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Abstract 

Functionalization of C–H bonds is a key challenge in medicinal chemistry, particularly for fragment-
based drug discovery (FBDD) where such transformations need to be executed in the presence of polar 
functionality necessary for fragment-protein binding. New technologies such as high-throughput 
experimentation and self-optimization have the potential to revolutionize synthetic approaches to 
challenging target molecules in FBDD. Recent work has shown the effectiveness of Bayesian 
optimization (BO) for the self-optimization of chemical reactions, however, in all previous cases these 
algorithmic procedures have started with no prior information about the reaction of interest. In this 
work, we explore the use of multi-task Bayesian optimization (MTBO) in several in silico case studies 
by leveraging reaction data collected during related historical optimization campaigns to accelerate 
the optimization of new reactions - this was performed for Suzuki-Miyaura and C–N couplings. This 
methodology was then translated to real-world, medicinal chemistry applications in the yield 
optimization of several pharmaceutical intermediates using an autonomous flow-based reactor 
platform. The use of the MTBO algorithm was shown to be successful in determining optimal 
conditions (both continuous and categorical variables) of unseen experimental C–H activation 
reactions with differing substrates, demonstrating up to a 98 % cost reduction when compared to 
industry-standard process optimization techniques. Our findings highlight the effectiveness of the 
methodology as an enabling tool in medicinal chemistry workflows, where efficient utilization of 
precious starting materials is particularly important. This work represents a step-change in the 
utilization of previously obtained reaction data and machine learning with the ultimate goal of 
accelerated reaction optimization. 

Introduction 

In recent years, there has been an increased interest in the use of automated, self-optimizing 
continuous flow platforms for the optimization of chemical processes.[1-5] These platforms use 
automated reactors and machine-learning algorithms to learn from previous experiments, and 
thereby choose future experiments that ultimately maximize yield and/or other process objectives. 
The use of self-optimizing platforms has arisen from the desire for faster reaction optimization, 
improved process sustainability and cheaper overall process development.[6-9] The use of these 
platforms aims to enhance the capabilities of the researcher by removing the need for repetitive and 
labor-intensive experimentation, allowing them to focus on more challenging tasks. By leveraging 
algorithms, the platforms utilize only minimal reaction material but gain the most process information 
possible, making their deployment in fine chemical and pharmaceutical industries very attractive.[10, 

11]  
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Recent work has shown that Bayesian optimization is a particularly powerful tool for self-
optimization applications.[12-14] However, in all previous studies, each optimization begins with no a 
priori information about the chemical landscape for the reaction of interest. This protocol therefore 
requires initial experimental iterations whereby the algorithm is learning about the experimental 
design space, without any prior information on where the optimal reaction conditions may be. This 
initial exploration can be expensive in terms of both cost and time, particularly when there may 
already be data on the broad chemical transformation of interest from previous optimization 
campaigns. This also opens the methodology to some uncertainty over which initial design strategy to 
use, such as forms of factorial design or Latin Hypercube sampling (LHS), which will affect the overall 
experimental budget. General well-performing reaction conditions can also be identified for particular 
reaction classes, as highlighted in recent work by Angello et al.,[15] but do not give optimal conditions 
for specific transformations and cannot account for important parameters such as reactor 
heterogeneity, solubility, reaction selectivity, differences in substrate functionality or further adjacent 
objectives (E-factor, purification, downstream processing etc.). 

For many medicinal chemistry applications, such as in developing chemistries for the synthesis 
of potential drug candidates, the use of efficient optimization techniques is paramount due to the 
minimal quantity and increased preciousness of intermediate reaction materials.[16, 17] This is a 
particular problem in fragment-based drug discovery (FBDD),[18, 19] as challenging transformations are 
often required on highly functionalized molecules - including difficult C–C forming reactions utilizing 
precise C–H activations which ideally must be executable in the presence of polar groups that are 
required for binding to the target protein.[20] The excessive material consumption when utilizing 
existing algorithms may also be a reason that medicinal chemists are less attracted to these cutting-
edge optimization techniques than process chemists. Our hypothesis is that optimization strategies 
that can utilize pre-existing chemical knowledge could mitigate unnecessary material use, accelerate 
process development and present the potential for broader applicability in new synthetic chemistry 
methods.  

This work shows the first real-world examples of leveraging previous reaction optimization 
data for unseen chemical transformations using multi-task Bayesian optimization (MTBO), with our 
prior work on MTBO for chemistry only showcasing its use in a simulated setting.[21] The framework of 
MTBO, first introduced by Swerksy et al.,[22] replaces the standard probabilistic model in Bayesian 
optimization with a multi-task model. As these multi-task models can be trained on data from related 
tasks, we can therefore utilize data from previously conducted similar reactions - both from the 
laboratory and from the literature. In this work, we first explore and benchmark the use of MTBO in 
simulated studies, then exploit the methodology to optimize several pharmaceutically relevant C–H 
activation reactions using an autonomous flow reactor platform. These experimental case studies 
were chosen to highlight the effectiveness of MTBO in a medicinal chemistry, particularly FBDD, 
context through efficient material usage. There are many reports of similar automated workflows in 
the recent literature where a self-optimization protocol is utilized.[23, 24] Our reactor platform is 
equipped with a liquid handling robot and can optimize both continuous variables (residence time, 
temperature etc.) and categorical variables (solvent, ligand etc.). This ability is seldom reported in the 
literature (with some notable examples from several research groups[1, 25-27]), likely due to engineering 
and equipment challenges, but is very important in determining all relevant parameters that influence 
reaction outcomes. The MTBO algorithm utilized is integrated into the open-source reaction 
optimization package Summit[28] and represents a powerful data-driven optimization technique that 
can utilize known reaction data and ultimately lead to savings in material, time and overall cost. 

Results and Discussion 
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Bayesian Optimization to Multi-Task Bayesian Optimization 

As shown in Figure 1a, Bayesian optimization (BO) relies on three key components: a probabilistic 
model, an acquisition function and an optimization algorithm.[29] The probabilistic model is trained 
using experimental data and acts as a surrogate or “simulation” of the real chemical reaction. Given 
this probabilistic model, the acquisition function estimates the values of different potential 
experimental reaction conditions. The optimization algorithm is then used to find the set of 
experimental conditions that maximizes the acquisition function, and these experimental conditions 
are hence suggested as the next real experiment to run. The combination of the probabilistic model 
and the acquisition function enables exploitation of known high performance areas and exploration 
of new chemical space. By iteratively executing the suggested experimental conditions, retraining the 
model and optimizing the acquisition function, the BO protocol progressively identifies the best 
reaction conditions for the output of interest. 

 

Figure 1: A schematic description of multi-task Bayesian optimization to the context of reaction optimization. (a) Bayesian 
optimization consists of a probabilistic model (typically a Gaussian process) that predicts experiment outputs (e.g. yield) 
given experiment conditions; an acquisition function (AF) that predicts the value of potential new experiments; and an 
optimization algorithm (opt). (b) Multi-task Bayesian optimization replaces the Gaussian process with a multi-task Gaussian 
process trained simultaneously on an auxiliary task. In our case, this auxiliary task is a similar reaction to the one being 
optimized, utilizing previous experimental results. (c) When the auxiliary task for a multi-task Gaussian process is similar to 
the main optimization task, predictions on the main task are improved significantly. (d) When the auxiliary task for a multi-
task Gaussian process is divergent to the main optimization task, predictions on the main task are similar to what is observed 
for the baseline single-task Gaussian process. 

As shown in Figure 1b, MTBO changes the probabilistic model in BO. Typically, a Gaussian 
process (GP) is used as the probabilistic model in BO due to the general applicability and efficiency of 
GPs in the small data regime.[30] MTBO replaces a GP with a multi-task GP that can learn the 
correlations between different tasks to enable better predictions. In our case, the tasks are chemical 
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transformations from the same reaction class with varying substrates. A formal definition of GPs and 
multi-task GPs is in the Methods section. 

As a simple illustration of the benefits of multi-task GPs, we created example functions with 
one input and one output, then trained both a GP and multi-task GP on only three data points. In the 
multi-task GP case, we also generated 25 data points from an auxiliary task. As shown in Figure 1c, 
when the main and the auxiliary tasks are similar, the predictions from the multi-task GP (shown as 
samples from the posterior of the GP) more accurately represent the underlying function than the 
predictions from the single-task GP. The multi-task GP leverages covariance between the data in the 
two tasks to improve predictions on the main task, even with limited data for the main task - this is 
shown formally in the Methods section. As shown in Figure 1d, when the main and the auxiliary tasks 
are divergent, predictions from the single-task and multi-task GP are highly variable. However, this 
variability in the multi-task GP is still useful because the BO algorithm will explore to better capture 
the underlying distribution of the main task. 

In Silico Case Studies: Suzuki-Miyaura Couplings 

We first executed in silico MTBO studies using model chemical reactions as benchmarks. These models 
were generated using neural networks trained on literature experimental data that predict reaction 
yield;[28] more detail on these models can be found in the Methods section. The model ‘Suzuki B1’ was 
trained using Suzuki cross-coupling data from Baumgartner et al.,[31] while the models ‘Suzuki R1-4’ 
were trained using data from Reizman et al.[32] - these specific transformations and the variables that 
affect these models are shown in Scheme 1. 
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Scheme 1: The reactions of interest for the Suzuki-Miyaura coupling in silico case studies. The datasets for training the 
model Suzuki B1 was taken from Baumgartner et al.[31] and for Suzuki R1-R4 from Reizman et al.[32] In each of these 

studies, the continuous and categorical variables (with the bounds shown) were optimized for reaction yield. 

Four specific case studies are highlighted in Figure 2, each where the main task is Suzuki B1 
and the auxiliary training task is one dataset from each of Suzuki R1-4. In each case study, a 
conventional single-task Bayesian optimization (STBO) benchmark for the Suzuki B1 reaction serves as 
a comparison. For each MTBO study, 96 datapoints from the auxiliary task were utilized. The average 
best yield for each algorithm is shown with a 95 % confidence interval over 20 repeated runs.  

When leveraging Suzuki R1 as an auxiliary training task, MTBO initially suggests optimal 
conditions from the training task with P1-L4 (XantPhos). However, these give very low yields (< 25 %) 
which leads to further exploration of the chemical space, resulting in optimal conditions with P1-L1 
(XPhos) and a much higher yield than STBO. 

 In the second case study, when the auxiliary task is Suzuki R2, MTBO appears to perform 
poorly - this is likely due to the low reactivity observed in Suzuki R2 and a noisy simulation benchmark 
(see Figure S8). In this case, the best conditions from the training task also do not perform well on the 
main task, but the yield is moderate enough that it makes further exploration of the chemical space 
initially difficult in obtaining a better response. This suggests that MTBO may bias the training data in 
these circumstances when higher yields are possible but not expected, when given very low-yielding 
auxiliary tasks.  

In the case studies where the auxiliary tasks were Suzuki R3-4, the reactivity of the substrates 
was much more similar in both the main and the training tasks, leading to similar optimal conditions 
being found. This means that MTBO achieved better, and much faster, results than STBO in these 
cases.  

Figure 2: A comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) of Suzuki B1 with Suzuki R1-R4 as auxiliary tasks. The average best yield with a 95% confidence 
interval over 20 repeats is shown. The label above each plot refers to the auxiliary (Aux.) task based on the names in 

Scheme 1, where Suzuki is abbreviated to S. 

Performance of MTBO can be greatly improved using multiple auxiliary tasks. As shown in 
Figure 3a, when Suzuki B1 is optimized with Suzuki R1-R4 as auxiliary tasks, the optimal conditions are 
always found by MTBO in fewer than five experiments. Both P1-L1 and P2-L1 are considered optimal 
for this reaction,[31] and MTBO selects these two catalysts in over 80 % of experiments during twenty 
repeats, when compared to < 50 % frequency for STBO - this is highlighted in Figure 3b. As MTBO 
utilizes optimal regions of chemical space that have been identified in previous tasks with similar 
reactivity, this allows the algorithm to identify new (and better performing) optimal reaction 
conditions faster. 
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Figure 3: A comparison of the performance of single-task Bayesian Optimization (STBO) and multi-task Bayesian 
Optimization (MTBO) of Suzuki B1 and all of Suzuki R1-R4 as auxiliary tasks. (a) The average best yield with a 95% 

confidence interval over 20 repeats is shown. (b) Frequency of selection of each catalyst in Scheme 1 by STBO and MTBO. 

These simulated case studies suggest that the use of MTBO is often beneficial, particularly 
when not mapping the predicted reactivity differences of the main and auxiliary substrates a priori. 
Initial guesses (optimization starting points) are typically better than random initialization because of 
previous reaction information, and the rate of ‘best yield’ improvement is also greater. In the best-
case scenario, the reactivity of the new substrate is similar to those of previous datasets and results 
in a greater yield much faster than standard STBO. In the worst-case scenario, MTBO can fail with one 
noisy auxiliary case, but we found that using multiple auxiliary tasks helps to mitigate these issues.  
With these findings, we were confident that MTBO would be effective in real-world case studies where 
we have experimental datasets from previous optimization campaigns. Further in silico case studies 
for other reaction types, namely Buchwald-Hartwig cross couplings, were also conducted and showed 
similarly promising results; these studies can be found in the Supporting Information. 

Experimental Case Studies: C–H Activation 

The reaction class that we targeted for our experimental MTBO study was the palladium-catalyzed C–
H activation reaction, reported by Hennessy and Buchwald,[33] yielding pharmaceutically relevant 
oxindoles (16) from their corresponding chloroacetanilides (15), as shown in Scheme 2. Each case 
study is shown in Table 1 and is highlighted if it is forming a potential bioactive fragment or active 
pharmaceutical ingredient (API) intermediate. The rationale behind these studies is two-fold: firstly, 
these oxindoles are closely related to many known bioactive molecules and hence medicinal chemistry 
projects, and secondly, when considering optimal growth vectors for bioactive molecular fragments 
to grow into more potent drug candidates (such as in FBDD),[18] the most beneficial transformations 
are often exploiting C–H bonds on the fragment to form new C–C bonds.[20] Therefore, using MTBO, 
we aimed to rapidly optimize several transformations using different starting materials with unique 
functionalities to yield structurally diverse oxindole products by forming valuable sp2-sp3 C–C bonds. 
Then, for future optimization campaigns requiring oxindole syntheses, this model can be employed to 
expediate reaction optimization and process development for new substrates. 
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Scheme 2: The reaction class of interest for the MTBO study, where the substituted chloroacetanilide, 15, reacts to form 
the corresponding oxindole, 16. Pd(OAc)2 and NEt3 remain constant in each experiment, but the ligand, solvent, catalyst 

concentration, residence time and reaction temperature are optimized for each case study. 

Table 1: Each experimental case study explored in this work, including the starting material used, the product formed and 
the API structure that the product is linked to. These reactions, and references to their known API structure, are highlighted 
in Schemes 3 - 6. 

Case 
study Starting material Product API structure 

1 

  

- 

2 

  

 

3 

  

 

4 

  
 

 

For all experimental work conducted during this study, a self-optimizing flow reactor platform 
was utilized with a control interface previously disclosed by our group.[34] This platform employs an 
autonomous optimization workflow, where all experiments are conducted and analyzed without 
human intervention. All initial training experiments are planned using LHS, then the results from these 
automated experiments (the yield of the product) are exported using on-line HPLC sampling. Based 
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on these reaction data, and previously conducted auxiliary tasks, the MTBO algorithm then 
determines the most beneficial reaction conditions to execute in order to maximize product yield. The 
actual product yield obtained from this reaction is then communicated back to the algorithm, where 
the experimental feedback loop is closed, as the algorithm suggests conditions for the next 
optimization iteration (as shown in in Figure 4). Furthermore, only minimal amounts of reaction 
material are consumed in each experiment by using reaction slugs;[35] this is an important 
miniaturization consideration relevant to medicinal chemistry settings, but could potentially be 
miniaturized further. The minimum slug length is determined on the basis of dispersion in laminar 
flow such that sampling from a slug is consistent between slugs in repeated tests - the volume of the 
slugs used in these studies is 4 mL. The aim of this experimental methodology is to accelerate the 
optimization timeline by requiring fewer experiments and less reaction material consumption. More 
information on the reactor setup can be found in the Methods section. 

 

Figure 4: A schematic diagram of the experimental setup and protocol we used for the MTBO self-optimization studies. 

For each case study, we optimized the continuous parameters: residence time (5 - 60 
minutes), reaction temperature (50 - 150 °C) and catalyst concentration (1 - 10 mol%), and the 
categorical parameters: solvent (toluene, DMA, acetonitrile, DMSO, NMP) and ligand (JohnPhos, 
SPhos, XPhos, DPEPhos), for the maximum product yield output. While it is possible to represent these 
categorical variables in numerous ways, the simplest representation (one-hot encoding) proved 
sufficient to learn from.[36, 37] The first case study, as shown in Scheme 3, utilizes only single-task 
Bayesian optimization (STBO) as there is no previous data to leverage model understanding for MTBO. 
The starting material, 17, reacts to form the molecular fragment (with potential growth vectors for 
further functionalization), 18. The optimization was initialized using 16 (24) training experiments 
before the algorithm began to suggest experimental conditions. 
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Scheme 3: The first case study explored using STBO, where the substituted chloroacetanilide, 17, reacts to form the 
oxindole, 18. This product is previously unreported via this C–H activation methodology. 

After the initial training experiments, the feedback loop (as described in the Methods section) 
was implemented and 7 further experiments were conducted, finding the optimal reaction 
parameters of: NMP, XPhos, 53 minutes residence time, 89 °C reactor temperature with 9 mol% 
catalyst, yielding the product, 18, in 74.6 % yield. These results are interesting, because with many 
reported optimization campaigns the optimal conditions are often the most forcing (highest 
temperature, highest residence time, highest catalyst concentration)[3, 5, 38] However, in this case, the 
algorithm determines that a moderate reactor temperature is important for a higher yield. This is 
because the starting material reacts to form other products, leading to a decrease in the desired 
product yield under more forcing conditions. Furthermore, the optimized conditions reported in the 
original publication describing these types of reactions feature toluene and JohnPhos,[33] which are 
different from our optimized parameters for this reaction. However, these reported conditions require 
reaction times of 2.5 - 6 hours which are difficult to replicate in flow, which could be the reason why 
the same categorical parameters were not determined to be optimal in our 5 - 60 minutes residence 
time optimization space. A plot of the experimental data, both training and optimization experiments, 
and the yields achieved are shown in Figure 5. These 23 experiments required to achieve optimal 
conditions are also significantly fewer in number than what would be required for current industrial-
standard optimization procedures, such as design of experiments (DoE), which would require >750 
experiments of efficient design space exploring data points. All reaction data for each case study is 
reported in full in the ESI, as well as efficiency comparisons with industrial-standard optimization 
procedures. 

 

Figure 5: A plot of yield of product, 18, against experimental number in the STBO campaign. Where:  ■  = training 
experiments and  ●  = optimization experiments. 

Utilizing the experimental dataset from this optimization campaign, a different substrate was 
then explored in the second case study. The starting material, 19, reacts to form a key intermediate 
for a serine palmitoyl transferase (SPT) inhibitor, 20, as shown in Scheme 4.[39] As this is a similar 
transformation, the use of MTBO should hasten optimization and produce optimal reaction conditions 
much more quickly. The optimization is initiated, and the first suggested experiment deviates only 
slightly from the previously obtained best parameters, whilst still utilizing NMP and XPhos as the 
categorical variables but produces a poor yield of the product (14.8 %). As this yield is much lower 
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than what the underlying multi-task model had predicted, the corresponding weightings to select this 
area of parameter space for this case study are greatly reduced and thereby the likelihood of exploring 
this area again during this campaign is reduced. The model then balances the exploration of new 
parameter space with the exploitation of known favorable conditions, particularly from the previous 
case study, to iterate through further experiments. The optimal reaction conditions were found in 11 
experiments: acetonitrile, JohnPhos, 28 minutes residence time, 127 °C reactor temperature with 5 
mol% catalyst, yielding the product, 20, in 84.9 % yield. It is important to note that this area of 
parameter space is far from the identified optimum in the previous case study, showing the 
adaptability of MTBO to similar optimization tasks without simply exploiting near the previously 
obtained optimal conditions. To identify these process parameters, this entire workflow consumed 
only 980 mg of the starting material, 19, and has a much greater throughput (requiring less catalyst 
loading, cheaper materials and non-complex solvent mixtures) than other reports of this chemistry 
that yield only 76 % of the desired product.[40] This experimental data is displayed at the end of this 
section in Figure 5 (red dotted line). 

 

Scheme 4: The second case study explored using MTBO, where the substituted chloroacetanilide, 19, reacts to form the 
key intermediate en route to a serine palmitoyl transferase (SPT) inhibitor, 20. This product is previously unreported via 

this C–H activation methodology. 

With two completed optimization campaigns, these datasets could then be leveraged for the 
optimization of process parameters for a third case study. This case study features the transformation 
of 21 into the antibacterial intermediate, 22, necessary for the synthesis of the oxazolidinone 
antibiotic Linezolid,[41] as shown in Scheme 4. 

 

Scheme 5: The third case study explored using MTBO, where the substituted chloroacetanilide, 21, reacts to form the key 
intermediate, 22, for the antibiotic Linezolid. This case study utilized data from the previous two optimization campaigns. 

This product is previously unreported via this C–H activation methodology. 

 The initial experiment in MTBO used similar conditions to the optimal conditions from the 
second case study, with acetonitrile and JohnPhos as categorical variables with 18 minutes residence 
time with 5 mol% catalyst at 139 °C. This produced a good yield of 71 % but was subsequently 
improved by using NMP and XPhos, as the MTBO algorithm discovered from the first case study is also 
a parameter space region of high interest, immediately improving the yield to 83 %. Upon further 
adjustment of the continuous variables, a yield of 98 % was achieved in only five total experiments. 
This is the first optimization campaign where one ortho site was blocked for cyclisation, but this 
variation is seemingly not enough to divert chemical reactivity from what the MTBO algorithm expects, 
thereby proving the task’s applicability to these divergent structures. The entire workflow for 
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optimizing this process used only 250 mg of the starting material, 21, which also resulted in a greater 
yield, throughput and greener process than other reports in the literature (86 % yield in batch, 
overnight using fluorinated solvents).[42] This experimental data is displayed at the end of this section 
in Figure 5 (orange solid line). 

 The next experimental case study features the transformation of the starting material, 23, into 
the NK1 receptor antagonist intermediate, 24, as shown in Scheme 6.[43] In this optimization campaign, 
the MTBO algorithm leveraged data from the previous three case studies, yet this is the first substrate 
that forms a 6-membered cyclized ring instead of the typical 5-membered ring in the previous 
oxindoles. Initial experiments in previously identified well-performing parameter space produced low 
yields, but the algorithm could thereby determine that further exploration of the parameter space 
was important as the substrate showed more variability from the previous tasks.  

 

Scheme 6: Another case study explored using MTBO, where the substituted chloroacetanilide, 23, reacts to form the 
pharmaceutical intermediate, 24, for the synthesis of an NK1 receptor antagonist. This case study utilized data from each 

of the previous optimization campaigns. This product is previously unreported via this C–H activation methodology. 

 Through further iterations, the categorical variables were exploited: DMSO and DPEPhos, with 
the most forcing continuous parameters: 60 minutes residence time with 10 mol% catalyst loading at 
150 °C. These were determined to be the optimal conditions as found by the self-optimization 
workflow, giving the product in 82 % yield in 10 experiments using only 450 mg of the starting material, 
23. Despite this functional change, the algorithm was still able to determine the optimal conditions 
utilizing previous data and quickly found that although a similar reaction task was present, further 
exploration of the parameter space was necessary. This further shows the adaptability of the MTBO 
approach to wider substrate scopes with different functionalities. This experimental data is displayed 
at the end of this section in Figure 5 (green dashed line). 

 A final case study was then attempted using this workflow, which is the same oxindole-
forming C–H activation reaction conducted in every other reaction, but this time featured an electron-
rich aromatic ring rather than an electron-deficient ring. The substrate of interest, N-methyl-2-
methylchloroacetanilide, also had one ortho position blocked for cyclisation. This study was 
conducted to further test the limits and the adaptability of the MTBO algorithm, but even with the 
most forcing conditions possible using our workflow we could only achieve a 29 % product yield. This 
was also true when using the reported categorical conditions for this substrate in the initial 
publication[33] - however, the heterogeneity of the reactor systems may have negatively affected the 
yield outcome, i.e. 6 hour reaction times cannot be achieved easily in flow. Given these observations, 
we concluded that the reactivity of this species is sufficiently different to previous case studies and 
therefore cannot be considered as a similar task to the other optimization campaigns. Therefore, for 
the optimization of these substrates (or any substrates sufficiently different to the tasks of interest) 
further MTBO campaigns must be conducted for the models to encapsulate these differences to 
efficiently optimize any case study of interest. With the addition of DFT and reaction similarity scoring, 



13 
 

all substrates of interest can be categorized a priori into their respective task bins, avoiding the 
necessity for additional experimentation. It may also be appropriate in such cases that promising 
upper bounds leading to full conversion of starting materials are identified, potentially avoiding 
wasteful experiments in inaccurately defined parameter spaces. Further experimental information on 
this case study can be found in the ESI. 

 For each of these C–H activation case studies, generally fewer experiments were necessary to 
achieve an optimal set of reaction conditions for the highest process yields - this is illustrated in Figure 
6. This is because there was an increasing data-density that detailed optimal areas of parameter space 
for similar tasks (reactions of similar substrates), allowing for a progressively more efficient 
optimization workflow. In each case study, only minimal amounts (for our specific reaction system) of 
starting materials were consumed to find optimal reaction conditions, which is very important in early-
stage medicinal chemistry development applications when preservation of precious starting materials 
and speed of optimization are paramount. For these C–H activation case studies, utilizing this 
workflow with MTBO to find optimal reaction conditions resulted in a material saving of 132 g (£25k) 
when compared with kinetic studies, and a material saving of 167 g (£32k) when compared with 
traditional DoE optimization studies (see ESI for details). These costly figures indicate why 
intermediate reaction optimization in medicinal chemistry applications are often difficult or infeasible 
to conduct, and why MTBO can serve as an enabling tool for these scenarios. Other common 
optimization strategies, such as traditional one-factor at a time (OFAT) approaches, may provide 
modest process improvements in these scenarios but have been shown repeatedly to underperform 
when compared with statistical-based techniques.[1, 44, 45] This methodology has therefore proven to 
be effective in real-world pharmaceutical applications for material- and cost-efficiency, with the bonus 
of full automation that allows scientists to use their human resource to focus on other areas of 
chemical development. Although these experimental studies focused on C–C bond formation by 
targeting C–H activation, these techniques can be utilized for other transformations to ultimately 
accelerate optimization. 

 

Figure 6: A plot of best yield of the products in each case study against the optimization experimental number in each 
campaign. The color and dash type of the graph correspond to each product molecule: case study 1 (blue dash-dot), case 

study 2 (red dot), case study 3 (orange solid) and case study 4 (green dash). 

Conclusions 

The studies performed in this work, both in silico and in real-world chemical applications, represent 
the first use of datasets from similar reactions to expediate current optimization campaigns with 
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multi-task Bayesian optimization. This methodology drastically shortens optimization timelines for 
pharmaceutically relevant transformations, whereas other traditional process optimization 
techniques (i.e. design of experiments, kinetics studies) would require a significantly higher 
investment in starting materials, time and cost. This would likely make their optimization infeasible in 
medicinal fragment-to-lead/FBDD workflows and early-stage process development, unless using 
intuition-based optimization techniques (such as OFAT) that are unlikely to obtain optimal results.[1] 
By introducing more miniaturization technology, including smaller reactors/slugs and plate-based 
screening, there is the added opportunity to reduce material consumption even further using these 
automated platforms. 

 With the increasing density of chemical reaction data, both in the literature and in private 
data storage, there is a wealth of information that can be leveraged for building task-specific models 
to further increase the efficiency of future reaction optimizations. When using these multi-task 
learning approaches, it is possible to generate sets of models for specific reaction classes (e.g. 
Buchwald-Hartwig, Suzuki etc.) and subsets of those models (electron-rich, sterically hindered etc.) to 
rapidly optimize any transformation likely to be encountered. This is a particularly powerful technique 
in cases where starting materials are sparse and the reaction is poorly understood, yet suitable 
quantities of product is required for further molecular design, functionalization and biological testing. 
Similarly, this importance is echoed in early process development when scale-up of a novel synthetic 
intermediate is required from the milligram scale to multi-gram or kilogram scale. 

The primary challenge when using multi-task Bayesian optimization is its tendency to bias 
towards the best conditions found in a single auxiliary task, as shown in our in silico studies. However, 
our results demonstrate that additional useful auxiliary tasks can reduce the impact of a noisy, low-
yielding auxiliary task. Interestingly, we also noticed that the benefit of MTBO use over STBO increases 
as the number of categorical options increases. Indeed, our experimental case studies each had 20 
categorical options, and we found MTBO to perform very well as we proceeded to add multiple 
auxiliary tasks. Future work could use a more exploratory acquisition function in combination with the 
multi-task model to strike the right balance between biasing towards the auxiliary task data and 
exploring untested conditions. 

 The multi-task Bayesian optimization algorithm used in this study is open-source and is 
released as a package within the Summit framework previously reported by our group.[28] This step 
towards utilizing machine learning and previous reaction data for future optimization campaigns will 
ultimately result in faster and more efficient optimizations, thereby serving as a broadly applicable 
enabling tool with relevance to medicinal chemistry and FBDD settings, where industry-standard 
process optimization techniques are impractical or even impossible to implement. 

Methods 

Flow Reactor Platform 

The reactor platform consists of two Vapourtec R2 modules for controlling flow rates, a Vapourtec R4 
reactor module for controlling reactor temperature, a Gilson GX-271 liquid handler for dispensing and 
collecting reaction material and LC-MS analytical equipment (Shimadzu/Waters) for reaction outcome 
determination. For each reaction, with the experimental conditions determined through LHS or 
algorithmically, the liquid handler dispenses 2 mL slugs of the starting material (in this case, the 
chloroacetanilide 15) pre-dissolved in the selected solvent into the sample loop for pump A - this 
solution also contains biphenyl as an internal standard. The selected catalyst/ligand combination in 
the same solvent is then loaded into the sample loop for pump B, and the solvent of interest is loaded 
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into pump C for dilution. The reaction is conducted with a constant 0.09 M reactor concentration, 
yielding the corresponding product (in this case, the oxindole 16), which is thereby analyzed utilizing 
a 4-way switching valve[46] for on-line LC-MS. Using this methodology, experiments can be run using 
only minimal amounts of reaction material for each experiment as we are utilizing reaction slugs. This 
experimental workflow is illustrated in Figure 4. 

Gaussian Processes 

For single-task Bayesian optimization, we leverage a Gaussian process (GP) as the probabilistic model 
in BO due to its excellent performance in the limit of small of data.[30] A GP is a stochastic process 
characterized by a mean µ!(𝑥) and covariance function 𝑘!(𝑥, 𝑥"). The covariance function is often 
called a kernel, which is the term we will use henceforth. 

𝑓(𝑥) = 𝒢𝒫,µ(𝑥), 𝑘!(𝑥, 𝑥")- 

where 𝜽 are referred to as hyperparameters of the kernel. Given a finite set of 𝑁	
inputs 𝑋 = {𝑥#, 𝑥$, … , 𝑥%	|𝑥& ∈ ℝ'} that correspond with outputs 𝑦 = {𝑦#, 𝑦$, … , 𝑦%|𝑦& ∈ ℝ} the GP 
is a multivariate Gaussian distribution: 

𝑓(𝑿)~𝒩(𝜇((𝑿), 𝑘((𝑿, 𝑿")) 

 The mean function and kernel act as a prior on the GP. µ!(𝑥)	
 is usually set to zero because the kernel 𝑘!(𝑥, 𝑥") fully expresses any arbitrary function. In this work, 
we use the Matérn 5/2 kernel, with hyperparameters 𝜽 = {𝜎, 𝑳	}	. 𝜎 ∈ ℝ is the scaling 
hyperparameter and 𝑳 ∈ ℝ' is a lengthscale that indicates the significance of each input feature. 

𝑘((𝑥, 𝑥") = 	𝜎$ ?1 + √5𝑑((𝑥, 𝑥") +
5
3
𝑑((𝑥, 𝑥")$F exp(−√5𝑑((𝑥, 𝑥")) 

where 𝑑 is the Euclidean distance weighted by the length scale: 

𝑑!(𝑥, 𝑥") = K
𝑥 − 𝑥"

𝐿
K
$
	

 

 Inference on the GP is done by calculating the posterior of the GP. The posterior of the GP is 
also a Gaussian distribution: 

	𝑓M(𝑿) ∼ 	𝒩(𝜇O(𝑿), 𝜎O(𝑿)) 

𝜇O((𝑥) = 𝑘((𝑥, 𝑿)𝑘((𝑿, 𝑿"))#𝒚 

𝑘Q((𝑥, 𝑥′) = 𝑘((𝑥, 𝑥") − 𝑘((𝑿, 𝑥)𝑘((𝑿, 𝑿))#𝑘((	𝑥, 𝑿)  

where	𝜎O(𝑥) are the diagonals of the covariance matrix calculated using 𝑘Q((𝑥, 𝑥′). To train the GP, the 
log likelihood is maximized, which is the probability that the model predicts the training outputs given 
the inputs and hyperparameters. The log likelihood avoids overfitting by trading off accuracy of fit to 
the training data and complexity of the model. The optimal hyperparameters 𝜽∗	are found by 
maximizing the log likelihood of the outputs 𝑦 given the inputs 𝑿 and the hyperparameters 𝜃[47] (where 
Σ! = 𝑘Q((𝑿, 𝑿′)): 

log 𝑝 (𝑦|𝑿, θ) = −
1
2
,𝑦 − 𝜇O((𝑿)-

+Σ!)#(𝑦 − 𝜇O((𝑿))[\\\\\\\\\]\\\\\\\\\^
Data	fit

−
1
2
log|Σ!| −

𝑑
2
log 2π[\\\\\]\\\\\^

Complexity	penalty
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Multi-task Gaussian Processes 

Multi-task GPs can be used on multioutput functions 𝑓: χ → 𝑅+  , where each of the 𝑇 outputs can be 
seen as solutions to unique regression tasks. The key idea is to use a kernel that can extend to multiple 
tasks. As detailed in the work by Bonilla et al.,[48] we use the intrinsic model of coregionalization, which 
transforms a latent function to yield the outputs: 

𝑘(
;<=(𝑥, 𝑥") = 𝑘(

> ⊗	𝑘( (𝑥, 𝑥") 

 The task kernel 𝑘(
>  is a 𝑇	 × 𝑇 matrix of trainable parameters where 𝑇 is the number of tasks. 

These parameters represent the inter-task correlation. 

Bayesian Optimization 

Bayesian optimization aims to solve the optimization problem: 

𝑚𝑎𝑥?𝑦(𝑥) 

where 𝑦(𝑥) is the underlying function that we observe via experiments. We use the expected 
improvement (EI) acquisition function for in silico experiments[49] or q-noisy expected improvement 
(qNEI) acquisition function for flow chemistry experiments.[50] 

 In BO with EI as an acquisition function, the aim is to choose the point that is expected to 
improve the most upon the existing best observed point 𝑦∗ ≥ 𝑦(𝑥&)∀𝑖 ∈ (1,… , 𝑡) where 𝑡 is the 
number of observations thus far. Therefore, we create an improvement function 𝐼(𝑥) describing the 
improvement of the posterior of the GP over the best observed point. If there is no improvement, 
𝐼(𝑥) = 0. 

𝐼(𝑥) = 	max	(𝑓M(𝑿) − 𝑦∗, 0)	
 

After several manipulations, a closed form of EI can be found: 

EI(𝑥) = (𝜇O((𝑥) − y∗)Φ(Z∗)[\\\\\]\\\\\^
Exploitation

+ 	𝜎O(x)ϕ(Z∗)[\\]\\^
Exploration

 

where 𝑍∗ =	 B
∗)C"(E)
	GH(?)

.  

 EI suffers from issues with noisy experiments due to its reliance on the best observed point 
𝑦∗, which is a biased estimate, especially in the low data regime. qNEI aims to overcome this issue by 
using the maximum of posterior of the GP over the observed inputs: [50]  

𝑞𝑁𝐸𝐼(𝑥) = 	𝔼[(max 𝜉 − max 𝜉IJK)L] 

where 𝜉IJK~	𝑓M(𝑥) and 𝜉IJK~	𝑓M(𝑿) are samples from the posterior of the GP. We use BOtorch for 
implementations of GPs and Bayesian optimization.[50] For the experimental C–H activation case 
studies shown in Scheme 4-6, the qNEI acquisition function was used, while EI was used in the 
simulation case studies due to computational limitations. 

Benchmarks 

Prior to real experimentation, we wanted to understand the performance of MTBO in simulated 
studies. We examined two literature reports that contain experimental results from Suzuki-Miyaura 
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coupling reactions,[31, 32] and one report with results from a Buchwald-Hartwig cross-coupling[51] 
(demonstrated in the Supporting Information), building a predictive model for the reaction yield to 
behave as the ground-truth for simulated optimization studies. Buchwald-Hartwig and Suzuki-Miyaura 
couplings are ubiquitous in the pharmaceutical and fine chemicals industries as they allow rapid 
construction of aromatic scaffolds through reactions with few impurities.[52] We therefore chose these 
reaction classes because of their high value and applicability to real-world scenarios. More details on 
benchmark training can be found in the Supporting Information. 
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1. Benchmarking using Literature Data 
We used literature data to benchmark our Bayesian optimization strategies in silico. The challenge is 
that chemical data is often recorded in unstructured text documents such as journal publications and 
patents. While there are some conventions, each author is free to express the details of a chemical 
reaction as they wish. Such unstructured information is not amenable to most machine learning 
algorithms. Therefore, we designed a custom data extraction workflow that we think is a model for 
how to apply transfer learning in chemistry. 
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1.1 Data extraction workflow 
As shown in Figure S1, we developed a benchmarking workflow that converts unstructured data into 
benchmarks that can used for comparing various strategies.  We leveraged the Open Reaction 
Database (ORD) format as a common representation of reactions.[1] We wrote converters from 
spreadsheet formats to ORD. Once the data was transformed into ORD, the data was loaded into local 
storage on disk for featurization. Subsequently, the featurization step turned the ORD schema into a 
set of features that can be used for training a benchmark or a GP for Bayesian Optimization.  We used 
one-hot encodings to represent the categorical variables.  

We utilize data from publications on Suzuki couplings (see main text Scheme 1) and C-N couplings (see 
Scheme S1).[2, 3] 

 

 

Figure S1:  Workflow for converting data in spreadsheets into ORD format and subsequently training datasets for machine 
leaning. 
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Scheme S1: Benchmark examples of C-N cross coupling (C-N B1-B4) of nitrogen functionalized aromatics (S1, S4, S6, S8) 
with p-tolyl triflate. Data is based on data Baumgartner et al.[2] The base equivalents, temperature and reaction time, base 

and catalyst are varied to maximize yield. 
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Figure S2: Workflow for training an ExperimentalEmulator to act as a benchmark. 

1.2 Benchmark Training 
We leveraged Summit[4] to build the predictive models from the literature reports. As shown in Figure 
S2, we utilized the ExperimentalEmulator feature in Summit, which creates a benchmark based on 
experimental data. The regressor used was a neural network with one hidden layer of 512 units with 
a ReLu activation function. A one-hot encoding was used for the pre-catalyst and ligand combinations. 
The neural networks were trained by five-fold cross validation over 1000 epochs using stochastic 
gradient descent. Figures S3 - S10 show the parity plots for the benchmarks.  

 

Figure S3: Parity plot of benchmark training for prediction of reaction yield for C-N B1. 
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Figure S4: Parity plot of benchmark training for prediction of reaction yield for C-N B2. 

 

Figure S4: Parity plot of benchmark training for prediction of reaction yield for C-N B3. 
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Figure S5: Parity plot of benchmark training for prediction of reaction yield for C-N B4. 

 

Figure S6: Parity plot of benchmark training for prediction of reaction yield for Suzuki B1. 
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Figure S7: Parity plot of benchmark training for prediction of reaction yield for Suzuki R1. 

 

Figure S8: Parity plot of benchmark training for prediction of reaction yield for Suzuki R2. 
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Figure S9: Parity plot of benchmark training for prediction of reaction yield for Suzuki R3. 

 

Figure S10: Parity plot of benchmark training for prediction of reaction yield for Suzuki R4. 

1.3 Benchmarking Simulation Details 
All benchmark simulations were executed on an Amazon Web Services instance with an Nvidia T4 GPU 
via Lightning AI. For each configuration of optimization and task and auxiliary task, 20 repeats were 
completed. Figures show the average performance and the 95% confidence interval at each interval. 
For multitask benchmarks, the first experiment executed was the highest yielding condition from the 
auxiliary task(s). 
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1.4 Suzuki Benchmarks 
 

 

Figure S11: Comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) on Suzuki reactions R1-R4 with auxiliary data from Suzuki B1. 
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Figure S12: Comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) on Suzuki R1-R4 with Suzuki R1-R4 as auxiliary tasks. The text above the plot represents the data used 

as an auxiliary task. 

 

Figure S13: Comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) on Suzuki R1-R4 with Suzuki R1-R4 as auxiliary tasks. The text above the plot represents the data used 

as an auxiliary task. 
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1.5 C-N Benchmarks 
 

 

Figure S14: Comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) on C-N B1-B4 with C-N B1-B4 as auxiliary tasks. The text above the plot represents the data used as 

an auxiliary task. 

 



31 
 

 

Figure S15: Comparison of the performance of single-task Bayesian optimization (STBO) and multi-task Bayesian 
optimization (MTBO) on C-N B1-B4 with all remaining C-N tasks for auxiliary training. The text above the plot represents 

the data used as an auxiliary task. 

2. C-H Activation Case Studies 
2.1 General procedure for synthesis of product analytical standards 
The general procedure as highlighted by Hennessy and Buchwald[5] was followed. An oven-dried 50 
mL round-bottomed flask was equipped with a magnetic stir bar and air condenser. Palladium acetate 
(2 mol%), JohnPhos (4 mol%) and the chloroacetanilide substrate (5 mmol) was then charged, and the 
flask was evacuated and backfilled with nitrogen 3 times. Anhydrous triethylamine (1.05 mL, 10 mmol) 
was added, followed by anhydrous toluene (5 mL). The reaction mixture was heated at 80 °C and ran 
overnight, then diluted with ethyl acetate (50 mL). The mixture was filtered through a plug of celite, 
concentrated on a rotary evaporator, then purified by silica gel chromatography to give the oxindole 
product. For each case study, the starting material was purchased from J&H Chemical in 95 % purity. 
All other chemicals were purchased from Sigma Aldrich unless otherwise stated. 
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2.2 Experimental setup 
The following experimental setup was used, as pictured in Figure S16, as described in the Methods 
section of the paper. 

 

Figure S16: A photo of the experimental setup used for all C-H activation case studies. 

Solubility studies were initially conducted to determine the maximum concentrations of each starting 
material and product in different solvents. This information would then be used to conclude the ideal 
concentration of the starting material in each reaction (0.09 M) and the solvents of choice to help to 
prevent reactor clogging. In each study, a pre-weighed vial and a fixed amount of material was dosed 
with small amounts of solvent and stirred vigorously until the material was fully dissolved - the vial 
was then weighed, and the resulting concentration calculated. These maximum concentrations are 
reported in Table S1: 

Table S1: The maximum concentration observed for each starting material and product from each case study in a number 
of solvents, as determined from solubility studies. 

Case study 1 

 H2O /M Acetonitrile /M THF 
/M Methanol /M Acetone /M Chloroform /M IPA /M Toluene 

/M 
17 0.06 5.44 4.65 4.22 4.88 5.47 2.06 4.15 
18 0.03 0.76 0.85 0.30 0.73 2.43 0.31 0.46 

Case study 2 

 H2O /M Acetonitrile /M THF 
/M Methanol /M Acetone /M Chloroform /M IPA /M Toluene 

/M 
19 0.01 0.66 1.60 0.05 0.71 1.89 0.07 0.54 
20 0.02 0.10 0.20 0.03 0.06 1.29 0.01 0.13 

Case study 3 
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 H2O /M Acetonitrile /M THF 
/M Methanol /M Acetone /M Chloroform /M IPA /M Toluene 

/M 
21 0.02 2.62 2.29 0.28 2.51 2.24 0.24 0.70 
22 0.01 0.08 0.08 0.03 0.06 0.19 0.01 0.06 

Case study 4 

 H2O /M Acetonitrile /M THF 
/M Methanol /M Acetone /M Chloroform /M IPA /M Toluene 

/M 
23 0.01 5.01 3.56 4.01 4.33 5.65 1.75 3.67 
24 0.01 0.82 0.71 0.23 1.10 2.56 0.21 0.49 

 

The weighing of the individual components into the sample vials differed for each of the case studies 
- these vials were used by the liquid handler as solution reservoirs. The vials 1 - 5 contained these 
differing components, whilst vials 6 - 25 remained constant throughout. 10 mL of reaction solution 
was present in each vial, which was each purged with nitrogen. The triethylamine and all solvents are 
anhydrous, and biphenyl was used as an internal standard. These concentrations were calculated so 
that a constant 0.09 M concentration of starting material in the reactor could be obtained through 
dilution, to enable a fair comparison between all conditions where mol% of catalyst was varied. The 
weights of all components are displayed in Table S2 and S3: 

Table S2: Individual component weighing for each ‘starting material’ sample vial for the C-H activation case studies. 
Case study 1 

Vial Solvent 17 mass /g NEt3 mass /g Biphenyl mass /g 
1 Toluene 0.40 0.30 0.03 
2 DMA 0.40 0.30 0.03 
3 Acetonitrile 0.40 0.30 0.03 
4 DMSO 0.40 0.30 0.03 
5 NMP 0.40 0.30 0.03 

Case study 2 
Vial Solvent 19 mass /g NEt3 mass /g Biphenyl mass /g 

1 Toluene 0.89 0.30 0.03 
2 DMA 0.89 0.30 0.03 
3 Acetonitrile 0.89 0.30 0.03 
4 DMSO 0.89 0.30 0.03 
5 NMP 0.89 0.30 0.03 

Case study 3 
Vial Solvent 21 mass /g NEt3 mass /g Biphenyl mass /g 

1 Toluene 0.49 0.30 0.03 
2 DMA 0.49 0.30 0.03 
3 Acetonitrile 0.49 0.30 0.03 
4 DMSO 0.49 0.30 0.03 
5 NMP 0.49 0.30 0.03 

Case study 4 
Vial Solvent 23 mass /g NEt3 mass /g Biphenyl mass /g 

1 Toluene 0.45 0.30 0.03 
2 DMA 0.45 0.30 0.03 
3 Acetonitrile 0.45 0.30 0.03 
4 DMSO 0.45 0.30 0.03 
5 NMP 0.45 0.30 0.03 

 
Table S3: Individual component weighing for each ‘reagent’ sample vial for the C-H activation case studies. 

All case studies 
Vial Solvent Ligand Pd(OAc)2 mass /g Ligand mass /g 

6 Toluene JohnPhos 0.045 0.119 
7 DMA JohnPhos 0.045 0.119 
8 Acetonitrile JohnPhos 0.045 0.119 
9 DMSO JohnPhos 0.045 0.119 

10 NMP JohnPhos 0.045 0.119 
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11 Toluene SPhos 0.045 0.164 
12 DMA SPhos 0.045 0.164 
13 Acetonitrile SPhos 0.045 0.164 
14 DMSO SPhos 0.045 0.164 
15 NMP SPhos 0.045 0.164 
16 Toluene XPhos 0.045 0.194 
17 DMA XPhos 0.045 0.194 
18 Acetonitrile XPhos 0.045 0.194 
19 DMSO XPhos 0.045 0.194 
20 NMP XPhos 0.045 0.194 
21 Toluene DPEPhos 0.045 0.215 
22 DMA DPEPhos 0.045 0.215 
23 Acetonitrile DPEPhos 0.045 0.215 
24 DMSO DPEPhos 0.045 0.215 
25 NMP DPEPhos 0.045 0.215 

 

2.3 Case study 1 
An analytical standard for 18 was obtained using the general procedure, where LCMS analysis gave 
product m/z 166.15 and the 1H NMR showed conversion to product as shown in Figure S17. 

 

Figure S17: 1H NMR for oxindole product 18. 
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Table S4: All reaction data for the C-H activation case study 1. 
 Conditions 

Type Solvent Ligand Residence 
Time /min Temp /°C Mol% Yield /% 

Training DMSO DPEPhos 60 140 10 46.09 
Training DMSO JohnPhos 45 70 3 1.31 
Training Toluene DPEPhos 42 61 8 0.00 
Training DMA JohnPhos 9 135 5 37.91 
Training MeCN JohnPhos 11 134 2 16.87 
Training MeCN JohnPhos 19 80 5 69.70 
Training NMP JohnPhos 47 143 4 40.92 
Training DMSO SPhos 29 122 4 0.00 
Training NMP XPhos 52 112 8 55.69 
Training NMP DPEPhos 26 53 6 0.00 
Training Toluene XPhos 6 83 3 3.01 
Training MeCN XPhos 39 90 9 6.33 
Training DMA XPhos 51 104 9 16.11 
Training DMA DPEPhos 22 67 4 4.04 
Training DMSO XPhos 33 115 7 0.00 
Training Toluene SPhos 19 57 8 0.00 

Optimization NMP XPhos 60 102 10 56.23 
Optimization MeCN JohnPhos 21 66 6 5.89 
Optimization Toluene JohnPhos 53 141 8 26.36 
Optimization NMP XPhos 60 123 9 42.37 
Optimization NMP XPhos 53 89 9 74.64 
Optimization NMP XPhos 46 88 9 46.62 
Optimization NMP XPhos 60 85 8 72.40 
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2.4 Case study 2 
An analytical standard for 20 was obtained using the general procedure, where LCMS analysis gave 
product m/z 409.30 and the 1H NMR showed conversion to product in Figure S18. A pure product 
could not be obtained for this analytical standard and HPLC calibration was performed after 
quantitative NMR assays to determine %purity of product. 

 

Figure S18: 1H NMR for oxindole product 20. 

Table S5: All reaction data for the C-H activation case study 2. 
 Conditions 

Type Solvent Ligand Residence 
Time /min Temp /°C Mol% Yield /% 

Optimization NMP XPhos 19 75 4 14.78 
Optimization Toluene DPEPhos 50 121 8 25.48 
Optimization MeCN JohnPhos 21 59 7 11.10 
Optimization NMP XPhos 58 91 9 30.98 
Optimization MeCN JohnPhos 18 88 4 73.24 
Optimization MeCN JohnPhos 27 93 4 76.92 
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Optimization MeCN JohnPhos 20 105 4 72.38 
Optimization MeCN JohnPhos 40 100 8 80.11 
Optimization MeCN JohnPhos 15 141 6 79.49 
Optimization MeCN JohnPhos 19 117 5 84.70 
Optimization MeCN JohnPhos 28 127 5 84.90 

 

2.5 Case study 3 
An analytical standard for 22 was obtained using the general procedure, where LCMS analysis gave 
product m/z 211.05 and the 1H NMR showed conversion to product in Figure S19. 

 

Figure S19: 1H NMR for oxindole product 22. 

Table S6: All reaction data for the C-H activation case study 3. 
 Conditions 

Type Solvent Ligand Residence 
Time /min Temp /°C Mol% Yield /% 

Optimization MeCN JohnPhos 18 139 5 71.07 
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Optimization NMP XPhos 60 72 9 83.49 
Optimization NMP XPhos 60 72 7 77.10 
Optimization NMP XPhos 60 50 9 45.90 
Optimization NMP XPhos 60 96 9 98.16 

 

2.6 Case study 4 
An analytical standard for 24 was purchased from Sigma Aldrich. 

Table S7: All reaction data for the C-H activation case study 4. 
 Conditions 

Type Solvent Ligand Residence 
Time /min Temp /°C Mol% Yield /% 

Optimization NMP XPhos 60 96 9 6.29 
Optimization MeCN JohnPhos 18 139 5 14.91 
Optimization Toluene XPhos 28 125 3 1.63 
Optimization Toluene SPhos 34 144 9 8.50 
Optimization Toluene JohnPhos 55 140 6 9.95 
Optimization MeCN JohnPhos 44 147 10 49.90 
Optimization DMSO DPEPhos 59 143 9 81.97 
Optimization DMSO DPEPhos 57 148 7 56.49 
Optimization DMSO DPEPhos 60 150 10 82.21 
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2.7 Case study 5 
An analytical standard for 1,7-dimethylindolin-2-one was obtained using the general procedure, 
where LCMS analysis gave product m/z 162.31 and the 1H NMR showed conversion to product in 
Figure S20. A pure product could not be obtained for this analytical standard and HPLC calibration was 
performed after quantitative NMR assays to determine %purity of product. 

 

Figure S20: 1H NMR for oxindole product 1,7-dimethylindolin-2-one. 

Table S8: All reaction data for the C-H activation case study 5. 
 Conditions 

Type Solvent Ligand Residence 
Time /min Temp /°C Mol% Yield /% 

Optimization MeCN JohnPhos 18 139 5 17.23 
Optimization NMP XPhos 60 72 9 3.85 
Optimization MeCN JohnPhos 42 50 7 0.20 
Optimization NMP DPEPhos 5 50 3 0.00 
Optimization Toluene DPEPhos 54 150 4 1.56 
Optimization MeCN JohnPhos 23 150 6 21.70 
Optimization MeCN JohnPhos 25 132 6 21.50 
Optimization NMP SPhos 36 141 9 13.70 



40 
 

Optimization MeCN JohnPhos 30 149 6 27.00 
Optimization MeCN JohnPhos 37 150 6 29.30 

 

2.8 Comparison with industry-standard optimization techniques 
Using our experimental setup, outlined in the Methods section, and the current pricing for each of the 
starting material used for this work (highlighted below), it has been shown that the MTBO approach 
used less material and was much cheaper to implement than other standard industrial optimization 
techniques. The materials used are valued as follows: 

• Case study 1: (2-chloro-N-(4-fluorophenyl)-N-methylacetamide) (17) - £392/g.[6] 
• Case study 2: benzyl 4-(2-chloro-N-(4-(methoxycarbonyl)phenyl)acetamido)-piperidine-1-

carboxylate (19) - £1960/50g.[7] 
• Case study 3: 2-chloro-N-(2-fluoro-4-nitrophenyl)-N-methylacetamide (21) - £303/g.[8] 
• Case study 4: 3-chloro-N-(4-methoxyphenyl)-N-methylpropanamide (23) - £189/g.[9] 

As the starting material is the most expensive reaction component, this was the only factor taken into 
consideration - other costs were not considered, but would also lead to a significant increase in cost: 
catalyst, ligands, solvents, energy etc. It is assumed that a 2 mL reaction slug of 0.09 M starting 
material solution is used for each experiment in a flow reactor. For kinetic experiments in flow, this 
would also be roughly equivalent to the amount of reaction material ideal for one batch experiment 
with multiple time-point sampling. The addition of skilled labor and cost of time have also not been 
considered, but would incur a significantly higher cost for these other techniques as this scales with 
the number of experiments conducted. More process understanding could be gained from these 
techniques and the additional datapoints, but for medicinal chemistry applications of intermediate 
reaction optimization, the costs are substantially cheaper using MTBO. 

Technique What is required Material usage /g Cost /£ Saving 
/% (17) (19) (21) (23) 

MTBO 

Use of multi-task Bayesian optimization 
and experiments as required until optimal 

results are achieved. 23 initial training 
experiments for the first case study. 

0.93 0.98 0.25 0.45 563 - 

Design of 
experiments 

study 

One screening design (11 experiments) and 
one optimization design (27 experiments) 
to consider the factors of: temperature, 
residence time and catalyst mol%. This is 
repeated for each combination of solvent 
(toluene, DMA, acetonitrile, DMSO, NMP) 

and ligand (JohnPhos, SPhos, XPhos, 
DPEPhos). 

30.64 67.62 37.48 34.61 32560 98.3 

Kinetic 
studies 

3 sets of 10 time-point experiments, 
varying concentration and temperature at 
the same time in each set. This is repeated 
for each combination of every solvent and 

ligand. 

24.19 53.39 29.59 27.32 25704 97.8 

 

3. Safety statement 
During experimentation, there were no unexpected or unusually high safety hazards that were 
encountered. 
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