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Abstract

The prediction of enzyme activity in a general extend is maybe one of the main

challenges nowadays in catalysis. Computer-assisted methods have been proven to be

able to simulate the reaction mechanism at the atomic level of detail. However, these

methods tend to be expensive to be used in a large scale as it is needed in protein

engineering campaigns. To alleviate this situation, machine learning methods can help
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in the generation of predictive-decision models. Herein we train di↵erent regression

algorithms for the prediction of the reaction energy barrier of the rate-limiting step of

the hydrolysis of mono-(2-hydroxyethyl)terephthalic acid by the MHETase of Ideonella

sakaiensis. As training data set we use steered QM/MM MD simulation snapshots and

their corresponding pulling work values. We have explored three algorithms together

with three chemical representations. As outcome, our trained models are able to predict

pulling works along the steered QM/MM MD simulations with a mean absolute error

below 3 kcal mol
�1

and a score value above 0.90. More challenging is the prediction of

the energy maximum with a single geometry. Whereas the use of the initial snapshot

of the QM/MM MD trajectory as input geometry yields a very poor prediction of the

reaction energy barrier, the use of an intermediate snapshot of the former trajectory

brings the score value above 0.40 with a low mean absolute error (ca. 3 kcal mol
�1

).

Altogether, in this work we have faced some initial challenges of the final goal of

getting an e�cient workflow for the semi-automatic prediction of enzyme-catalyzed

energy barriers and catalytic e�ciencies.

Introduction

Inspired by nature, humankind has manipulated enzymes for their particular use for a long

time. The impact of these biocatalysts in our lives is tremendous in the feed&food indus-

try, bioremediation, pharmaceutical production or industrial biocatalysis.1–4 The significant

advances in molecular biology techniques5 in the last decades have converted cloning and

expression of enzymatic variants into a common task in laboratories around the world. Nowa-

days, properties like (thermo)stability6–8 or substrate specificity9 in enzymes can be modu-

lated by engineering campaigns. However, experimental procedures like directed evolution

(DE),10,11 can deliver unpredictable outcomes and require extensive e↵ort of sequencing and

deconvolution. In this regards high hopes are placed in in-silico design due to their intrinsic

lower cost compared to experimental campaigns. Most of the current computational strate-
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gies for protein redesign rely on getting more stable protein sca↵olds by computing the total

protein energy after modification of the amino acid sequence (e.g., Funclib,12 PROSS13 or

HotSpotWizard14). Another group of methods are based on the assumption that, since the

catalytic activity can be governed by the reaction energy barrier of the rate-limiting step,15,16

one enzyme variant will be catalytically more e�cient than a second one when having a re-

duced energy barrier. As examples of reaction-barrier-based methods are, amongst others,

cluster method,17 metadynamics,18 umbrella sampling,19 path collective variable sampling20

or empirical valence bond.21 All these methods rely on the main assumption that in enzyme

catalysis the observed rate acceleration is caused by transition state (TS) stabilization with

respect to the substrate.22 Within this group of methods, steered QM/MM molecular dy-

namics (sMD)23,24 has been shown as a good alternative to simulate enzyme reactivity at

the active site in a reasonable time scale. By applying harmonic forces on selected atoms,

the system can be forced to explore a proposed reaction coordinate (RC). As outcome, sMD

delivers pulling work values along the RC. As illustration, in the last years some of us have

used sMD for the industrial design of novel thiolases,25 to explain the reaction mechanism in

glycosyltransferases,26 or to understand the stereoselectivity observed in a !-transaminase.27

Unfortunately, reaction-barrier-based design methods are limited by their computational

cost. Calculating a single barrier using any of the above mentioned methods is already an

expensive process. Moreover, barrier evaluations can involve a substantial trial and error

component depending on the initial geometries/snapshots and the chosen level of theory.

Alternative strategies to obtain free energy barriers while circumventing these problems are

therefore nvaluable for successful enzyme-engineering campaigns. Machine learning (ML)

methods have emerged as a promising tool in computational chemistry in general,28–31 and

in enzyme engineering32 in particular. Examples include the prediction of Enzyme Commis-

sion (EC) numbers from enzyme sequence and substrate enzyme complex structures,33 and

the automated identification of chemical features promoting enzyme catalysis.34 The deep

learning approach DLKcat35 is able to predict accurate catalytic constants kcat by combining

3



graph neural networks (GNNs) and convolutional neural networks (CNNs) to represent sub-

strates and proteins. DLKcat is trained on experimental kinetic data from the BRENDA36

and SABIO-RK databases.37 Finally, there are several examples where ML is used to predict

the activation barriers of chemical reactions.35

The goal of this work is the use of ML models for the prediction of enzyme-catalyzed en-

ergy barriers using input data derived from chemical dynamics trajectories. In particular, we

explore the possibility of using sMD simulations to generate training data for the ML models.

Based on the obtained data set, we compare the performance of di↵erent combinations of

regression algorithms and ML representations of the active site.38 The former algorithms in-

clude kernel ridge regression (KRR),39 support vector regression (SVR),40 and ElasticNet.41

On the descriptor side, the Coulomb matrix, atom-centered symmetry functions (ACSF)42

and smooth overlap of atomic positions (SOAP) were used.

Computational Details

Molecular Dynamics (MD) simulations

The chain A of the crystallographic structure of the native Ideonella sakaiensis MHETase (1.8

Å resolution, PDB id 6QZ443) was selected for our MD simulations. The protonation states of

the tritatable residues of the protein were computed via H++ server44 at pH 7.0. Residues,

His91, His241, His293, His467, and His488 are single protonated at the epsilon-nitrogen

(HIE), His528 single protonated at delta-nitrogen (HID), and His166 doubly protonated

(HIP). Five disulfide bonds were defined: Cys51-Cys92, Cys224-Cys529, Cys303-Cys320,

Cys340-Cys348, Cys577-Cys599. The protein residues were described with the AMBER

force field parameters ↵19SB.45 The modified side of chain of Ser225 was modified manually

to include the terepthalic acid (TPA) ester. The atoms of this modified residue Ser225(TPA)

were defined as GAFF/AMBER atom types and the point charges of these molecules were

derived using a RESP model (RHF/6-31G⇤⇤) on a DFT-optimized geometry (B3LYP/6-
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31+G⇤)46–49 with antechamber. All QM optimizations were run with Gaussian16, v. C.01.50

The system was embedded in a truncated octahedron of TIP3P water molecules51 and the

solvated system was neutralized using Na+ and Cl� ions by random substitution of water

molecules. Before production, the system was energetically minimized in three steps, where

all protons, the solvent molecules, and the entire system, were gradually relaxed, respectively.

Then, the system was heated up using the Langevin thermostat (1 ps�1 collision frequency)

from 100 to 300 K in 1 ns with a linear increase of the temperature in a NVT ensemble.

For this step, all atoms of the solute were restrained by means of application of a harmonic

force (40 kcal mol�1 A�2). Finally, the restrains were gradually removed in six steps, where

the last two steps were run under a NPT ensemble. The system was further simulated

for 1 µs at 300 K with a time step of 2 fs. Long-range interactions were calculated using

Particle Mesh Ewald summations52 under Periodic Boundary Conditions and a cuto↵ of 10

Å was defined for non-bonded interactions. The SHAKE algorithm was applied to all water

molecules. MD simulations were run in Amber2053 and the MD trajectories were analyzed

using cpptraj v5.1.0.54

Steered QM/MM MD (sMD) simulations

The hybrid quantum mechanics/molecular mechanics (QM/MM) simulations were performed

with sander in Amber20.53 The QM region encompassed the side chain of residues His528,

Ser225(TPA), Asp492, each cut across the C↵/C� bond, and the closest molecule of water (39

atoms and a net charge of -2). The chosen reaction coordinates (RC) were: the shortening

of the distance between the attacking water oxygen and the carbonyl carbon (RC1) and the

enlarging of the bond between the Ser225(TPA) side chain oxygen and the carbonyl carbon

of TPA (RC2). Link atoms defined as dummy hydrogens were added after breaking covalent

bonds in the limit between QM and MM regions. All QM/MM calculations were performed

using Self-Consistent-charge Density-Functional Tight-Binding of third order (DFTB3).55

The pulling work (W , kcal mol�1) profiles of the deacylation step of Ser225(TPA) were
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obtained via sMD. The harmonic constant applied was 600 kcal mol�1 Å�2 for both reaction

coordinates in order to ensure the completion of the reaction. 2 ps simulations with a time

step of 0.2 fs were carried out at constant temperature of 300 K and pressure of 1 bar using

Langevin thermostat. The mean PMF (kcal mol�1) value was calculated from the pulling

work using the Jarzynski identity (Eq. 1):23,24

e��T�G = <e��TWi> (1)

where �T = 1
kBT .

Machine Learning methods

Kernel regression methods

We employed three regression methods: kernel ridge regression (KRR), support vector re-

gression (SVR) and ElasticNet. In the case of KRR and SVR, the input data are transformed

into a high-dimensional space and then the relation between the input features and the out-

put is learned.29,56 In all cases, we used the method implementation in scikit-learn.57 All

methods use linear regression to describe the relationship between the input data and the

response. The fitting of the model to the data is done via the minimization of a loss function

L of the form:

L =
1

n

nX

i=1

(yi � f(xi))
2 , (2)

where yi is the true value of the response of sample i and f(xi) is the one predicted by the

model based on the feature vector xi. n is the total number of samples.

In the case of ridge regression, an additional L2 regularization term is included in the

loss:

LRR = L+ �2

X

j

!2
j , (3)

where �2 is the L2 regularization parameter and ! are the regression coe�cients for the input
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features.

The loss function used in ElasticNet regression introduces a L1 penalty term in addition

to L2 regularization:

LEN = L+ �2

X

j

!2
j + �1

X

j

|!j|, (4)

with �1 as the corresponding regularization parameter.

On the other hand in SVR - more specifically in ✏-SVR - two loss functions are used: L2

(Eq. 3) and the ✏-insensitive loss function (Eq. 5 and 6):

min
1

2
||!||2 + C

nX

i=1

(⇠+ + ⇠�) (5)

subject to:

8
>>>>>><

>>>>>>:

yi � (!xi + b)  ✏+ ⇠+

(!xi + b)� yi  ✏+ ⇠�

⇠+, ⇠� � 0

(6)

where C is the regularization parameter, and ⇠+ and ⇠� are the deviation to both sides of

the ✏-zone (they define the threshold values for fitting the error).

For mapping the data into a high-dimensional space, we used the Gaussian kernel kGaussian(x, x,),

also known as radial basis function (RBF) :

kGaussian(xi, xj) = exp

✓
�d(xi, xj)2

2�2

◆
(7)

where � is the length-scale of the kernel and d(xi, xj) refers to the euclidean distance.

We employed a grid search with 3-fold cross-validation to select the hyperparameters.

The training data is randomly shu✏ed and split into 3 groups. One group is left out and the

grid search is performed in the remaining groups. The combinations of the hyperparameters

are used for training the first two groups and then evaluated on the left-out group. This

process is repeated 3 times until each group is used one time as a validation set and 2 times
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as a training set. After completing the grid search the hyperparameters with the best score

are selected for fitting the model. To evaluate the goodness of the predictions with the

di↵erent algorithms, we checked the following parameters: (i) score value of the regression -

the interpretation of this value is similar to the linear regression R2 value; (ii) mean absolute

error (MAE) of the prediction; and (iii) root mean square error (RMSE). The Coulomb

matrix representation was coded in python by us. The atom-centered symmetry functions

(ACSF)42 and the smooth overlap of atomic positions (SOAP),38 were used as defined in

DScribe.58

Partial least square (PLS) regression

Partial least squares (PLS) is a parametric method, where it is assumed that:

f(xi) = xi� (8)

and the aim is to estimate the unknown parameter �. PLS has a long tradition in chemo-

metrics and has been introduced first by Wold as an algorithm.59 A formal definition of a

PLS estimator of order d is given by:

�̂d = arg min
�2Kd(XTY,XTX)

kY �X�k2 (9)

where Y = (y1, . . . , yn)T , X = (x1, . . . , xn)T and Kd(XTY,XTX) denote a Krylov space of

order d, that is, Kd(XTY,XTX) = span{XTY,XTXXTY, . . . , (XTX)d�1XTY }. The order

of the PLS estimator d is a regularisation parameter and can be chosen by cross-validation.

PLS estimator is known to deliver a robust and parsimonious model that can be readily

interpreted in chemical systems.60
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Results and discussion

System of study

We selected as system of study the second step of the reaction of hydrolysis of MHET by the

plastic-degrading I. sakaeinsis MHETase, where ethylen glycol and terepthalic acid (TPA)

are released after a water molecule attacks the carbonyl carbon on the acylated Ser225(TPA)

(Scheme 1). Several facts support this decision: (i) the reaction mechanism of the enzyme has

been extensively investigated and it is well-established,43,61 (ii) there are su�cient available

experimental data for the catalytic activity of wild-type and single-point MHETase variants

with MHET as substrate,43,62,63 (iii) MHET does not imply problems with the crystalline

degree of the initial plastic substrate; (iv) there are currently available some experimental

structures of the enzyme in complex with small molecules like the substrate analog MHETA

(PDB id. 6QGA),62 and of course, (v) because of the scientific and industrial relevance of

PETases and related enzymes.64,65

Based on the general activity of Ser hydrolases, the whole reaction mechanism of hydrol-

ysis of MHET would consists of two main steps involving the acylation and deacylation of

the catalytic Ser225. In a first step, the side chain of Ser225 is activated via proton abstrac-

tion by His528 and the resulting alkoxyde attacks to the ester carbon of MHET to yield the

acyl-enzyme intermediate showed in Scheme 1. Then, this intermediate reacts in a second

step with a water molecule to regenerate the side chain in Ser225, with the release of TPA

as product of the reaction (deacylation step). According to previous computational results

of McGeehan and co-workers,43 the latter step of the reaction mechanism (resolution of the

acyl-intermediate) is the rate-limiting event with an activation energy barrier of 19.8 kcal

mol,�1 43 a value ca. 5.9 kcal mol�1 larger than the one for the energy barrier of the first

part of the reaction. Additionally, no tetrahedral intermediate were found for any of the two

global reaction steps.

In Figure 1A we show the active site of the native MHETase after acylation of Ser225
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by MHET with the TPA moiety (named as Ser225(TPA)). We represent as sticks the most

relevant residues, the catalytic triad, and those involved in the hydrogen bond network

keeping the architecture of the active site. As described previously, we observed that the

carboxylate group of Ser225(TPA) stably interacts with both side chains of Arg411 and

Ser416 along the MD simulation of the native enzyme. Importantly, the guanidinium group

of Arg411 keeps the architecture of the active site by interacting with the substrate and also

bridging the loop before ↵-helix H21 (via hydrogen bond with Ala494) with the helix H15,

where Ser416 is located (PDBsum notation). Complementary, the carbonyl oxygen of the

TPA moiety in the acylated Ser225(TPA) interacts with the oxyanion hole defined by Gly132

and Glu226. The aromatic ring on Ser225(TPA) is almost parallel to the planes defined by

the side chains of Trp397 and Phe495. The nucleophile of the reaction, the attacking water

molecule, is positioned by the side chain of His528, and occasionally, by the side chain of

Ser131 above the carbonyl carbon on Ser225(TPA), the electrophile of the reaction. Indeed,

we found out that the side chain of Ser131 interacts 29 % of the simulation time with

the attacking water molecule. We also identified in our simulations that Phe415 populates

mostly the open conformation of the dual occupancy found in the available experimental

structures.62 Finally, the distal residue Ser416, located on the ↵-helix H15, establishes a side

chain-side chain interaction with Asp423 located one helix turn upstream.

Scheme 1: Accepted reaction mechanism for the second step of the hydrolysis of MHET
catalyzed by Is-MHETase.
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Conformational screening and selection of snapshots for simulation

of enzyme reactivity

In order to simulate the reaction mechanism of the enzyme, we needed to define first which

initial snapshots from the MD simulations would be used for running the sMD simulations.

In principle, a reasonable approach would be the selection of those conformations that are

closed to the Michaelis complex (aka. near-attack conformations). That is, conformations

where the distances between nucleophile and electrophile are optimal for the reaction. On

the one hand, the electrophile of the reaction (the carbonyl carbon of Ser225(TPA)) is tightly

positioned and activated by its interaction with the amino groups of Glu226 and Gly132. On

the other hand, the attacking water molecule is positioned and activated by the ✏-nitrogen of

His528. As we pointed out before, the attacking water molecule occasionally interacts with

the side chain of Ser131. Thus, we defined three distances (Figure 1A) and we analyzed their

distribution (Figure 1B) along the MD simulation: d1, the distance between the attacking

water oxygen and the carbonyl carbon of Ser225(TPA); d2, the distance between the ✏-

nitrogen of His528 and the water oxygen; and d3, the distance between the latter atom and

the alcohol oxygen of Ser131. Indeed, the variant Ser131Gly, which has no possibility of

interaction via its side chain with the attacking water molecule, has been shown to retain ca.

one third of the experimental catalytic activity of the native variant.43 In our MD analysis,

we found out that the water molecule is well activated by His528, with a d2 value close to

3.0 Å and that is also well positioned to attack the carbonyl center (d1 ⇠ 3.5 Å). However,

we found a broad distribution for d3, what may indicate a less stable interaction pattern

between these atoms, and maybe, an assistant but not a key role of Ser131 in the MHETase

catalysis. Altogether, we considered d1 and d2 as inspiration for the definition of the reaction

coordinate to study the enzymatic reaction and we used the three distances (also d3) for the

selection of the initial MD snapshots in these studies.
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Figure 1: (A) Detail of the active site of Is-MHETase with the acylated Ser225(TPA) (C-
atoms colored in blue). Relevant residues are highlighted as sticks (C-atoms in yellow).
Distances d1�d3 are shown as dotted lines. (B) Distribution for distances d1�d3 (Å) along
the MD simulation.

Calculation of energy barriers for the catalyzed reaction

We run sMD simulations for the catalyzed reaction highlighted in Scheme 1 by the wild-type

MHETase. We defined two reaction coordinates (RC): the shortening of the distance be-

tween the attacking water oxygen and the carbonyl carbon (RC1), and the enlarging of the

bond between the Ser225(TPA) side chain oxygen and the carbonyl carbon of TPA (RC2).

This second coordinate was included to ensure that the reaction is completed. A total of

1,500 sMD trajectories were generated from MD snapshots and the mean value for the en-

ergy barrier was computed using the Jarzinsky equality (see Methods) from the maximum

values of the pulling work.23,24 The input MD snapshots were selected randomly within the

low-value 60 % of the MD conformer distribution for d1-d3 values. This way, selecting these

populations we removed some artefacts and fluctuations from the MD simulations but we

kept a statistical sampling. After running ca. 240 sMD trajectories (see Figure S1), the

energy barrier for the native MHETase enzyme converges. A final value of 18.22 kcal mol�1

was obtained, which is in good agreement with the free energy barrier (�G‡ = 19.8 kcal

mol�1) computed by McGeehan43 and coworkers using 2D umbrella sampling.

12



Prediction of pulling work values from sMD snapshots

Having validated that our sMD simulations reproduce the energy values obtained by 2D

umbrella sampling, we investigated the performance of di↵erent ML methods for predicting

the pulling work value obtained for each of the sMD snapshots. An important aspect of ML

in chemistry is the definition of the representation of the chemical system. For example,

explicitly including all the atoms present in a description of this system can be computa-

tionally demanding and, to some extent, unfeasible. Taking into account that MHETase

belongs to the Ser hydrolases family, it seems reasonably to select the residues involved in

the catalytic process: His528, Asp492, and Ser225(TPA). Hence, we explored three di↵erent

feature representations: (i) a Coulomb matrix (CM) representation66 based on the atoms

of the QM region, including the side chains of the former residues from the �-carbon and

a water molecule (data set 1, 33 atoms, Figure S2A) (ii) a CM representation of the atoms

of the side chains of Ser225(TPA) and His528, without the �-carbon atoms, and a water

molecule (data set 2, 27 atoms, Figure S2B), and (iii) the set of distances d1, d2 and d3

(data set 3). For the model selection, we studied three regression methods: kernel ridge

regression (KRR)39, the supported vector regression (SVR)40 and ElasticNet.

As training sets, a total of 100 sMD trajectories (10,000 frames) of the native MHETase

were used as input geometries for both methods. The data were split into groups of 2,500

frames, and the analysis was divided into four runs with increasing input data sizes (2,500,

5,000, 7,500, and 10,000 frames). In all cases, 25 % and 75 % of the data were selected as

validation and training sets, respectively. With respect to the di↵erent representations, the

prediction of the pulling work for the input data using the CM representation (data sets

1 and 2) presents a very high score factor (⇠ 0.90) even for the smaller number of input

points (2,500, see Table 1). In contrast, with data set 3, where distances d1-d3 are given

as descriptors, the scoring value slightly decreases while larger mean absolute error (MAE)

and root-mean square error (RMSE) values are obtained. In case of the regression methods,

KRR and ElasticNet tend to show smaller MAE and RMSE values (ca. 2.5 kcal mol�1) than
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those observed for SVR (ca. 13.0 kcal mol�1). Furthermore, only an slight decrease in the

score value and a soft increase in the MAE values are observed when moving from data set

1 to data set 3.

Table 1: Training process to predict sMD-derived pulling work (kcal mol
�1

) using KRR and SVR.

Size Data set Kernel method Score MAE RMSE

2,500

1
KRR 0.92 2.47 3.22
SVR 0.89 13.29 16.35
ElasticNet 0.92 2.46 3.23

2
KRR 0.91 2.76 4.05
SVR 0.89 14.15 17.54
ElasticNet 0.91 2.72 3.95

3
KRR 0.86 2.94 4.36
SVR 0.87 14.13 17.52
ElasticNet 0.84 3.86 5.19

5,000

1
KRR 0.92 2.46 3.33
SVR 0.90 12.82 15.79
ElastiNet 0.92 2.46 3.32

2
KRR 0.92 2.51 3.51
SVR 0.92 13.89 17.16
ElasticNet 0.92 2.53 3.52

3
KRR 0.91 2.72 3.81
SVR 0.90 13.94 17.23
ElasticNet 0.86 3.56 4.60

7,500

1
KRR 0.91 2.55 3.57
SVR 0.89 12.94 15.97
ElasticNet 0.91 2.53 3.56

2
KRR 0.91 2.66 3.74
SVR 0.90 13.68 16.89
ElasticNet 0.91 2.68 3.76

3
KRR 0.89 2.98 4.11
SVR 0.88 13.54 16.71
ElasticNet 0.84 3.78 4.82

10,000

1
KRR 0.90 2.53 3.54
SVR 0.89 12.68 15.65
Elasticnet 0.90 2.52 3.51

2
KRR 0.91 2.56 3.58
SVR 0.91 13.43 16.58
ElasticNet 0.91 2.61 3.63

3
KRR 0.89 2.90 4.02
SVR 0.88 13.35 16.49
ElasticNet 0.85 3.61 4.66

14



It is worth noting that during the model selection phase, no improvement in the scores

are achieved with the increment of the size of the training data. Therefore, we selected the

models obtained with KRR and ElasticNet using 2,500 input data for further analysis. In

Table 2 are included the results for the prediction of the sMD pulling work values along the

sMD trajectory from a test set (40,000 points). The test data was divided into 4 test subsets

of 10,000 structures each one (A-D, Table 2). Both MAE and RMSE values slightly increase

with respect to the values obtained in the training phase (Table 2). However, both algorithms

are able to predict well the sMD trajectory pulling work values. Nevertheless, although this

error is equal or smaller than the oscillations observed during the sMD simulations, the MAE

is still above chemical accuracy (> 1 kcal mol�1).

Table 2: Prediction of sMD pulling work (kcal mol�1) for unseen data.

ML method Score MAE RMSE

KRR

0.86 3.15 4.42
0.89 2.93 3.94
0.88 3.00 4.11
0.88 3.02 4.11

ElasticNet

0.87 3.07 4.32
0.90 2.84 3.83
0.88 2.94 4.02
0.89 2.95 4.03

In Figure 2 we illustrate this prediction of sMD pulling work values considering 10 sMD

trajectories (10,000 frames, KRR). The model predicts well values between 5 and 35 kcal

mol�1 but underestimates those values out of this range, as can be seen in the superposition

of predicted vs reference values (Figure 2A). Similar behavior was found for ElasticNet (see

Figure S3). Analyzing the profile of several sMD trajectories, we found out some of these

upper extreme values correspond to unrealistic situations where the pulling work increases

after crossing the maximum that corresponds to the transition state of the reaction (see

left panel in Figure 2A). In addition to that, the initial geometries of the active site are

problematic for the regression method, since geometrically diverse structures need to be

mapped to very similar pulling work values (close to zero). Thus, we removed the initial
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and final snapshots out of 100 snapshots per trajectory (leaving frames from 10 to 90) and

we repeated the training process (Figure 2B). The reduced data set leads to a very limited

improvement of the relevant regions of the trajectory (see Table S1). These results lead us

to conclude that obtaining better scoring values and lower errors is limited by the inherit

variability of the sMD method (see Figure S4).

Figure 2: Reference vs predicted values for the entire trajectory using KRR.

Overall, we found that a combination of KRR and ElasticNet together with a Coulomb

matrix representation of the active site of the enzyme, is able to predict the pulling work

values along sMD trajectories with an error close to 3 kcal mol�1. A problem of this approach

is its reliance on geometries from sMD trajectories as an input to the ML models: in order

to generate these structures, QM/MM simulations would need to be carried out before every

prediction. The associated computational e↵ort makes the above ML approach too expensive

in many practical scenarios, especially in studies where several enzyme variants are explored.

One cheapest scenario in terms of computational resources would be the use of classical MD

snapshots as input data.

Prediction of energy barriers from MD simulation snapshots

Prompted with the idea of reducing the computational cost of our approach, we decided to

assess if we could predict the maximum of the sMD pulling work not from sMD snapshots

(QM/MM trajectories) but from classical MD simulation snapshots. A closest example is the
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pioneering work published by Ochsenfeld and co-workers in 2019 for the detection of reactive

conformations from MD simulations.67 By means of ElasticNet regression,41 the authors

trained 100 initial points using 15 input geometric features. The initial points were obtained

via QM/MM adiabatic mapping of the reaction mechanism. As outcome, the authors got a

humble regression coe�cient of 0.28 for the prediction of the energy barriers of the reaction

from MD snapshots. Nevertheless, they were able to predict energy barriers with a MAE of

3.6 kcal mol�1 along the MD simulation. In our case, we took the initial MD snapshot prior

sMD (0th snapshot) together with the maximum pulling work value obtained for each of the

initial MD snapshots. The selection of the maximum pulling work value was guided by the

averaged energy computed via Jarzynski equality. We represented the chemical system as

before (with a CM) and we used KRR and ElasticNet as regression methods (Tables 3 and

Table S2). The analysis was divided in 15 runs with increasing size of the input data. The

score coe�cient is remarkably low in all cases and the prediction of the trained model is

pretty poor, with energies after Jarzynski averaging overestimated in more than 6.00 kcal

mol�1 for both methods (Table 4).

Table 3: Training process to predict maximum work values (kcal mol�1) from MD snapshots.

ML method Size Score MAE RMSE

KRR 800 0.02 3.11 4.11
ElasticNet 800 0.06 3.02 4.02

Table 4: Prediction of the energy barrier (kcal mol�1) from MD snapshots.

ML method MAE RMSE Score �G‡
pred ��G

KRR 3.11 15.71 0.08 4.94 6.21
ElasticNet 3.27 17.38 0.04 5.13 8.09

In order to elucidate if the chemical representation may be the reason of the poor predic-

tive power of the sMD maximum by of our model, we decided to explore additional repre-

sentations (Table 5). We selected atom-centered symmetry functions (ACSF)42 and smooth

overlap of atomic positions (SOAP).38 ACSF represents the local environment of an atom
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by means of two- and three-body symmetry functions (i.e., radial and angular functions).

SOAP is computed via local expansion of Gaussian atomic densities (based on spherical and

radial basis functions) and a smooth three-body correlation function. The outcome of our

calculations are summarised on Table 5. Overall, there are no di↵erences between all repre-

sentations and no improvement is observed when compared to CM. Indeed, large errors are

obtained when predicting the energy barrier of the reaction �G‡
pred (Figure 3).

Table 5: Training process to predict maximum work values (kcal mol�1) from MD snapshots
using di↵erent representations

ML method Size Representation Score MAE RMSE

KRR
900 ACSF 0.11 2.90 3.87
900 SOAP 0.10 2.91 3.90

ElasticNet
900 ACSF 0.09 2.94 3.92
900 SOAP 0.10 2.90 3.90

Figure 3: Error (kcal mol-1) obtained for the prediction of the energy barrier using a single
MD snapshot as input data.

Having demonstrated that no improvement was achieved by exploring other chemical

representations, we decided to check if we could still predict the pulling work maximum using

a single snapshot but, in this case, from the sMD trajectory. Thus, we selected the 30th,

40th, 50th, and 60th frames (Table 6). Importantly, all these structures are located before the

pulling work maximum. First, we observe that with the increase of the simulation time (from

30th to 60th frame) the fitting improves (Table 6). Second, for the 60th frame, all score values
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are above 0.30 and the MAEs below 3 kcal mol�1. In this case, the SOAP representation

yields the best accuracy (0.43 and 0.41 for ElasticNet and KRR, respectively) and lower

error in the prediction of the energy barrier (Figure 4 and Table S3). Both observations

suggest, that the structure of the initial MD snapshot (0th frame) is too dissimilar from

the maximum to encode su�cient information on how the reaction will proceed and which

barrier height will be reached. Closer to the transition state, the snapshots recover this

information, making it possible for the ML algorithm to learn a better mapping.

Figure 4: Di↵erence of the energy calculated using the predicted pulling work with the energy
obtained from the sMD calculation.

Partial least square (PLS) regression

Finally, in parallel to the non-parametric methods used so far, we used PLS for last predic-

tions (Table S4). The score and error values obtained by PLS are similar to the ones obtained

with KRR and ElasticNet. However, it must be stressed, that in the case of PLS, we could

extract additional chemically-intuitive results. In particular, when using a CM matrix repre-

sentations, the obtained � coe�cients from the PLS analysis could be ascribed to distances

between pair of atoms in the input structures (Table S5 and Figure S5). Whereas for the

data set derived from the 0th snapshots, no chemically understandable pair-interactions were

observed, directly and/or indirectly related to the reaction, the analysis of the data set de-
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rived from the 60th frames shows some relevant contribution to the predicted pulling work

values on the top of the list. As example, the two first � coe�cients (6.94 and 6.61, respec-

tively) refer to distances between the ester carbon of MHET and the two water hydrogen

atoms. Nevertheless, the fact that significant features defined in the collective variables are

not top listed within the � coe�cients may also explain the low scoring value for the 60th

frames.

Table 6: Training process to predict maximum work values (kcal mol�1) with one sMD
snapshot.

KRR ElasticNet
Frame Score MAE RMSE Score MAE RMSE

CM

30th 0.08 3.08 3.97 0.09 3.07 3.96
40th 0.04 3.18 4.05 0.02 3.21 4.10
50th 0.22 2.93 3.65 0.22 2.92 3.66
60th 0.38 2.58 3.25 0.34 2.64 3.36

ACSF

30th 0.14 3.00 3.84 0.14 3.02 3.84
40th 0.11 3.05 3.90 0.11 3.04 3.90
50th 0.34 2.68 3.36 0.29 2.77 3.49
60th 0.42 2.46 3.16 0.36 2.61 3.32

SOAP

30th 0.15 2.98 3.81 0.16 2.96 3.80
40th 0.15 2.96 3.82 0.14 2.98 3.84
50th 0.35 2.68 3.35 0.35 2.69 3.34
60th 0.41 2.49 3.17 0.43 2.46 3.14

Conclusions

Here we have explored the use of sMD libraries and ML algorithms for the prediction of

enzyme-catalyzed energy barriers. As showcase, we have studied the second step of the

hydrolysis of MHET by the plastic-degrading I. sakaeinsis-MHETase. We have used KRR,

SVR and ElasticNet together with di↵erent chemical representations of the active site in the

presence of the substrate, to predict sMD pulling work maxima for this reaction step. Our

results indicate that KRR and ElasticNet are suitable algorithms for the prediction of pulling
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work values when using sMD trajectories as training data and the atoms of the active site of

the enzyme. However, more challenging is the prediction of the sMD pulling work maximum

using a single snapshot per trajectory as training data. Whereas the use of a MD snapshot

(0th snapshot) - yields very poor predictions in our case, the use of a closer sMD snapshot

to the reaction energy maximum (60th snapshot), significantly improves the statistics of the

prediction (MAE under 3 kcal mol�1). To rationalize this finding, we run PLS analysis.

We found out that the MD snapshot does not encode su�cient information to predict the

pulling work values of our data set, as shown by the absence of relevant � coe�cients for

atomic pair-interactions related to the reaction. With this example we could confirm that,

parametric methods like PLS can deliver chemically-interpetrable models, something that

is sometimes challenging to obtain with non-parametric methods. Overall, we show in this

work how the prediction of enzyme-based reaction energy barriers using ML and chemical-

dynamics-derived all-atom models as training data is still state-of-art. Further investigation

are in progress.
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