
Protein trapping by dielectrophoresis

Trapping proteins on nanopores by dielectrophoresis
Taylor Colburn1 and Dmitry V. Matyushov2

1)Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504
2)School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe,

AZ 85287-1504

(*Electronic mail: dmitrym@asu.edu)

Interest in the phenomenon of dielectrophoresis has gained significant attention in recent years due to its potential for
sorting, manipulation, and trapping of solutes, such as proteins, in aqueous solutions. For many decades protein dielec-
tropheresis was considered impossible, as the predicted magnitude of the force arising from experimentally accessible
field strengths could not out-compete thermal energy. This conclusion was drawn from the mainstay Clausius-Mossotti
(CM) susceptibility applied to the dielectrophoretic force. However, dielectric interfacial polarization leading to the
CM result does not account for a large protein dipole moment which is responsible for the dipolar mechanism of di-
electrophoresis outcompeting the CM induction mechanism by three-four orders of magnitude in the case of proteins.
Here we propose an explicit geometry within which the dipolar susceptibility may be put to the test. The electric field
and dielectrophoretic force are explicitly calculated, and the dependence of the trapping distance on the strength of
the applied field is explored. A number of observable distinctions between the dipolar and induction mechanisms are
identified.

I. INTRODUCTION

Dielectrophoresis (DEP) is a general phenomenon in which
a neutral particle experiences a force from a nonuniform elec-
tric field,1–3 in contrast to the electrophoretic force acting on
a charged particle. The DEP force is not strictly speaking a
mechanical force as it arises from the dependence of the free
energy of the particle in a nonuniform external field on its po-
sition. The free energy in the field FE(r), depending on the
particle coordinate r, is a special case of the potential of mean
force. Its spatial gradient leads to the thermodynamic force
fDEP = −∇FE involving an entropic component. The origin
of the free energy is the interaction of the average dipole mo-
ment at the particle 〈M0〉E with the (Maxwell) electric field E

in the dielectric medium

FE =−
εs

2
〈M0〉E ·E, (1)

where εs is the dielectric constant (relative electric
permittivity4) of the medium.

The neutral particle is viewed as being polarizable, that is
the dipole moment 〈M0〉E = 〈M0〉 is zero in the absence of
the field and is proportional to the field in the lowest order in
E

〈M0〉E ∝ E. (2)

Substituting Eq. (2) into Eq. (1) and taking the spatial deriva-
tive of the electrostatic free energy yields the DEP force pro-
portional to the gradient of the electric field squared

fDEP = ε0χDEP∇E2, (3)

where ε0 ≃ 8.854× 10−12 (F/m) is the vacuum permittivity.
By the fact of relating the force to the external field squared,
the DEP susceptibility χDEP is a nonlinear5 (quadratic) trans-
port coefficient. Calculation and measurement of χDEP is the
main challenge to applications of DEP to forces acting on par-
ticles of the nanometer length scale.

It is convenient to scale the DEP susceptibility with the di-
mensionless polarization parameter K

χDEP =
3
2

εsΩ0K. (4)

Here, Ω0 = (4π/3)R3
0 is the volume of a particle repre-

sented by a sphere with the effective radius R0. The stan-
dard procedure to evaluate 〈M0〉E and χDEP involves solv-
ing the Maxwell boundary-value problem4 for the polarization
of the surface diving the dielectrics assigned to the particle
and surrounding medium. This solution leads to the polariza-
tion factor K = KCM specified by the Clausius-Mossotti (CM)
form3,6,7

KCM =
εp − εs

εp + 2εs

≃−
1
2
. (5)

It is constructed with the dielectric constants of the protein,
εp, and the solvent, εs; the common condition εp ≪ εs leads
to second approximate relation.

Given that K =KCM in Eqs. (4) and (5) depends only on the
dielectric constants at the dielectric interface, the DEP sus-
ceptibility scales linearly8 with the volume of the particle or
proportionally to the cube of particle’s effective radius R0

χCM
DEP =

3
2

εsΩ0KCM ∝ R3
0. (6)

The particle size is the most significant parameter in defin-
ing the DEP force in Eq. (6). When applied to proteins, their
relatively small size, R0 ∼ 1 nm, yields a force too low to trap a
protein at the practical field strength E ≤ 100 kV/cm.9–12 Nev-
ertheless, Washizu et al demonstrated protein trapping with
fields E ∼ 10 kV/cm, an order of magnitude smaller than
expected.13 This observation had remained puzzling14 until
it was recognized that a large intrinsic permanent dipole mo-
ment of a protein produces an induced dipole 〈M0〉E nearly
four orders of magnitude higher than what follows for the
induced dipole from the CM factor.15 The DEP susceptibil-
ity from the permanent dipole moment was also predicted to
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carry a sign of the polarization factor K opposite to that from
Eq. (5): positive from the protein dipole vs negative for the
CM factor. This theoretical prediction opened the door to ap-
plications of DEP to protein trapping and a number of po-
tential systems where such effects can be realized have been
identified.6,12,16–21 It is now increasingly appreciated that DEP
susceptibilities of proteins are mostly consistent between dif-
ferent reports6,19,22 and do not follow dielectric predictions
based on the CM factor.22–25

The electric field magnitude required for trapping the pro-
tein can be estimated by a balancing condition equating the
magnitude of the free energy |FE | to the thermal kinetic en-
ergy of the particle:6,13,26 (3/2)kBT . The resulting equation
for the trapping field strength is

Etrap ≃ (β ε0εsΩ0K)−1/2 ≃ 3.8× 102 1
√

KR3
0

. (7)

Here, the field is in kV/cm and K = |KCM| for the nega-
tive DEP in the CM model (Eq. (5)) or K = Kd for positive
DEP due to protein’s dipole as discussed below. The second
equality is estimated for εs ≃ 78 of the aqueous solution and
T = 300 K; R0 is in nm. For the parameters of lysozyme in
Table I with K = Kd , one obtains Etrap ≃ 3 kV/cm.
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FIG. 1. Diagram of the nanotrap. A uniform field is applied to a
grounded conducting plane with a circular hole. A dilute solution
flows through the top chamber with the velocity v. Near the aperture,
the protein molecule carrying the permanent dipole M0 is pulled into
the field gradient to be trapped at the point with cylindrical coordi-
nates (z∗,ρ∗).

The purpose of the present article is to offer a simple analyt-
ical trapping geometry that may allow testing theory predic-
tions and potentially be applied to building practical trapping
devices. The gradient of the electric field is produced by a cir-
cular solid-state nanopore27–29 cut through a conducting plate
of a plane capacitor with the asymptotic electric (Maxwell)
field Eapp in its lower part (Fig. 1). Applying this condition
to a particle carrying the permanent dipole M0 and positioned
at the symmetry axis of the nanotrap in Fig. 1, one obtains
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FIG. 2. Energy balancing distance z∗ at ρ = 0 (Eq. (8)) as a func-
tion of the applied field Eapp for lysozyme and concanavaline pro-
teins (Table I). The dipole approximation (dashed lines) converges
on the general solution (solid lines) for sufficiently large applied field
strengths.

the following condition for the trapping distance z∗ along the
z-axis (see below for details)

z∗

d
=

(

4β Ω0ε0εsK

9π2

)1/6

E
1/3
app , (8)

Substituting fundamental constants, one obtains

z∗

d
= 0.103×

(

εsK

T

)1/6

R
1/2
0 E

1/3
app , (9)

where Eapp is in kV/cm, temperature T is in K, and the radius
R0 is in nm. The analytical result in Eq. (8) is obtained in the
dipolar limit of the full analytical solution discussed below.
Figure 2 compares Eq. (8) to the full solution showing that the
dipolar approximation is accurate at z∗/d > 1.

The trapping distance z∗ reaches zero value at the applied
field

E∗
app = 6.7× 103 1

√

εsKR3
0

, (10)

where the field is in kV/cm and R0 is in nm. This threshold
electric field can be viewed as the lowest field in the capacitor
device to allow protein trapping. This value becomes equal to
E∗

app ≃ 5 kV/cm with the parameters of lysozyme in Table I.
Our discussion starts with the review of the standard polar-

ization model of DEP (Eq. (5)) and the model based on in-
duced orientation of the molecular permanent dipole.15 These
results are applied to deriving trapping conditions on a cir-
cular nanopore (Fig. 1). The dipolar DEP susceptibility
χDEP has not been directly measured so far, but an alterna-
tive route based on solution dielectric measurements has been
identified.24,25 We conclude with outlining predictable con-
sequences of the model and critical experiments that can be
used to distinguish between dielectric polarization and dipo-
lar orientational mechanisms of DEP. The present model does
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TABLE I. Dielectric and DEP data for proteins in solutions.

Protein Mp
a(kDa) ∆εsol/c0,bmM−1 Kd

c χc
d M0, D R0, nme y0

Ubiquitin (Ubiq) 8.6 3.82 8354 1.08 221 1.37 153
Cytochrome c (Cyt-c) 13 6.70 6643 1.09 238 1.87 70
Lysozyme (Lys) 14.3 1.75 3751 1.20 208 1.79 61
Trypsin (Tryp) 23 6.74 7126 1.30 271 2.0 74
Carboxypeptidase (Carb) 34 37.24 28464 569 2.12 275
Hemoglobin (Hb) 64 26.9 12155 1.12 495 2.57 115
BSAf,g 66 1.11 3849 1.13 384 3.31 33
Concanavaline (Conc) 102 15.31 16474 433 1.91 217
IgGf 150 25.9 4552 1.14 840 4.3 70

a Molecular mass
b Taken from Refs. 6 and 7 and other experimental data as explained in Supplementary Material.
c From experimental data (Eq. (29)); εs = 78.4 and ε∞ = 3.2.
d Estimates from dielectric measurements (Eq. (31)).
e Protein radii are calculated in Supplementary Material.
f BSA=bovine serum albumin, IgG=immunoglobulin G
g Recent measurements21 involving a eDEP trapping configuration report K = 402 and 5 for lysozyme and BSA, respectively. The calculated ∇E2 was not

corrected for electrolyte screening.

not account for the polarization of the double electrolyte layer
around the protein30 and, therefore, is limited, in practical ap-
plications, by frequencies of the applied field exceeding ∼ 1
kHz.22

II. PHYSICAL MODEL

The CM equation (5) is derived by assuming that the di-
viding surface between the dielectric medium and the pro-
tein molecule is polarized by the field of external charges E0
resulting in the macroscopic Maxwell field E inside the di-
electric medium. The induced dipole is directed opposite to
the applied field (Fig. 3a, negative DEP) when the medium is
more polarizable than the particle (εs > εp). The dipole mag-
nitude assigned to an effective sphere representing the solute
is4,31

M
ind
0 =−3ε0Ω0

εs − εp

2εs + εp

E. (11)

When substituted to Eq. (1), this equation leads to the DEP
susceptibility in Eqs. (5) and (6).

An alternative mechanism of inducing a dipole at the par-
ticle is through aligning the permanent dipole M0 along the
external field E. Random rotations of M0 produce 〈M0〉 = 0
in the absence of the field (E = 0), but there will be a net av-
erage dipole moment 〈M0〉E in the presence of the field (Fig.
3b). This dipole moment is found by applying the first-order
perturbation theory in terms of the perturbation−M ·E0 align-
ing the solute and liquid dipoles along the field of external
charges E0.4 The external field acts on the entire dipole of the
system

M =
N0

∑
i=1

M0,i +Ms (12)

including the dipole moment of the medium (solvent) Ms and
N0 non-interacting protein dipoles M0,i (infinite dilution). By
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FIG. 3. Schematics of the dipole moment M
ind
0 induced at a po-

larizable particle (a) and the dipole moment 〈M0〉E averaged over
orientations of the permanent dipole moment M0 in the presence of
the external field E inside the dielectric (b). “+” and “−” in (a) in-
dicate surface charges induced at the dielectric interface. Tumbling
of the permanent dipole with the relaxation time τp of dielectric β -
relaxation result in 〈M0〉= 0 in the absence of an external field. The
average dipole 〈M0〉E in the presence of the field is oriented along
the field, while the induced dipole M

ind
0 is opposite to the field when

the solvent is more polarizable than the protein.

neglecting interactions between protein dipoles in solution,
one can apply the first-order perturbation theory15,32 to find
the magnitude of the individual protein dipole aligned along
the field

〈M0〉E =
εs

3
β 〈M0 ·M〉E =

εs

3
β χcM2

0 E. (13)

Here, the statistical average 〈. . . 〉 refers to no applied elec-
tric field and the macroscopic connection E0 = εsE between
E0 and E through the medium dielectric constant has been
adopted. Equation (13) assumes that the induced dipole is a
small fraction of the permanent dipole of the protein (linear re-
sponse). This assumption can be violated in very strong fields:
one gets 〈M0〉E/M0 ≃ 0.2 at E ≃ 1 kV/cm and M0 = 100 D.
The replacement of the left-hand-side of Eq. (13) with the
Langevin function33 is needed in strong fields.

The average dipole in Eq. (13) aligned along the field is
specified by statistical correlations between the particle dipole
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M0 and the total dipole moment of the sample M (first rela-
tion in Eq. (13)). The cross-correlations, 〈M0 ·Ms〉, between
M0 and solvent component of the sample dipole Ms are ac-
counted for by the cavity-field susceptibility15 χc in the sec-
ond relation in Eq. (13). This susceptibility is defined as the
ratio of the electric field inside the solute (cavity) Ec and the
field of external charges E0 (vacuum field). The cavity-field
susceptibility is difficult to measure directly, but it was found
to be close to unity, χc ≃ 1.0− 1.4, in numerical simulations
of proteins24,25 and can be dropped in practical calculations.

The vacuum field E0 of external charges sets up the pertur-
bation used in statistical-mechanical formulations of the the-
ory. In needs to be related to the Maxwell field inside the
dielectric E for practical calculations. The simple connec-
tion εsE = E0 used here applies only to equipotential sur-
faces produced by immersing conductors into dielectrics34

and becomes inapplicable when interfaces between dielectrics
with different dielectric constants are involved in producing E

(such as in insulator-based, iDEP, applications). Our present
calculations apply only to that former configuration realized in
electrode-based (eDEP) devices.3 One has to realize that DEP
requires a gradient of the field E0 produced by free charges,
which are external charges at the metal electrodes and ions in
the solution and at interfaces.

By applying Eq. (13) to Eqs. (1) and (3), one obtains for the
dipolar mechanism of DEP (superscript “d”)

χd
DEP =

ε2
s

6ε0
β χcM2

0 ≃ 50.6 ε2
s χcM2

0 . (14)

The last equation gives the DEP susceptibility in Å3 assuming
T = 300 K and M0 in debye units. The dimensionless polar-
ization factor K in Eq. (4) is given by the dipolar form24

Kd = εsχcy0, (15)

where

y0 = β M2
0/(9ε0Ω0) (16)

is the dimensionless polarity parameter of the solute. This pa-
rameter is far greater than unity for a typical globular protein25

(Table I). With εs ≃ 78 for aqueous solutions of proteins,
Kd ∼ 103−104 far exceeds |KCM| ≃ 0.5.15,25 A recent report21

lists K = 402 and 5 for lysozyme and BSA, respectively. Pos-
itive DEP has to be expected for proteins and other nanoparti-
cles carrying permanent dipole moments.

An important distinction between the dielectric interface
polarization (CM, Fig. 3a) and dipolar (Fig. 3b) mechanisms
of DEP is in the scaling of the force with the particle size. One
gets linear scaling with the particle volume, ∝ R3

0, in the for-
mer case and proportionality to the dipole moment squared,
∝ M2

0 , in the latter case. Assuming that the dipole moments
grows linearly with the particle size,35 one gets χDEP ∝ R2

0
when the permanent dipole dominates in the DEP suscepti-
bility. Note that this scaling only specifies a trend since the
dipole moment is also affected by the protein symmetry (see
IgG in Table I as an example). Nevertheless, different scaling
laws should be anticipated and a negative DEP, based on the

CM factor, should dominate for large particles of submicron
and micron size, while positive DEP is important for asym-
metric molecular solutes carrying large permanent dipoles.
The condition

2εsχcy0 ≃ 1 (17)

reached at increasing the solute size provides the crossover
from the positive dipolar DEP to the standard CM mechanism.
Note that the dipolar alignment and interfacial polarization
can mostly be viewed as independent and the overall polar-
ization parameter is a sum of the two contributions allowing a
continuous transition between two scaling trends

K = Kd +KCM. (18)

Since |KCM| ≪ Kd for proteins, only the dipolar mechanism is
considrered here.

There is another essential distinction between χCM
DEP in Eq.

(6) and χd
DEP in Eq. (14). The former is only weakly tem-

perature dependent, through density and εs(T ), whereas the
latter is explicitly proportional to the inverse temperature,
χd

DEP ∝ T−1. This temperature scaling is distinct from both
the mechanical force, which is temperature-independent, and
the entropic force36 scaling as ∝ T . The entropy, SE , and en-
thalpy, HE , of the protein polarization become (see Eq. (1))

TSE = FE , HE = 2FE . (19)

The temperature scaling characteristic of dipolar DEP will
propagate to all parameters derived from the corresponding
dielectrophoretic force. For instance, the capture distance in
Eq. (9) is also affected by temperature

z∗ ∝ T−1/3. (20)

To summarize this section, several key distinctions between
KCM and Kd carry full analogy with the well-recognized dis-
tinctions between theories of nonpolar (but polarizable) and
polar (carrying molecular dipoles) bulk liquids. The former
concerns itself with the field induced in a macroscopic po-
larizable (virtual) cavity carved from a fluid of electronically
induced dipoles oriented along the external field. The result
is the CM factor appearing in the expression for the dielec-
tric constant of nonpolar liquids.1,33 In contrast, the theory of
polar liquids operates with permanent liquid dipoles m expe-
riencing constant rotations due to thermal agitation and aver-
aging to zero in the absence of an external field, 〈m〉= 0. The
permanent dipole of the polar liquid induced by an external
field and not averaged to zero is found by perturbation theory
formulated similarly to Eq. (13). Such a perturbation descrip-
tion yields the liquid dielectric constant through the Onsager
and Kirkwood-Onsager equations32,33 operating in terms of
the dimensionless density of liquid dipoles y = β ρm2/(9ε0),
where ρ is the liquid number density. The parameter y0 ap-
pearing in Eqs. (15) and (16) is an obvious analog of this stan-
dard formulation applied to a single dipole occupying the vol-
ume Ω0.
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III. NANOTRAP MODEL

Nanometer to micrometer holes drilled in substrates
or membranes have been used for manipulation of
biomolecules.27,37–40 The geometry shown in Fig. 1, and em-
ployed elsewhere for protein41 and DNA42 DEP, assumes that
the hole diameter is much larger than the membrane thick-
ness, leading to a limit of a circular aperture in an infinitely
thin conducting plate. However, the solution for the electro-
static potential in oblate spheroidal coordinates34 used here
applies to an arbitrary hourglass-shaped nanopore28 when the
restriction of an infinitely thin membrane used here is lifted. A
solution for the geometry of a thin one-dimensional nanogap11

can be obtained along similar lines.
The field Eapp between two capacitor plates leaks through

the opening in the top conduction plate creating the field gra-
dient in the space above it (Fig. 1). By using the oblate
spheroidal coordinates as defined in Ref. 43, the cylindrical
coordinates z,ρ are transformed to ξ1,ξ2

ρ =
√

(ξ 2
1 + d2)(1− ξ 2

2 ), z = ξ1ξ2. (21)

The solution of the Poisson equation for the electrostatic po-
tential φ(ξ1,ξ2) in the upper half-plane is given in coordinates
ξ1,ξ2 as follows (see Supplementary Material (SM) for de-
tails)

φ(ξ1,ξ2) =
Eapp

π
ξ2ξ1

[

d

ξ1
− atan

d

ξ1

]

. (22)

The z- and ρ-components of the electric field follow by taking
the potential gradient (see SM)

πEz

Eapp
= atan

d

ξ1
−

dξ1

ξ 2
1 + d2ξ 2

2
,

πEρ

Eapp
=−

ρz

ξ 2
1 + d2ξ 2

2

[

d

ξ1
−

ξ1d

ξ 2
1 + d2

+

(

1−
d

ξ1

)

atan
d

ξ1

]

.

(23)

At large distances from the hole, the electrostatic field be-
comes the field of a dipole. The field along the z-axis becomes

E = Ez =
2d2

3πz3 Eapp. (24)

This expression is used to derive the trapping distance z∗ in
Eq. (8) as shown in Fig. 2.

From two field projections in Eq. (23), one can arrive at the
magnitude of the field squared

π2E2

E2
app

= atan2 d

ξ1
+

d2

ξ 2
1 + d2ξ 2

2

(

1−
d2ξ 2

2

ξ 2
1 + d2

−
2ξ1

d
atan

d

ξ1

)

.

(25)
This scalar function is used to calculate the gradient of the
field squared to arrive at the DEP force in Eq. (3).

When the protein is driven by the hydrodynamic flow with
the velocity v along the x-axis parallel to the plate, the trap-
ping position in the capacitor x,y- plane can be determined by
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FIG. 4. Trapping contour in the x−y plane for Eapp = 10 kV/cm and
z = 1 µm. The calculations are carried out for lysozyme (Table I)
with v = 10 cm/s and η = 1 cP for water at normal conditions used
in Eq. (26). The black circle indicates the aperture with d = 1 µm.

equating the x-projection of the DEP force (Fig. 1) with the
hydrodynamic drag5 experienced by the protein in the uni-
form flow along the x-axis

ε0εs

3η
R2

0K∇xE2 = v, (26)

where η is the liquid’s shear viscosity. The trapping contour
determined by this condition with E2 from Eq. (25) is shown
in Fig. 4. An oval shape of the trapping contour is a reflection
of the dipolar symmetry of the electric field produced by the
spherical aperture.

IV. PROTEIN DEP

The DEP susceptibility χDEP has never been directly mea-
sured (see, however, Ref. 21) and alternative sources of exper-
imental input need to be sought. The access to Kd and χd

DEP
is allowed by the observation24,25 that the factor χcy0 that de-
fined Kd in Eq. (15) also enters the expression for the dielec-
tric constant of a dilute solution of N0 dipolar particles carry-
ing permanent dipole moments M0 and dissolved in the polar
solvent with the bulk dielectric constant εs. Dielectric experi-
ments are typically performed with external fields oscillating
with the circular frequency ω and applied to a plane capacitor.
Rotations of the solute dipole in solution are reflected by the
dielectric relaxation process known as β -dispersion.44–46

The dielectric function of the medium ε(ω) becomes the
static dielectric constant εs in the limit ω → 0: εs =Re[ε(ω →
0)]. The high-frequency limit of the dielectric function is ε∞ =
Re[ε(ω → ∞)] defining the dielectric increment ∆ε(ω) =
ε(ω)− ε∞. The increment of the dielectric function of solu-
tion over that of the pure solvent, ∆εsol(ω) = εsol(ω)− ε(ω),
is given25 in terms of the volume fraction of solutes η0 =
N0Ω0/Ω (Ω is the solution volume)

∆εsol(ω)

η0
+∆ε(ω) =

9
2

y0(ω)(2χc(ω)− 1). (27)
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Here, the solute polarity parameter y0 (Eq. (16)) and the
cavity-field susceptibility χc (Eq. (13)) both become func-
tions of ω . Given that in many practical situations (2χc(ω)−
1 ≃ 1, the equation for the dielectric increment of solution
simplifies25 at small particle concentrations, η0 → 0, when
the second term on the left-hand side can be dropped. One
obtains in this limit

∆εsol

c0
= 9.14× 10−5M2

0 . (28)

The numerical factor in this equation is calculated for c0 in
mM and the protein dipole in debye units. This is an al-
ternative form of Oncley’s equation47 connecting the dielec-
tric increment to protein’s dipole. The dipolar DEP factor is
obtained by substituting Eq. (28) to Eq. (15) with the result
(χc ≃ 1)

Kd =
2
9

εs (∆εsol/η0 +∆ε) . (29)

The limit of Eq. (28) implies dropping the second summand
in the brackets in this equation. One obtains in this limit

Kd ≃ 36.9
εs

Ω0

∆εsol

c0
, (30)

where Ω0 is in nm3 and c0 is in mM.
When the frequency dependence is maintained in Eq. (29),

it predicts a crossover in the sign of Kd(ω)10,11 when ∆εsol(ω)
becomes negative at frequencies comparable with the fre-
quency of tumbling of the protein dipole (ν = ω/(2π) ∼ 10
MHz). This relaxation process is classified as β -dielectric
relaxation of protein solutions characterized by the dielec-
tric increment ∆εβ . There is a higher-frequency, ∼ 100
MHz,44,46,48,49 relaxation process called δ -relaxation. Its ori-
gin has been attributed to cross correlations between the pro-
tein and water dipoles.50–53 From this assignment, the cavity-
field susceptibility can be estimated from the ratio of the di-
electric increment for δ - and β -relaxation processes25

χc = 1+
∆εδ

2∆εβ
. (31)

The data for ∆εδ and ∆εβ
48,54 are used to estimate χc in Table

I (see SM for details). The resulting χc is close to unity and
can be dropped from calculations of Kd . This simple result is
not trivial since the cavity susceptibility of the protein-water
interface turns out to be significantly higher than the prescrip-
tion of dielectric theories:32,33

χc = 3/(2εs + εp). (32)

The parameters required to calculate the dipolar polariza-
tion factor factor Kd (Eq. (29)) are taken from solution dielec-
tric data for ubiquitin,52 lysozyme,55 and IgG.54 The dielec-
tric data for the rest of proteins in Table I are from Refs. 6 and
7. The protein radii were taken from Ref. 25 and addition-
ally calculated by using the software McVol56 (see SM). The
dipole moments are from Refs. 57–59 and water’s dielectric
parameters are from Ref. 60.

 !
"

 !
#

 !
$

 !
%

&'
!
(
)
*&
+
,

-

 !
 ./ !

 - " #

0!*&+,

FIG. 5. Ω0Kd vs R0 (logarithmic scale) for proteins listed in Table I.
The dashed line is the linear fit showing the scaling exponent equal
to 2.03. The dashed line shows the linear regression: lnΩ0Kd =
6.56+2.03ln R0.

V. DISCUSSION

The discussion presented here distinguishes between two
mechanisms of nanometer-scale DEP: polarization of bound
charges at the dielectric interface (CM factor) and alignment
of the molecular permanent dipole along the external field
(dipolar DEP). These two mechanisms lead to numerically
different dimensionless polarization parameters K entering
the DEP susceptibility (Eq. (4)): |KCM| ≃ 0.5 and the dipolar
parameter Kd of the order 103–104 for proteins studied here
(Table I). A substantially larger value of Kd allows protein
trapping on nanopore devices. As discussed above, the scal-
ing of K with the size is different for two mechanisms: ∝ R3

0
for dielectric polarization and ∝ R2

0 for the dipolar mechanism.
The latter result is qualitatively confirmed by the data accumu-
lated in Table I. Figure 5 shows Ω0Kd vs R0 for proteins listed
in Table I. The scaling exponent in the scaling law χDEP ∝ Rα

0
is α ≃ 2.03. The linear regression shown in Fig. 5 allows one
to estimate χDEP in Eq. (4) from the protein radius.

Two physically significant factors allow large values of the
polarization parameter K for proteins: (i) a large dipole mo-
ment of a typical globular protein and (ii) a large value of
the cavity field susceptibility χc ≃ 1 far exceeding the dielec-
tric estimate in Eq. (32). A large cavity-field susceptibility
is characteristic of the protein-water interface, which is much
distinct from what is anticipated in theories of dielectric inter-
faces. The main physical reason for unusual dielectric proper-
ties is a large density of positive a negative ionized residues at
the protein surface.35 These residues orient the surface water
into clusters (nanodomains61) with dipole moments directed
along the local electric field. This physical situation is illus-
trated in Fig. 6 where two domains, next to a positive and a
negative surface charge, are shown. The cavity susceptibil-
ity results from the cross-correlation of the protein, M0, and
solvent, Ms, dipole moments15 (Eqs. (12) and (13))

χc = 1+ 〈δM0 ·δMs〉/〈δM0 ·δM0〉, (33)
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+
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M0

FIG. 6. Schematic drawing of dipolar water domains at the protein
surface. Surface cations and anions rotate the domain dipoles out-
ward and inward from the dividing surface, respectively. The water
molecules shown in the plot indicate their preferential orientations
within the domains. Releasing O-H bonds toward a surface anion re-
quires less frustration of interfacial waters than pointing O-H bonds
toward the bulk. Cross-correlations of the protein dipole M0 and the
surface water dipoles determine the deviation of χc from unity (Eq.
(33)).

where for a protein permanent dipole spanning isotropic ori-
entations, one gets 〈δM0 ·δM0〉= M2

0 .
The deviation of the cavity-field susceptibility from χc = 1

is, therefore, caused by cross-correlations between the protein
dipole and water dipoles in protein’s hydration shell. Such
correlations are substantial when orientations of interfacial
dipoles are predominantly caused by the dipolar field of the
solute as assumed in the standard dielectric theories.33 The re-
sulting negative cross-correlations lead to χc ≪ 1 (Eq. (32)).
When, on the contrary, the dipolar orientations and their fluc-
tuations are governed by the local fields of the surface charged
residues, the domains with opposite local orientations tend to
cancel each other resulting in χc ≃ 1 (Fig. 6). The dipoles
within domains next to cations and anions can be different
given that releasing O-H bonds next to a surface anion re-
quires lower stress and frustration than turning O-H bonds
toward the bulk near a surface cation (Fig. 6). The compensa-
tion between domains is incomplete and χc can even slightly
exceed unity as is empirically found (Table I). These esti-
mates are based on the assumption that δ -relaxation of the
protein solution reflects cross-correlations between the pro-
tein and hydration water dipoles (Eqs. (31) and (33)), which
still requires experimental scrutiny.

There are a number of observable qualitative distinctions
between induction and dipolar mechanisms of DEP. As men-
tioned, the dipolar DEP predicts a significant dependence on
temperature, Kd ∝ T−1, with the corresponding temperature
dependence affecting the trapping distance (Eq. (20)). Given
that Kd ∝ M2

0 (Eqs. (15) and (16)), any physical property alter-
ing the protein dipole, such as mutations or unfolding, should
be reflected by the DEP susceptibility. In particular, the pro-
tein dipole moment is affected by pH of the solution62 and cor-
responding effects of pH on protein DEP have been reported
in the past.16,63,64 Our calculations indicate that changing pH
should substantially affect the DEP susceptibility. Figure 7
shows the dependence of the DEP polarization parameter Kd
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FIG. 7. Kd vs pH for BSA protein.
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FIG. 8. ∇zE2 vs z∗ for the proteins listed in Table I. The calculations
are done at Eapp = 10 kV/cm and d = 1 µm.

on the solution pH calculated from the data available for the
BSA protein.62,65

The results presented here discuss trapping of proteins
by static inhomogeneous electric fields. This discussion
is extended to oscillatory fields by allowing the frequency-
dependent dielectric function for the solvent εs(ω) and the
corresponding frequency-dependent protein dipole moment
density y0(ω) in Eq. (16).24,25 The frequency dependence of
y0(ω) is caused by tumbling of the protein dipole with the
relaxation time τp of β -relaxation in dielectric spectroscopy.
For simplest exponential relaxation of the protein dipole, one
arrives at the Debye relaxation form

y0(ω) = y0 (1− iωτp)
−1 . (34)

Alternatively, y0(ω) follows from Eq. (27), which can involve
more complex relaxation functions for the protein dipole. The
change in the sign of the right-hand side of Eq. (27) at high
frequencies will produce the crossover from positive to nega-
tive DEP. The change of DEP sign is a direct consequence of
the dynamic freezing of protein rotations at high frequencies.

The question of the minimum field gradient |∇E2| required
for protein trapping has been raised in a number of recent
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reviews.16,19,22 The values typically estimated19 for the CM
polarization mechanism are of the order of 1021 V/m3. Cap-
ture of proteins often requires much lower field gradients,19,21

sometimes down to 1012 V/m3. Figure 8 presents field gradi-
ents for the nanopore trapping geometry at the uniform field
in the lower part of the capacitor equal to Eapp = 10 kV/cm.
The field gradients shown in Fig. 8 are calculated for proteins
from Table I at the capturing distance z∗ determined from the
energy match condition specified by Eq. (7). The field gradi-
ent of the order of 1017 V/m3 is required for the dipolar mech-
anism of DEP at the adopted strength of the capacitor field
Eapp = 10 kV/cm responsible for the field gradient at the pore
opening: |∇E2| scales linearly with E2

app. Experimentally, the
field gradient of |∇E2| ≃ 1017 V2/m3 was reported for BSA
capturing.66

VI. CONCLUSIONS

DEP is a potentially powerful method to trap proteins and
we have demonstrated here that trapping can be achieved on
a nanopore of micrometer length scale with the electric field
strength and gradient values accessible to experimental condi-
tions. Dipolar mechanism of DEP is dominant for proteins.

SUPPLEMENTARY MATERIAL

See supplementary material for derivation of equations pre-
sented in the text, maps of electrostatic potential around the
nanotrap, and parameters for proteins used in the calculations.
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