginine/Lysine) and the acidic residues 

(Aspartic/Glutamic) of all the structures were assigned positive and negative charges, respectively.  

Protonated structures were optimized using the NAMD.2.13 program [33] with the CHARMM36m force field and 

generalized Born implicit solvent (GBIS) to regulate the structure in the CHARMM36m force field, and in 

particular to reduce the steric conflicts that may occur in the system. Minimization was performed for 20000 steps of 

the conjugated gradient where during the first 10000 steps protein heavy atoms were restrained with a positional 

harmonic force of 200 kcal/molꞏÅ2 followed by 10000 steps with the harmonic force of 100 kcal/molꞏÅ2. In all 

minimizations, the gradient has been reduced below 0.05 (kcal/mol)/Å. 

Three-dimensional structures of the FDA-approved drugs, containing 1993 compounds, were downloaded from the 

Cheminformatic Tools and Database for Pharmacology site in the structure-data file (SDF) format [34]. The 



structures with more than 20 rotatable bonds were excluded from subsequent calculations, due to the well-known 

fact that the docking success rates decrease with increasing the number of active rotatable bonds [doi: 

10.1038/nrd1549 and 10.1002/prot.20088]. In addition, six ligands that contain Boron element (B) were deleted 

from the ligands library due to the lack of force field parameters for this element. All 1910 remaining ligands were 

geometrically optimized in the gas phase using the PM7 [35] semi-empirical quantum mechanics (SQM) method 

with MOPAC2016 [36] while the gradient norm was set to 10 kcal mol−1Å−1. It is noteworthy that the PM7 is a fast 

and successful SQM method that reliably describes various types of noncovalent interactions and some important 

chemical observations, such as the planarity of conjugated rings or molecular fragments [37]. 

The initial docking search space was determined based on the active site definition of PLpro – as described in section 

2.2. This definition includes all the bound ligands from small-molecule fragments to large peptidomimetic inhibitors 

at the catalytic binding site. Then the box size was extended by 5 Å in each of the three dimensions to ensure that 

the docking search space is large enough for the ligands to rotate in [38, 39]. The final docking box was included in 

a box of 20 × 23 × 27 Å3, centered on the mean of the geometric centers of all of the considered ligands. 

Docking simulations were performed for all 1910 ligands and 8 representative protein conformers with both 

AutoDock4.2.5.1 and AutoDock Vina1.1.2 software [38, 39]. Input files of docking with AutoDock were prepared 

automatically with Python scripts provided by MGLTools [40] and a Lamarckian genetic algorithm with an initial 

population of 500 was repeated 200 times for each ligand-receptor complex, therefore 200 models are built in each 

run. A grid spacing of 0.375 Å and a distance-dependent function of the dielectric constant was used for the 

calculation of the energetic maps with the program AutoGrid4[41]. The default settings were used for all other 

parameters. For Vina calculations, the exhaustiveness parameter was increased to 500 in order to enhance the 

probability of finding the proper ligand conformations [42]. Each Vina run generates 20 poses. 

All optimized ligands (1910 ligands) were docked in the conformational ensemble of the 8 prepared representative 

PLpro structures (described in Sections 2.3). In total, 1600 (= 8 × 200) poses by AutoDock and 160 (= 8 × 20) poses 

by Vina were calculated for each ligand. All the predicted docking poses for each ligand were collected separately 

for each docking program and re-clustered based on the symmetry corrected heavy-atom RMSD algorithm 

implemented in AutoDock4 with an RMSD cutoff of 2.0 Å [20, 47-51]. As a result, all predicted poses of a given 

ligand into multiple different conformations of the PLpro binding site are simultaneously organized and clustered for 

identifying representative poses and subsequent analyses. It is noteworthy to mention that using an ensemble of rigid 

receptor conformations in docking simulations (i.e. ensemble docking) is the most common strategy to cope with the 

receptor flexibility problem in rigid docking procedures[18, 20, 43, 44]. Additionally, ligands flexibility are 

considered based on active rotatable bonds during the docking calculations, despite the fact that the docking success 

rates decrease with increasing the number of active rotatable bonds [45,46]. 

3. Results and discussion 

Based on our recent researches, the top-ranked poses (with the lowest-energy poses) from the first and the most 

populated clusters are chosen as the representative poses for each docked ligand [20, 37, 47]. Therefore, we focus on 

the two representative docking poses for each ligand and use their docking scores, instead of considering the mean 

over docking score of the top-ranked poses of all representative PLpro conformations or taking the best-scoring 



binding poses from an aggregation of all predicted docking poses (the lowest scoring poses of ensemble docking), as 

routinely utilized in an ensemble docking protocol [18, 43-44, 49-50].  

The above-mentioned computational pipeline (including the structural clustering strategy to construct the protein 

ensemble for performing docking calculations and the proposed manner to choose the representative docking poses 

from the ensemble docking results) has already been used for correctly predicting experimental binding poses and 

affinity ranking of Mpro-ligand complexes [20] and thus can be utilized to properly produce a rank-ordered list of the 

FDA-approved drugs. Accordingly, two rank-ordered lists of the docked FDA-approved drugs have been produced 

for each of both AutoDock and Vina software, one for those called the first clusters and others for the most 

populated clusters. The top 20 FDA-approved drugs for both the first and the most populated clusters are shown in 

Table 1 (the top 100 compounds are given in Tables S6 and S7 in the Supporting Information). 

Table 1. The top 20 FDA-approved drugs obtained from the top-ranked poses of the first and the most populated clusters (using AutoDock and 

Vina software). 

 First Clusters Most Populated Clusters 

 AutoDock Vina AutoDock Vina 

Rank Drug Names Drug Names 

1 VENETOCLAX  CONIVAPTAN  PLERIXAFOR  CONIVAPTAN  

2 CAPMATINIB  OLAPARIB  GENTAMICIN  PAZOPANIB 

3 IMATINIB  LUMACAFTOR  LURASIDONE  TROVAFLOXACIN 

4 ZAFIRLUKAST NILOTINIB THIOTHIXENE VEMURAFENIB 

5 PLERIXAFOR  PAZOPANIB PONATINIB TELMISARTAN 

6 CABOZANTINIB  TROVAFLOXACIN M RIFAPENTINE PHENYTOIN 

7 IRINOTECAN  VEMURAFENIB PIMECROLIMUS  DOLUTEGRAVIR  

8 GENTAMICIN  TELMISARTAN ERIBULIN  ADAPALENE 

9 LURASIDONE  PHENYTOIN BRIGATINIB  BEXAROTENE  

10 SIMEPREVIR  DOLUTEGRAVIR  TUCATINIB TIPRANAVIR  

11 THIOTHIXENE BICTEGRAVIR NETARSUDIL  MAZINDOL  

12 PONATINIB ENTRECTINIB ZANUBRUTINIB  PERAMPANEL  

13 M RIFAPENTINE ADAPALENE CALCIFEDIOL OLAPARIB  

14 PANCURONIUM TROGLITAZONE  CALCITRIOL  IMATINIB  

15 NALDEMEDINE BEXAROTENE  SIMEPREVIR  LUMACAFTOR  

16 TUCATINIB TIPRANAVIR  IVERMECTIN  NETARSUDIL  

17 EVEROLIMUS  MAZINDOL  TIPRANAVIR  FEXOFENADINE  

18 CILOSTAZOL  CARBENICILLIN INDANYL IMATINIB  NILOTINIB 

19 PIMECROLIMUS  TROGLITAZONE  PIPERACETAZINE GLYBURIDE 

20 ERDAFITINIB PERAMPANEL  RALOXIFENE  BINIMETINIB 

 

The analysis and comparison of  the screening results show that there are several common drugs among the top 100 

ranked-ordered lists of the aforementioned protocols. Eventually, 20 common FDA-approved drugs were found in 

all tables obtained from the representative poses of the first clusters and the most populated clusters (Tables S6-S7). 

These 20 common drugs and their medical uses in the treatment of different diseases and their 2D-chemical 

structures are shown in Table 2 and Figure S1. From the computational viewpoint, it means that these FDA-



approved drugs target the PLpro protein and can be considered potential antiviral drug candidates in the treatment of 

COVID-19. 

Table 2: Docking scores (in kcal.mol-1) of the top 20 common FDA-approved drugs (obtained from the 100 top-ranked poses of Tables S6 and 

S7) 

No. Name 
First Clusters Most Populated Clusters 

Used in the treatment of: 
AutoDock Vina AutoDock Vina 

1 IMATINIB  -11.95 -9.30 -10.54 -9.30 Lymphoblastic and Chronic Cyeloid leukaemia 

2 SIMEPREVIR  -11.20 -8.80 -10.59 -8.80 Chronic Viral Hepatitis C 

3 NALDEMEDINE -11.07 -9.00 -9.61 -8.50 Constipation  

4 TUCATINIB -11.07 -9.30 -10.71 -9.10 Breast Cancer 

5 ERDAFITINIB -10.94 -8.80 -10.41 -8.80 Metastatic Urothelial Carcinoma 

6 BRIGATINIB  -10.81 -8.90 -10.81 -8.50 Lung Cancer 

7 NILOTINIB -10.80 -9.70 -10.17 -9.20 Chronic Myelogenous Leukemia 

8 ELTROMBOPAG -10.76 -9.10 -10.08 -9.10 Cancer 

9 TELMISARTAN -10.70 -9.60 -10.12 -9.60 Hypertension 

10 NETARSUDIL  -10.66 -9.30 -10.66 -9.30 Glaucoma or Ocular Hypertension 

11 ZANUBRUTINIB  -10.64 -9.40 -10.64 -8.70 Mantle Cell Lymphoma (MCL) 

12 TIPRANAVIR  -10.56 -9.50 -10.56 -9.50 HIV infection and AIDS 

13 RISPERIDONE -10.53 -9.00 -9.72 -9.00 Mania and Schizophrenia 

14 PALIPERIDONE  -10.48 -9.00 -9.85 -9.00 Schizophrenia 

15 CERITINIB -10.33 -8.90 -9.63 -8.80 Lung Cancer  

16 LUMACAFTOR  -10.31 -9.80 -9.93 -9.30 cystic fibrosis 

17 AVAPRITINIB -10.29 -8.90 -10.29 -8.90 Metastatic Gastrointestinal Stromal Tumours 

18 MENTRECTINIB -10.22 -9.20 -10.22 -9.20 Lung Cancer 

19 BAZEDOXIFENE  -10.21 -9.00 -10.21 -9.00 Vasomotor Symptoms and  Menopause 

20 PERAMPANEL  -10.16 -9.40 -10.16 -9.40 Partial Onset Seizures 

 

The screening results show that a number of cancer drugs (IMATINIB, TUCATINIB, ERDAFITINIB, 

BRIGATINIB, NILOTINIB, ELTROMBOPAG, ZANUBRUTINIB, CERITINIB, AVAPRITINIB, 

MENTRECTINIB), schizophrenia drugs (RISPERIDONE, PALIPERIDONE), hypertension drugs 

(TELMISARTAN, NETARSUDIL), hepatitis C drug (SIMEPREVIR) and HIV infection and AIDS drug 

(TIPRANAVIR) display high binding affinities to PLpro protein. Our results are in agreement with others’ work that 

introduce possible drug candidates as PLpro inhibitors (e.g. Antivirus, Antihypertensive, Antibacterial, 

Antipsychotic, Anti-tumor, and anti-hepatic drugs) [52-54]. They demonstrate that some FDA-approved drugs that 

are used in the treatment of other diseases can be used as therapeutic agents in COVID-19. (e.g. Acetophenazine, 

Sulfasalazine, Dutasteride, Atovaquone). It is noteworthy that these drugs have also appeared in our 100 top-ranked 

lists.  

A detailed survey of the chemical structures in Figure S1 demonstrates that most of the top-ranked compounds are 

Naphthalene-based that are of particular interest for their inhibitory activity against SARS-CoV-2 PLpro [54,55]. In 

some inhibitors, the Naphthyl ring is replaced with a biaryl group scaffold. It has been shown that this replacement 



is a promising development in this class of inhibitors as it likely represents a metabolic liability along the path to the 

clinic [56]. These findings can inspire the discovery of a new generation of naphthalene-based PLpro inhibitors. 

A detailed insight into the contacts and noncovalent interactions in docking-generated complexes has been obtained 

by LigPlot [57]. Careful inspection of the results shows that most of the 20 common ligands are located in the “BL2 

Groove” binding pocket and Ubiquitin domain that are far from the classical catalytic triad. As mentioned before, 

the “BL2 Groove” is positioned at the N-terminal side of the BL2 loop and composed of hydrophobic amino acids 

such as Pro299, Pro248, Tyr264, Pro247, Gln269 and hydrogen bonding residues such as Gly266, Tyr268, Leu162, 

Asn267, Tyr273, Arg166, and Asp164.  The strong hydrogen bonding and hydrophobic interaction between FDA-

approved drugs with the enzyme imply that they can be potent PLpro inhibitors. (Figure4 and Figure S2). 

Additionally, the inhibitors' orientations show that the BL2 loop is in direction of the catalytic site and occupying 

the BL2 groove can disrupt access to this site and affect the protein function by preventing the substrate from 

entering the active site in a non-competitive inhibition manner [54]. These results are in agreement with others' 

works and confirm the possibility of identifying allosteric inhibitors against SARS-CoV-2 PLpro [58,14].  

 

 
Figure 4: Docked complexes and binding details of the two drugs from 20 common FDA-approved drugs. Hydrogen bonds are shown as dotted 

green lines. Residues involved in hydrophobic interactions are represented as lines in red and ligand atoms in hydrophobic contacts are 

surrounded by red lines 

 

4. CONCLUSION 

The SARS-CoV-2 papain-like protease (PLpro), is a key target for the design of inhibitors to tackle virus activity in 

host cells. Lately, computer-aided drug design techniques are reliable, affordable, and less time-consuming in 

designing novel therapeutics.  

The objective of this work is the identification of potential inhibitors of SARS-CoV-2 PLpro protease from FDA-

approved drugs using molecular docking. In this work, we used a new docking protocol in the framework of the 

ensemble docking strategy to identify SARS-CoV-2 PLpro inhibitors from a library containing 1910 FDA-approved 

drugs against PLpro proteases. The computational pipeline and its reliability are discussed in our recent work for 

Mpro-ligand complexes and has now been employed to properly rank 1910 FDA-approved drugs during their 



screening against PLpro target [20]. In this way, 100 top-ranked of drugs for four different used protocol were 

introduced and 20 common compounds were analyzed in details. It has been shown that the high flexible BL2 loop 

can regulate the binding cavity accessibility and besides the catalytic triad, the “BL2 Groove” should be considered 

as an allosteric pocket.  

We demonstrate that some FDA-approved drugs which are used in the treatment of cancer, schizophrenia, 

hypertension, hepatitis C, HIV infection, and AIDS exhibit high binding affinity to PLpro protein and can be used as 

therapeutic candidates in the treatment of COVID-19. Obviously, performing comprehensive molecular dynamics 

(MD) simulations, experimental assays, and clinical trials are necessary to confirm their actual activity against 

COVID-19. 

From a chemical scaffold point of view, we show that naphthalene-based drugs along with biaryl group substituted 

compounds have inhibitory activity against SARS-CoV-2 PLpro. Ensemble docking studies accented to the non-

competitive inhibition mechanism and confirmed the existence of allosteric sites in the PLpro structure. The binding 

mode analysis confirms the contribution of hydrogen bonds along with extensive hydrophobic interactions to 

inhibition of activity. 
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