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Abstract 

In recent years, a development of appropriate crystal representations for accurate 

prediction of inorganic crystal properties has been considered as one of the essential tasks to 

accelerate materials discovery through high-throughput virtual screening (HTVS). However, 

many of them were developed aiming to predict properties of the given structures, although 

property predictions of ground state structures using unrelaxed structures as inputs are much 

more important in practical HTVS. To tackle this challenge, we develop a chemically inspired 

convolutional neural network based on convolution block attention modules using density of 

states of unrelaxed initial structures (IS-DOS) as inputs. Our model, Electronic Structure 

Network (ESNet), achieved the highest accuracy for predicting formation energy, proving that 

IS-DOS is appropriate input for the property prediction and the attention module is capable of 

properly featurizing DOS signals by capturing contributions of each spin and orbital state. In 

addition, we statistically evaluated a stability screening performance of ESNet, measuring 

computational cost and capability of materials discovery simultaneously. We found that ESNet 

outperformed previously reported models and various models with different types of input 

features and architectures. Indeed, ESNet successfully discovered 926 stable materials from 

15,318 unrelaxed structures with 82 % reduced computational cost compared to the complete 

DFT validation. 
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Introduction 

 With increasing demands toward high-performing and cost-effective materials, it is 

becoming important to develop new strategies to accelerate an exploration of broad chemical 

space. The conventional approaches have relied on database corresponding to very small 

portion of chemical space, and time-consuming ab-initio calculations requiring huge 

computing resources1. Recently, various strategies to expand chemical space were developed, 

and machine learning (ML) has been utilized as powerful and efficient tools to facilitate 

materials discovery by reducing the number of required DFT calculations. In this aspect, fast 

and accurate ML models are desirable to enable high-throughput virtual screening (HTVS) of 

tens of thousands of materials2, 3, 4. 

 Ideally, HTVS approaches explore all possible compounds in chemical space, which 

are generated by several methods such as elemental substitution and generative models5. Thus, 

one should develop ML models to directly predict ground state energies using unrelaxed initial 

structures, i.e., initial structure to relaxed energy (IS2RE) task6. Graph neural networks (GNN), 

e.g., crystal graph convolutional neural network (CGCNN)7, are one of the most accurate and 

widely used approaches in the field, which describe local atomic environments of each atom in 

crystals as ML inputs8, 9, 10. They achieved very high accuracy for predicting crystal properties 

and can also be utilized to perform IS2RE task indirectly through numerical optimization 

algorithms, such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)11 or Bayesian optimization 

(BO)12. However, these are not suitable for practical HTVS since interatomic distances between 

neighboring atoms in relaxed structures are used to prepare input representations. Further, 

indirect IS2RE requires nearly 200 iterations of energy and force predictions for numerical 

geometry optimizations6, and the predicted formation energy significantly depends on 

"pseudo" optimized structures, making IS2RE inefficient.13, 14. Direct IS2RE is also available 

with properly developed input representations such as direction, which is moderately sensitive 

to structures13. Meanwhile, a model which uses stoichiometry-based inputs achieved 

reasonable prediction accuracy,15, 16, 17 but it was not able to distinguish polymorphs of 

materials. To accelerate materials discovery, it is thus necessary to develop accurate ML models 

for direct IS2RE with appropriate representations, neither too structure-sensitive nor too 

insensitive13. 

In this work, we report Electronic Structure Network (ESNet) based on convolutional 

neural network and convolution block attention modules (CBAM) using density of states (DOS) 
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of unrelaxed initial structures as input representations. Initially, we compared DOS of 

unrelaxed initial structures (IS) and relaxed structures (RS) to validate the use of IS-DOS for 

crystal structure representations, where we observed high similarity between IS-DOS and RS-

DOS. By comparing with other models, we found that CBAM in ESNet successfully captures 

the contribution of DOS signal, representing each spin and orbital of crystal, to formation 

energy and ESNet is ideally suited to IS2RE task with the highest accuracy and efficiency. 

Furthermore, ESNet achieved both high success ratio and discoverability, breaking an inverse 

correlation between them18. The highest F1-score of ESNet suggested that one can practically 

use this model for materials discovery via HTVS along with proper chemical space expansion 

approaches19. 

 

Results  

 

Figure 1. a) Total density of states of IS (purple) and RS (green) of CdAu constructed by 
substituting elements of PdHg (mp-2685). Dashed vertical lines correspond to the Fermi level 
of each structure. b) MAE of DOS properties between initial and relaxed structures (red), and 
between two random structures as a reference (turquoise). We measured MAEs of six DOS 
properties for 18 states, i.e., nine orbitals (s, px, py, pz, dxy, dyz, dxz, dx2-y2, dz2) × two spin states 
(up and down spins), where error bars correspond to standard deviations. Lower values indicate 
higher similarity. 

 

DOS Similarity between Initial and Relaxed Structures 

 To corroborate the potential of IS-DOS as a proper representation of inorganic crystals 
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for IS2RE task, we compared similarities between DOS extracted from IS (IS-DOS) and RS 

(RS-DOS) (Fig.1a). We generated unrelaxed initial structures by substituting atoms in 

prototypical crystal structures taken from Materials Project. One can observe that a distribution 

of energy states remains unchanged even after the geometry relaxation. For a more quantitative 

comparison, we calculated the number of states per energy and 0−4th moment properties of 

DOS, i.e., filling, center, width, skewness and kurtosis20 for all crystal structures (7,168) in a 

validation set. We note that the number of states (y-axis of DOS) of each orbital and spin state 

was normalized using min-max normalization, and zero-state energy ranges were discarded to 

avoid an overestimation of similarity. As a baseline error, we randomly selected one IS-DOS 

and one RS-DOS from the validation set and calculated their similarities, 7,168 pairs in total. 

All similarity metrics between IS-DOS and RS-DOS were found to be significantly lower than 

the baseline errors (Fig.1b). From the qualitative and quantitative comparisons, we confirmed 

that DOS shapes and properties of initial and relaxed structures are similar, suggesting that IS-

DOS could be proper crystal representations of ML models for IS2RE task. On the other hand, 

we note that bond distance information, which has been mainly utilized as inputs in various 

GNN models, changed significantly during the DFT relaxations, suggesting that it is inadequate 

to use distance-based features for IS2RE task (Supplementary Fig.A1)13.   
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Deep Learning Model for Formation Energy Predictions 

 

Figure 2. (a) Schematic representations of ESNet architecture. Partial DOS in each spin state 

and component vector are fed into the model as separate inputs. Three featurizers (up spin, 

down spin and total DOS featurizers) are used to generate total DOS feature maps from the 

input partial DOS. (b) Convolutional block architecture including two residual CBAM blocks. 

Through CBAM self-attention and residual connection, input feature maps autonomously learn 

weighted features. Each convolutional block is connected through average pooling. 

 

 In this work, we propose a deep learning model with a chemically inspired architecture 

optimized to featurize IS-DOS for accurate formation energy prediction. The model is based 

on convolutional neural network (CNN), which is suitable for high-level feature learning from 

multi-channel signal data21, 22. Since CNN takes inputs comprised of separate channels (orbitals) 

and featurizes the channels while preserving spatial information (spins), it is advantageous to 

featurize DOS consisting of various projected states. The featurized output (hjn) is updated as 

a sum of the product of convoluted input (hkn-1) and weight matrices (wkjn) (Eqn (1)).21, 23 
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The total DOS consists of two spin states and nine orbitals. We initially featurize each 

spin state using two spin DOS featurizers (Fig.2a),24, 25 where each featurizer takes orbital 

projected DOS as inputs and extracts features based on the convolution operation (Eqn (2), (3)). 

ℎ!up
" = # ℎ#up

"$%
&

#up'(

∘ 𝑤#up!up
" (2) 

ℎ!down
" = # ℎ#down

"$%
&

#down'(

∘ 𝑤#down!down
" (3) 

Note that two spin DOS featurizers are independent with different weight matrices. 

Spin DOS featurizer consists of four convolutional blocks which contain two residual 

convolutional block attention module (CBAM) blocks (Fig.2b)26, intended to learn features 

effectively by focusing on important features (Supplementary Fig.A2)26, 27. The residual 

connection prevents loss of extracted features, which could occur due to the depth of models28, 

29. After the subsequent convolutional blocks, total DOS feature maps of each spin state are 

obtained at the end of the featurizers, where they are concatenated and served as an input for 

total DOS featurizer. The total DOS featurizer aggregates the integrated feature maps of two 

spin states to form comprehensive feature maps covering all spin states and orbitals, which are 

then flattened and concatenated with the component vector. Finally, fully connected neural 

network (FCNN) is applied to predict formation energies. The key aspects of ESNet are its 

optimal operation for aggregation of partially projected DOS and chemically inspired 

architecture considering spin states and orbitals separately.  

To train ESNet, we collected DFT-calculated DOS from Materials Project (MP) 

database30. In total, MP includes 62,842 materials, of which all orbitals have at least one spin 

state per energy for absolute energy range from −20 to 10 eV. We note that the dataset used in 

this work consist of only s, p and d-block elements, but it is possible to include f-block elements 

in training/test dataset by integrating extra channels in the model. Additionally, we highlight 

that our model could be universally used for formation energy prediction as it was trained with 

the dataset consisting of diverse compositions and crystal structures (Supplementary Fig.A3 

and Fig.A4). 
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Prediction Performances 

Table 1. Prediction performances of ML models with different input features and algorithms. 

 RS2RE  IS2RE 

Model 

MAE 

(eV/atom) 

RMSE 

(eV/atom)  

MAE 

(eV/atom) 

RMSE 

(eV/atom) 

DOS-free feature-based     

CGCNN-HD* 0.274 0.378  0.396 0.637 

MEGNet* 0.256 0.353  0.369 0.592 

Wren** 0.371 0.525  0.378 0.534 

Roost*** 0.429 0.617  0.429 0.617 

DOS feature-based****     

KRR 0.271 0.435  0.338 0.527 

SVR 0.280 0.446  0.442 0.655 

RF 0.356 0.562  0.362 0.567 

XGBoost 0.307 0.498  0.306 0.479 

DNN 0.274 0.420  0.337 0.517 

DOS signal-based      

CNN 0.273 0.397  0.301 0.436 

ESNet (This work) 0.232 0.374  0.265 0.406 

*Interatomic distances, **Wyckoff parameters, ***Stoichiometry 

****0−4th moments (Filling, d-band center, Width, Skewness, Kurtosis), Compositions 
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Figure 3. Parity plots of DFT-calculated and ML-predicted formation energies for IS2RE. 

Models are categorized into three groups depending on input types: (i) DOS-free feature-based, 

(ii) DOS feature-based and (iii) DOS signal-based models. DOS features are manually 

extracted features, i.e., 0−4th moment properties, while DOS signal takes raw DOS data as 

inputs. Note that composition information was added to both DOS feature-based and DOS 

signal-based models. Test MAE and RMSE are shown.  
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We evaluated the prediction performance of ESNet and compared with other ML 

models based on different input features and algorithms (Fig.3). Although the focus of this 

work is IS2RE performance, we also discuss RS2RE results, which could be used in structure-

to-energy and force (S2EF) mapping in the future6. For 7,168 test data (Supplementary 

Fig.A5), ESNet achieved higher performance for RS2RE (MAE: 0.232 eV/atom) than IS2RE 

(MAE: 0.265 eV/atom). Considering that training data consists of DOS and formation energies 

of relaxed structures, it is remarkable that the test MAE of IS2RE is close to that of RS2RE. 

We note that prediction performances of IS2RE and RS2RE are inversely correlated for the 

most previous models31, but ESNet was able to break this correlation using IS-DOS as inputs, 

which substantially resemble RS-DOS. 

For both IS2RE and RS2RE tasks, various models using different features and 

algorithms have been reported to date. We first compared ESNet with DOS-free feature-based 

models, e.g., CGCNN-HD32, MEGNet8, Roost15 and Wren14, where the former two used 

interatomic distance-based features, while the latter two used coordinate-free features, such as 

stoichiometry (Roost) and Wyckoff positions (Wren) (Fig.3a-d). For IS2RE task, ESNet (Test 

MAE: 0.265 eV/atom) demonstrated the best prediction accuracy compared to all DOS-free 

ML models with MAEs larger than 0.35 eV/atom. It is noteworthy that prediction performances 

of RS2RE using MEGNet and CGCNN-HD were much higher than IS2RE, which could be 

mainly attributed to structure-sensitive input representations. On the contrary, Roost and Wren 

used structure-insensitive input representations that rarely distinguish IS and RS, resulting in 

nearly unchanged MAEs for IS2RE and RS2RE. 

 We also compared ESNet with other models (kernel ridge regressor (KRR)33, support 

vector regressor (SVR)34, random forest regressor (RFR)35, XGBoost36, deep neural network 

(DNN) with two fully connected layers37, 38) using extracted DOS features and composition 

information as inputs (Fig.3e-i and Supplementary Table A1). DOS feature-based models 

demonstrated higher prediction accuracy than DOS-free feature-based models, demonstrating 

the suitability of DOS as inputs for IS2RE. Interestingly, DOS-signal based models (ESNet and 

CNN) showed even higher accuracy, where ESNet particularly outperformed all ML models 

for both IS2RE and RS2RE (Supplementary Fig.A6). A comparison between DOS feature-

based models and full DOS signal-based convolutional neural network models (ESNet, CNN37, 

39, 40) demonstrates that only a few representative features are insufficient to properly describe 

properties of solid materials (Fig.3j and k). We further mention that ESNet outperformed the 



 11 

conventional CNN, highlighting the importance of chemically inspired architecture and 

autonomously learned weights.  

 

Screening Performances 

 

Figure 4. a) Two-dimensional precision-recall (P-R) curves generated by changing thresholds 

of EfML and EhullML from −0.25 to +0.25 eV/atom and 0.0 to +1.0 eV/atom, respectively. Right 

direction corresponds to loosening of EfML and EhullML thresholds. Gray dashed lines indicate 

different F1-scores. b) Success ratio, discoverability and F1-score of various models. 

 

 Given the best prediction accuracy of ESNet for IS2RE, we benchmarked its screening 

performance. Practically, ML models are employed in HTVS to determine whether new 

candidate materials are stable or not, thus classification metrics can be used to benchmark the 

screening performance32.  

 The success ratio, or precision, is a ratio of DFT-validated stable materials among ML-

predicted stable materials, and the discoverability, or recall, is a ratio of discovered stable 

materials by ML among all stable materials in the dataset (See "Terminology and Derivations 

of Statistical Metrics" in Method section for more details). To be suitable for HTVS, ML model 

should achieve both high success ratio and discoverability simultaneously. Thus, we not only 

evaluated these two metrics separately, but also at the same time using F1-score, a harmonic 
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mean of  two metrics41, 42. Note that we determined stability and synthesizability of materials 

when both formation energy (EfDFT) and energy above the convex hull (EhullDFT) satisfy criteria, 

EfDFT ≤ 0.0 eV/atom and EhullDFT ≤ 0.1 eV/atom, which are generally accepted thresholds in 

literature7, 12, 43. EhullDFT is calculated as formation energy difference with respect to the most 

stable phase at that composition. Thresholds of EfML and EhullML, however, are set by 

researchers' intuition and prediction accuracy of ML models, which could significantly affect 

HTVS results. Thus, we tested numerous values of EfML (from −0.25 to +0.25 eV/atom) and 

EhullML (from 0.0 to +1.0 eV/atom) to find the optimal combination to maximize the F1-score 

for an efficient and accurate screening. We note that EhullML was obtained by incorporating EfML 

into a pool of inorganic solid materials in MP database using the Pymatgen library.   

 Precision-Recall (P-R) curve is commonly employed to evaluate classification 

performances, where the upper right corner corresponds to better screening results (Fig.4a)41, 

44. To clearly understand the trends, we visualized the effect of changing thresholds of EfML and 

EhullML in three dimensions (Supplementary Fig.A7). For all models, we found that success 

ratio and discoverability are proportional to each other when EhullML is lower than ~0.1 eV/atom, 

while they become inversely proportional otherwise. Thus, the maximum F1-score for all 

models was achieved near EhullML = 0.1 eV/atom (Supplementary Table A2). Among all 

models, ESNet achieved the best F1-score when EfML ≤ −0.02 eV/atom and EhullML ≤ 0.13 

eV/atom thresholds were used. 

Figure 4b summarizes three metrics at the optimal threshold values for each ML model. 

CGCNN-HD and MEGNet demonstrated a high success ratio, but low discoverability, which 

could be linked to the behavior observed in Figure 4a, where the curves lean to the upper left. 

This is because ML models using distance-based features tend to overestimate Ef and Ehull 

(Fig.3a, 3b) resulting in a small number of ML-predicted stable materials, making success ratio 

high and discoverability low. In this case, a large portion of stable materials could not be 

discovered. Conversely, Wren and Roost are positioned at the lower right, demonstrating low 

success ratio and high discoverability. This is because they tend to underestimate Ef and Ehull 

(Fig.3c and 3d). Thus, many ML-predicted stable materials resulted in a low success ratio and 

high discoverability. Contrary to these two cases, ESNet achieved a balance between success 

ratio and discoverability, maximizing F1-score (Fig.4b). This could also be evidenced by the 

P-R curve, where points of ESNet are positioned toward upper right compared to any other ML 

models (Fig.4a). In this analysis, we confirmed that ESNet is most suitable for IS2RE, thus, in 
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the following, we performed HTVS to find stable materials using ESNet.  

 

Figure 5. (a) Schematic representation of HTVS and (b)-(e) latent space generated by UMAP45 

visualizing HTVS process to discover stable materials. A color bar corresponds to EfML 

predicted by ESNet. (b) The predicted formation energy of the remaining unrelaxed 15,318 

materials. In (c)-(e), only materials satisfying the following conditions are plotted in the latent 

space. (b) 7,710 structures satisfied EfML ≤ −0.02 eV/atom. (c) 2,742 structures additionally 

satisfied EhullML ≤ 0.13 eV/atom. (d) 2,742 structures were optimized and 926 were found to 

satisfy both EfDFT ≤ 0 eV/atom and EhullDFT ≤ 0.1 eV/atom. 

 

High-Throughput Virtual Screening 

Using ESNet trained with 62,842 data from MP database, we performed HTVS to 

discover stable materials. Note that the optimal thresholds of EfML and EhullML determined for 

ESNet were used to maximize F1-score. We applied ESNet to 2e-ORR dataset to discover stable 

unrelaxed structures, where more details on the dataset can be found in the method section. Out 

of 22,709 total bulk structures, 7,168 structures were relaxed and used for validation of ML 

models, thus formation energies of 15,318 unrelaxed structures were predicted (Fig.5a). To 

visualize the screening process and distribution of EfML of 2e-ORR dataset, we used uniform 

manifold approximation and projection (UMAP)45 which reduces the dimension of input DOS 

into two dimensions (Fig.5b-e). Initially, 7,710 structures satisfied EfML ≤ −0.02 eV/atom, and 
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only 2,742 structures additionally satisfied EhullML ≤ 0.13 eV/atom. Thus, negative EhullML 

indicates that materials are predicted to be more stable than the existing most stable material in 

MP database. Finally, DFT relaxations were performed to validate 2,742 materials, where 926 

materials satisfied both EfDFT ≤ 0 eV/atom and EhullDFT ≤ 0.1 eV/atom. This result demonstrates 

that ESNet found 926 stable and synthesizable materials by performing only 18 % of DFT 

calculations.  

 

Discussions and Conclusions 

In this work, we found that DOS-based input representations are more accurate for 

predicting the ground state stability than any other DOS-free feature-based models. However, 

one should perform single-point calculations to generate DOS, which could be a bottleneck in 

terms of computational cost as the number of materials increases.  

To compare the computational cost used for screening, we defined a screening 

efficiency (Ceff) as  

𝐶)** =
𝐶+,- ∗ 𝑃𝑃𝐶𝑅 + 𝐶,.)
𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(4) 

where Copt and PPCR (predicted positive condition rate) are the average CPU time used for 

structure relaxations (3107.000 sec) and the ratio of the predicted stable materials to the total 

data set (15,318) for each model, respectively. Cpre is the average CPU time used for DOS 

generation (108.506 sec), which only applies to ESNet (Supplementary Fig.A8a and b). Ceff 

is, thus, a ratio of the total CPU time consumption per discovered stable materials, where lower 

Ceff suggests higher screening efficiency. Supplementary Fig.A8c and d show Ceff of each 

model with respect to threshold values for EfML and EhullML, respectively. This result indicates 

that Ceff of ESNet is similar to that of CGCNN, but preceded by MEGNet, indicating that the 

efficiency of ESNet is not the best. Considering the highest F1-score and moderate Ceff even 

with single-point calculations of all initial structures for DOS generation, however, we propose 

ESNet to be the most practical ML model for HTVS.  

In summary, we developed the deep learning model to predict thermodynamic stability 

of inorganic crystal structures using density of states of unrelaxed initial structures as input 

representations, and benchmarked its prediction accuracy and screening performance with 
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respect to the previously reported ML models. ESNet demonstrated the highest prediction 

accuracy for both IS2RE and RS2RE, where test set MAE of IS2RE (0.265 eV/atom) was 

found to be outstanding compared to other models (0.378~0.429 eV/atom). By optimizing 

thresholds of EfML and EhullML, we determined the best combination for each model to maximize 

F1-score. Among all models, ESNet achieved the highest F1-score, indicating the best screening 

performance, while its computational cost was comparable to the most efficient ML model 

even with additional calculations for DOS construction. These results demonstrated that ESNet 

is best suited to IS2RE task.  
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Method 

DFT Calculations 

To generate density of states of initial structures (IS-DOS) and conduct geometry 

optimizations, we performed spin-polarized density functional theory (DFT) calculations with 

generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) exchange-

correlation functional46 using Vienna Ab initio Simulation Package (VASP, version 5.4.4)47, 48. 

Since training data, i.e., DOS and Ef, were taken from Materials Project (MP) database, a 

compatible version (v2010-05-06) of projected augmented wave (PAW) pseudopotential was 

used. The energy cutoff, energy and force convergence criteria for bulk optimizations were set 

to 520 eV, 10-5 eV and 0.03 eV/Å, respectively. Monkhorst-Pack k-point mesh of (k1 × k2 × k3) 

was set so that an × kn (n = 1, 2, 3) ≥ 30, where a1, a2 and a3 are lattice parameters of x, y and z 

directions of the unit cell, respectively49. DOS was obtained with VASP tags set to EMIN = 

−20 eV, EMAX = 10 eV and NEDOS = 1,500. 

 

Data Generation 

In MP database, 74,922 materials were deposited with their DFT-calculated DOS 

information as of 2021-03-22. Among them, we collected 62,842 materials consisting of s, p, 

d-orbitals, which were used to train ESNet. Mean and standard deviation of formation energy 

(EfDFT) were −1.407 and 1.101 eV/atom, respectively, where it ranged from −13.577 to 5.146 

eV/atom (Supplementary Fig.A4).  

DOS information in MP database has different energy ranges depending on materials, 

where the number of energy intervals was equivalently set to 2,001. Thus, energy values were 

interpolated using "interp1d" function of "scipy" library, so that all materials are represented 

by DOS of the same energy range (−20 eV ~ 10 eV) and resolution (0.02 eV). When no state 

is available in that energy range, it was set to be 0. For materials with only one spin state, the 

other spin state was set to be identical with the opposite sign. To evaluate the performance of 

ESNet, we used electrochemical two-electron O2 reduction reaction (2e-ORR) dataset, which 

contains 22,709 binary alloys generated by elemental substitution of MP database. More details 

of 2e-ORR dataset can be found in https://github.com/SeoinBack. 

 



 17 

Data Preprocessing 

We generated input representations using the calculated IS-DOS, which consist of up 

and down spin states of 9 orbitals from s to d (s, px, py, pz, dxy, dyz, dxz, dx2-y2, dz2). When DOS 

signals are directly used in convolutional neural networks, each one comprises an individual 

input channel (total 18 channels), where StandardScaler was applied to remove the mean and 

to scale to unit variance. After preprocessing 18 channels, we added one extra channel 

representing a composition of materials, where one-hot encoding of all the elements in our 

dataset, 110, was used.  

As a comparison, we also constructed DOS feature vectors consisting of 0−4th moment 

properties of DOS, thus 90 features in total considering 5 moment properties and 18 orbitals. 

In addition, the identical one-hot encoded composition vector was concatenated.  

 

Terminology and Derivation of Metrics 

To evaluate screening performances of ML models, we used statistical metrics derived 

from a confusion matrix50. We considered positive (P) and negative (N) to be stable and 

unstable, respectively, where stable materials satisfy criteria for both EfDFT and EhullDFT. On this 

basis, success ratio, same as precision or positive predictive value (PPV), is defined as TP / (TP 

+ FP), where true positive (TP) is the number of DFT-validated stable materials, whereas false 

positive (FP) is the number of ML-predicted stable materials that are found to be unstable by 

DFT validations. ML models with high success ratio are suited to minimize unnecessary 

computational expenses caused by false positive. Discoverability, equivalent to recall or true 

positive rate (TPR), is defined as TP / (TP + FN), where false negative (FN) is the number of 

stable materials incorrectly predicted to be unstable. Thus, ML models with high 

discoverability are useful for reducing the number of overlooked candidates.  

 

Model Implementation and Training 

ESNet learns nonlinear relationship between DOS and formation energy. The model 

receives three types of inputs, up/down spin states with 9 channels (orbitals) and a binary 

component represented by one-hot vector. The inputs pass four main parts composing the 

model: (1) spin DOS featurizer, (2) total DOS featurizer, (3) component embedding, and (4) 
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formation energy predictor. In the spin DOS featurizer, each spin state of input DOS is fed 

separately into 1D convolutional neural network (1D CNN) with convolutional block attention 

modules (CBAM) and residual connection added. For example, in the case of up spin state, 

there are four convolution blocks, where each block consists of two convolution units. The 

units sequentially use two 1D convolutional layers, followed by a CBAM and a residual 

connection. Pooling layers are placed before moving from one block to the next. The 

convolution kernel sizes are fixed to 3, and the number of kernels is set to 64, 128, 256, and 

512 per block, respectively. Down spin state also has the same architecture as above. The 

outputs of each convolutional network, which correspond to up and down spin states, are 

concatenated, and they pass through a convolutional layer with 512 kernels with a size of 3 in 

the total DOS featurizer. The output of the last convolutional layer is downsampled using the 

global average pooling layer. Meanwhile, the input component vector is embedded into a vector 

of length 50 through a fully connected layer without activation functions. Finally, the 

downsampled vector and embedded vector are concatenated on the length dimension and then 

predict the formation energy through fully connected layers as the predictor. All layers, whose 

activation is not specified explicitly, used rectified linear unit (ReLU) activations. The entire 

model has 9,756,225 total parameters and 9,736,001 trainable parameters. Tensorflow 2.4.1 

and Keras 2.4.0 are used as the backend for the model implementation. 

In this work, the model performance showed a relatively high dependence on initial 

learning rate (init_lr) and batch size (bs). Thus, a hyperparameter optimization was performed 

with these two hyperparameters using both manual grid search and Bayesian optimization 

implemented in Ax through Ray package51. The hyperparameter space for init_lr and bs is set 

to be an integer from 16 to 65, and a float from 0.0005 to 0.002, respectively. The best 

performance was achieved when init_lr = 0.00175 and bs = 32. We used Adam optimizer with 

the optimized initial learning rate of 0.00175 and learning rate schedule with plateau detection 

for learning rate reduction. The model was trained for 300 epochs with an early stopping 

algorithm on an NVIDIA GPU with memory and CUDA 11.0. The LogCosh function is 

selected as the loss function due to the robustness of possible outliers in high throughput 

databases and the precision that continuous differentiation is possible even in low errors. Mean 

absolute errors (MAE) and root mean squared errors (RMSE) are chosen to evaluate model 

performances. 
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