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Abstract

While Coupled-Cluster methods have been proven to provide an accurate descrip-

tion of excited electronic states, the scaling of the computational costs with the sys-

tem size limits the degree for which these methods can be applied. In this study a

fragment-based approach is presented for non-covalently bound molecular complexes

with interacting chromophores of the fragments (so called Frenkel pairs), such as π-

stacked nucleobases.

The interaction of the fragments is considered at two distinct steps. First, the states

localized on the fragments are described in the presence of the other fragment(s); for
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this we test two approaches. One method is founded on QM/MM principles, only in-

cluding the electrostatic interaction between the fragments in the electronic structure

calculation with Pauli repulsion and dispersion effects added separately. The other

model, a Projection-based Embedding (PbE) using the Huzinaga equation includes

both electrostatic and Pauli repulsion and only needs to be augmented by disper-

sion interactions. In both schemes the extended Effective Fragment Potential (EFP2)

method of Gordon et al. was found to provide an adequate correction for the missing

terms.

In the second step, the interaction of the localized chromophores is modeled for a

proper description of the excitonic coupling. Here the inclusion of purely electrostatic

contributions appears to be sufficient: it is found that the Coulomb part of the coupling,

as evaluated by the transition density cube method, provides accurate splitting of the

energies of interacting chromophores that are separated by more than 4 Å.

Keywords: excited states, exciton coupling, intermolecular interactions, Effective

Fragment Potential, Pauli repulsion, embedding, QM/MM, dispersion
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QM/MM and projector-based embedding schemes using CCSD electronic structure calcula-
tions are formulated and tested for non-covalent complexes of bi-chromophor systems
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1 Introduction

Recent decades witnessed significant development of quantum chemical methodology; larger

and larger molecules can be treated with increasing accuracy and, at the same time, the

need for calculations to support experimental observations is becoming more relevant. For

the electronic ground state well established methods are available and quantum chemistry,

often by density functional theory (DFT), is able to study structures and even reactions of

molecules as large as polypeptides. However, many important problems cannot be treated

with ground state methods. These involve, for example, electron transfer between distant

regions in biomolecules or situations associated with electronic excitations affecting multiple

local domains. Since established methods cannot describe such processes, the demand for

new tools to treat excited states in large systems is increasing.

There are two possible routes towards this goal. One option is to develop new ap-

proximate methods, but maintaining the accuracy and reliability is not a trivial task.1–5

Alternatively, one can aim at defining (multiscale) approaches where only the important

part of the system is treated at the high level, while the rest is approximated at a lower

level. Different types of embedding methods, like quantum mechanics/molecular mechan-

ics (QM/MM),6 “our own N-layered integrated molecular orbital and molecular mechanics”

(ONIOM),7 projector-based embedding (PbE),8 frozen density embedding (FDE)9,10 and

local correlation methods11–17 are available for describing many processes in large systems.

However, non-local phenomena are poorly suited for these approaches since they often require

too large active partitions in these calculations.

Such collective events can indeed be very important. For example, we have found18 that

excitations can be delocalized to at least four nucleobases in oligonucleotides. Indeed, this

study left open the question of whether even more units play a role in excited states of RNA

and DNA chains. For such situations fragment methods19 could be the preferred approach,

where several “active” centers can be handled at a high level of theory and the properties of

the entire system are calculated from those of the individual fragments, considering proper

coupling terms between them. Fragment methods are well suited for calculations of non-

covalently bound systems, since the choice of fragmentation is obvious. From the point of
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view of excited states, DNA is also one of such systems since the excitations do not delocalize

anywhere but the nucleobases that interact in a non-covalent manner.20

Regarding the route towards developing such a fragment-based method, our previous

work21 investigated the possibilities of obtaining accurate ground state potential curves of

non-covalent dimers using high-level Coupled Cluster (CC) methods applied to the electronic

structure of the fragments. Several schemes have been tested and we have found that both

QM/MM and PbE methods (with a proper account for dispersion and Pauli repulsion -

“exchange interaction” - terms from the extended Effective Fragment Potential (EFP2)22–24

model) are capable of reproducing full dimer calculations at the same level of theory with

high fidelity. In this work, we take another step forward by extending this methodology to

(singly) excited states, thereby considering multi-chromophore systems.

The general Hamiltonian of two interacting fragments is expressed as

Ĥ(r1, r2) = Ĥ1(r1) + Ĥ2(r2) + V̂1,2(r1, r2), (1)

with Ĥi being the Hamiltonian of the non-interacting fragments and V̂1,2(r1, r2) that of

their interaction. This Hamiltonian suggest a perturbative treatment with the product of

the fragments’ wavefunctions as zeroth order. When considering the ground state and one

excited state on each fragment, the product wavefunctions take the form

Ψ0(r1, r2) = Φ1,0(r1)Φ2,0(r2)

Ψ1(r1, r2) = Φ1,1(r1)Φ2,0(r2)

Ψ2(r1, r2) = Φ1,0(r1)Φ2,1(r2), (2)

where the indices 1 and 2 refer to the two fragments. Φi,k is the kth eigenfunction of the

Hamiltonian of fragment i:

Ĥi(ri)Φi,k(ri) = Ei,kΦi,k(ri). (3)

The interacting states of the entire system can be obtained by the so-called exciton model by

diagonalizing the Hamiltonian in the three-dimensional space of the functions in Eqn. (2),
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as first suggested by Frenkel,25 later by Davydov26 and used in many applications (see e.g.

Refs. 27–29 and references therein).

The quality of such a perturbative approach depends on the strength of the coupling. A

fraction of their effects can be captured by repartitioning the Hamiltonian of Eqn. (1):

Ĥ(r1, r2) = Ĥeff
1 (r1; r2) + Ĥ2(r2) + ∆V1(r1, r2), (4)

where Ĥeff
1 = Ĥ1 + V̂ eff

1 and ∆V1(r1, r2) ≈ V̂1,2(r1, r2) − V̂ eff
1 . Ĥeff

1 is essentially an

embedded Hamiltonian which can be used to describe the ground state and also local excited

states in the presence of the other fragment. The accuracy of this approach will primarily

depend on the choice of V̂ eff
1 and ∆V1(r1, r2); several variants have been tested in our

previous study.21 This formalism can also be applied to the excited state of the complex,

provided the excitation is localized on one fragment (see e.g. Ref. 30).

In the present study this scheme is extended to interacting chromophores by applying

the exciton model; after obtaining the fragment energies and wavefunctions of the effective

Hamiltonians (Ĥeff
i ), the resulting excited states are obtained by diagonalizing the Hamil-

tonian matrix defined in the space of the two locally excited product functions.

The scheme suggested here has thus two main ingredients. First, a proper definition

of the effective Hamiltonian Ĥeff
i is needed, which includes the intermolecular interactions

compatible with the electronic structure method that is used. Eventually, a corresponding

∆Vi is necessary to include the missing interaction terms. Based on our experience with the

ground state,21 QM/MM and PbE approaches used with Coupled Cluster (CC) electronic

structure methods, augmented with EFP2 dispersion and Pauli repulsion22–24 are able to

describe the interaction of the fragments properly, and are worthwhile of generalization to

excited states. Second, an appropriate approximation for the excitonic or Frenkel coupling

between the excited states also needs to be established.

Similar methods have been suggested, among others, by Morrison et al.,27 Sisto et al.,28

Amadei et al.,29 and Head-Gordon et al.31 The novelty of the schemes presented here is

the use of high-level CC theory for the electronic structure of the fragments and the careful

selection of all components of the non-covalent interaction energy.
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Obtaining proper reference data for validation of the models turns out to be a non-trivial

task. Problems arise from converging the calculations to the proper states (in particular when

diffuse basis functions are used), from the presence of charge transfer (CT) type electronic

states in the low-energy spectrum at small intermolecular distances, as well as from the

choice of counterpoise correction (CP) in excited states. The present study will also address

these issues.

The paper is organized as follows. Section 2 gives a short summary of the available

methodologies, with emphasis on the differences in theoretical formulations and the possi-

bility of incorporating them into ab initio calculations. Section 3 presents the molecular

systems used in the tests. Section 4 describes the computational details, while the results

and discussion are presented in Section 5.

2 Methodologies for modeling intermolecular interactions

in excited states

Let us introduce the proposed methodology on the simplest example of a supersystem con-

sisting of two fragments, with just one excited state considered on both. To describe the

Frenkel coupling of the two excitations localized on the fragments, we select product func-

tions describing the two, locally excited states:

Ψ̃1(r1, r2) = Φ̃1,1(r1)Φ2,0(r2)

Ψ̃2(r1, r2) = Φ1,0(r1)Φ̃2,1(r2), (5)

where r1 and r2 represent the coordinates of fragment 1 and 2, respectively. The first function

describes the excited state localized on the first fragment, while the second function describes

the one localized on the second fragment, and they belong to two different partitionings of

the Hamiltonian:

Ĥ(r1, r2) = Ĥeff
1 (r1; r2) + Ĥ2(r2) + ∆V1(r1, r2)

Ĥ(r1, r2) = Ĥeff
2 (r1; r2) + Ĥ1(r2) + ∆V2(r1, r2), (6)
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where Ĥeff
i

(
= Ĥi + V̂ eff

i

)
includes the effect of the environment through an“embedding po-

tential” V̂ eff
i . The fragment wavefunctions with a tilde (Φ̃1,1(r1), Φ̃2,1(r2)) are eigenfunctions

of the corresponding effective Hamiltonians

Ĥeff
i Φ̃i,1 = Ẽi,1Φ̃i,1 (7)

and thus include the effect of the other fragment’s ground state through V̂ eff
i , while the cor-

responding unadorned (Φ1,1(r1),Φ2,1(r2)) are eigenfunctions of the unperturbed subsystems

(see Eqn. (3)). The inclusion of the approximate “remaining potential” ∆Vi(r1, r2)
(
≈ V̂1,2(r1, r2) − V̂ eff

i

)
is necessary to correct for interactions which are not (or cannot be) accounted for when the

eigenproblem of Ĥeff
i is solved (see later).

Ψ̃1(r1, r2) is a good approximation for locally excited states with energy

E1 = Ẽ1,1 + E2,0 + ∆V1, (8)

but does not include any polarization between the two fragments. This expression is often

used in QM/MM and other embedding schemes; we also have tested it in Ref. 30. The

quality of this approximation depends on the electronic structure method used, as well as

upon the choice of V̂ eff
i and ∆Vi; this will be discussed in detail in Subsection 2.1. Note

that the above formalism does not consider the anti-symmetrization of the wavefunctions,

therefore the corresponding “Pauli repulsion” contribution should be appropriately included

in ∆Vi.

To consider Frenkel25 (or exciton) coupling of the two chromophores on the fragments,

the matrix of the Hamiltonian in the basis of the functions in Eqn. (5) should be diagonalized,

i.e.

H =

Ẽ1,1 + E2,0 + ∆V1 Ṽ (1, 2)

Ṽ (2, 1) E1,0 + Ẽ2,1 + ∆V2

 (9)
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with

Ṽ (1, 2) = ⟨Ψ̃1(r1, r2)|Ĥ(r1, r2)|Ψ̃2(r1, r2)⟩. (10)

To evaluate this coupling, appropriate approximations need to be introduced as discussed in

Subsection 2.3.

First, however, the multi-level approaches that can be applied for solving the eigenprob-

lem of Ĥeff
i , along with the appropriate choice for the “remaining potential” are reviewed

in Subsections 2.1 and 2.2.

2.1 Definition of the effective Hamiltonian

In this study, as in Ref. 21, two approaches to define an effective Hamiltonian that can be

used with CC methods are tested.

2.1.1 QM/MM

The multilevel scheme termed QM/MM (Quantum Mechanics/Molecular Mechanics)6 re-

volves around the representation of the environment with point charges that usually reside

on atomic sites, allowing the treatment of large complexes in a very economical manner.

Within this scheme the effective Hamiltonian of Eqn. (6)
(
Heff

1

)
is given by

Ĥ
eff, QM/MM
1 (r1, r2) = Ĥ1(r1) + V̂ electrostatic

1 (r1; r2), (11)

where V̂ electrostatic
1 represents the Coulomb interaction of fragments 1 and 2, the latter rep-

resented via the partial charges. The main advantage of this scheme is its straightforward

incorporation into any quantum chemical method (and code), so that it is widely applied.

There are various ways to define the point charges, several sets are available e.g. in tradi-

tional molecular force fields like AMBER32,33 or CHARMM.34 A more flexible parametriza-

tion can be achieved using atomic multipoles35,36 as, e.g., within the Effective Fragment Po-

tential (EFP) framework.37–39 In our previous paper on the ground state of non-covalently

bound complexes21 the CHELPG (CHarges from ELectrostatic Potentials using a Grid-
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based) algorithm40 was found to work well with CC methods. In the context of CHELPG,

the partial charges at the atomic sites are fit to reproduce the electrostatic potential and

some low-order electrostatic moments of the molecule calculated at any level of theory, hence

the one used for the active fragment (e.g. CCSD) can also be applied. Unlike in method-

ologies used in most conventional force field methods, this way an accurate set of charges

can be obtained from fundamental considerations, consistent with the ab initio spirit of the

schemes.

One should realize, however, that the effective Hamiltonian in Eqn. (11) does not include

important interaction terms, such as dispersion and Pauli exchange between the fragments.

Thus, for accurate interaction energies also at short distances, the latter need to be added a

posteriori via ∆V1(r1; r2) (see Subsection 2.2).

2.1.2 Huzinaga embedding scheme

A more sophisticated consideration of the environment and its interactions can be achieved

with multilevel quantum chemical embedding methods. Bottom-up frozen density embed-

ding9,10 and top-down projector-based embedding (PbE)8 strategies are both available. The

former is computationally less demanding as subsystems are treated separately, while the

latter avoids the issues arising from the lack of orthogonality between subsystems. PbE was

first introduced by Manby and Miller8 who included an arbitrary level shift parameter in

the Fock operator of the embedded subsystem, raising the energy of environment orbitals

to near infinity. Orthogonality between subsystems can also be achieved by adapting the

Huzinaga-equation41 to the embedding problem42 or via the projection scheme of Hoffmann

and Khait.43 PbE has been applied to the calculation of excited states with various goals in

mind. Bennie et al.44 improved the original PbE method by including the most important

occupied orbitals of the environment in the excited state calculation. Parravicini and Jagau45

studied ionization, electron attachment and electronic resonances, also applying the concen-

tric virtual orbital localization scheme.46 A benchmark study by Hégely et al.47 compared

various multilevel approaches including PbE for the calculation of excitation energies.

In the present study the embedding scheme of Hégely and co-workers,42 based on the

Huzinaga-equation, is chosen as the second approach for the description of the active frag-
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ment. Embedding a fragment treated at the CC level of theory into the environment of the

other fragment described using density funcional theory (DFT) requires the a priori defini-

tion of the active subsystem and the environment. Following a DFT calculation on the entire

system, the occupied molecular orbitals (MOs) of the fragments are localized, resulting in

the splitting of the density matrix into two parts D1 and D2. The localization can be ex-

tended to the virtual orbital space, reducing the computational cost of the CC calculations,

as well as allowing a cleaner treatment of localized excited states by avoiding charge transfer

contributions (see later). The SPADE (Subsystem Projected AO DEcomposition)48 method

offers a black-box way of localizing and partitioning the orbital space based on the difference

of singular values in a singular value decomposition scheme, and can be applied to both

occupied and virtual orbitals.

The Fockian of the active subsystem is

F̃1 = h + GHF[D̃1] + (GDFT[D1,2] −GDFT[D1]), (12)

where h and GHF[D̃1] are the core Hamiltonian and the two-electron part of the Fockian

of subsystem 1, respectively, while the remaining terms in Eqn. (12) give the embedding

potential. D̃1 is the one-electron density of the embedded active subsystem reoptimized in a

second Hartree-Fock calculation during which the orthogonality of the subsystems is ensured

by solving the Huzinaga-equation with the orbitals of the environment kept frozen:

(F̃1 − SP2F̃1 − F̃1P2S + 2SP2F̃1P2S)C̃1 = SC̃1Ẽ̃ẼE1, (13)

where S is the overlap matrix of the atomic orbitals, P2 is the projector onto the environment

orbitals and C̃1 is the MO coefficient matrix of the embedded orbitals whose orbital energies

are in the diagonal matrix Ẽ̃ẼE1. The orbitals obtained this way can be used in correlated

wavefunction (WF) calculations for both ground and excited states.30

The energy ansatz of this method for WF-in-DFT embedding is

EWF−in−DFT
1 [Ψ1; D̃1,D1,D2] = EDFT

1,2 [D1,2] − EDFT
1 [D1] + EWFT

1 [Ψ1; D̃1,D1,D2], (14)
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where EDFT
1,2 is the DFT energy of the entire supersystem, EDFT

1 is that of the active frag-

ment calculated using the localized supersystem orbitals and EWFT
1 is the WF energy of the

embedded fragment. This energy ansatz is general, meaning that the ground and excited

state energies differ only in the WF term that is calculated using the same embedding po-

tential in both cases. This is the result of the frozen environment orbitals as they remain

unrelaxed to changes in the active orbital space. Note that the Fockian here is constructed

from similar principles as the effective Hamiltonian introduced in Eqn. (6), i.e. it includes

the electronic embedding by the enviroment’s density. It is also apparent from the energy ex-

pression (Eqn. (14)) that inter-subsystem interactions are retained from the original ground

state supersystem calculation at the DFT level of theory. This means that not only the

electrostatic interaction, but also the ground state Pauli repulsion is included in the final en-

ergy. Common DFT functionals are known to fail in giving a proper description of dispersion

interactions, thus the latter is missing from this ansatz and has to be included separately.

The first term on the right side of Eqn. (14) can be formally divided into monomer

energies calculated using the localized supersystem MOs and the interaction energy term:

EDFT
1,2 [D1,2] = EDFT

1 [D1] + EDFT
2 [D2] + EDFT

1,2,int[D1,2]. (15)

Therefore, the original energy ansatz (Eqn. (14)) above contains the fragment energies at

two different levels of approximation: that of the active fragment from the wavefunction

calculation (EWFT
1 [Ψ1; D̃1,D1,D2]), while the fragment playing the role of environment is

treated at the DFT level (EDFT
2 [D2]). This results in an incorrect asymptotic behavior

of relative energy curves for non-homodimer systems. Therefore, we suggest the use of a

modified energy expression:

ĒWF−in−DFT
1 = EWF−in−DFT

1 [Ψ1; D̃1,D1,D2] + EWF−in−DFT
2 [Ψ2; D̃2,D1,D2] − EDFT

1,2 [D1,2],

= EWFT
1 [Ψ1; D̃1,D1,D2] + EWFT

2 [Ψ2; D̃2,D1,D2] + EDFT
1,2,int[D1,2]. (16)
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2.2 Choice of the remaining potential ∆Vi

The schemes above lack some important intermolecular interactions: QM/MM does not

include any van der Waals type interactions, while dispersion is missing from the PbE ap-

proach. Based on our findings in Ref. 21, correcting for dispersion and Pauli repulsion via

the ∆V1(r1, r2) term in the Hamiltonian is an appropriate approximation and the extended

Effective Fragment Potential (EFP2) developed by Gordon and coworkers22–24,49–51 is an

excellent choice. (See Ref. 21 for other possibilities.)

The essence of the EFP222 is that an adequate parameter set for the potential is derived

from first principle considerations. The algorithm is able to predict every important contri-

bution to the intermolecular interactions, but here we shortly discuss only the Pauli repulsion

and dispersion terms, which are used in the calculations. For a more detailed description of

the EFP2 formalism, the reader is referred to Refs. 23, 24, 51.

To obtain the dispersion contribution in EFP2,52 a set of points are defined in the first

step, located at the nuclear positions and the midpoints of covalent bonds. These serve as

the centers of localized molecular orbitals (LMO) obtained from a HF or DFT calculation of

the subsystem. Then the dynamic dipole polarizabilities around the centroids of these LMOs

are determined by applying the time-dependent extension of the chosen method, which are

then used to calculate the dispersion energies between the fragments. Additional damping

parameters derived from the overlap of these orbitals are also used to correct the behavior

at short separations.

For the Pauli repulsion in the EFP2 scheme,24 the necessary antisymmetrization is

achieved by restricting the permutations to just two electrons and approximating the en-

ergetic effect with a power series with respect to the orbital overlaps (S). The terms beyond

O(S3) are neglected, while additional simplifications are applied also to the lower-order

terms.

According to the literature,53,54 EFP2 is a good model for interactions of molecules in the

ground state. However, to our knowledge, only one attempt has been made to treat excited

states with EFP2: Rojas and Slipchenko55 calculated the solvent effect on the excitation

energies of nine chromophores. In this study, the Pauli repulsion term was included in the
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effective Hamiltonian (so called QM/EFP2 scheme).56,57 Important efforts have also been

made by Hapka, Przybytek, and Pernal58,59 to include the dispersion between the ground and

excited states within SAPT (Symmetry-Adapted Perturbation Theory).60,61 These methods

are not yet available for routine applications.

Therefore, since the experience with the ground state clearly reveals that dispersion and

Pauli repulsion are necessary to achieve the accuracy we aim at,21 we decided to check

whether the ground state corrections are also applicable to the excited states. Note that

this is a common practice in TD-DFT studies on excited states of non-covalent complexes.62

The hope is that the error made this way is significantly smaller than the one completely

neglecting these terms would introduce. This idea is supported by the fact that in excited

states dominated by a single substitution, only a small fraction of the electrons are affected

by the excitation and the dominant part of the electron density is similar in the ground and

excited states. Although the results below show that this approximation works reasonably

well, we hope that the success of the whole scheme presented in this paper will inspire

research that will enable us to remove this restriction in the future.

To summarize, two, conceptually different methods will be used in the present study. One

is a QM/MM approach based on CHELPG point charges, augmented with (ground state)

dispersion and Pauli repulsion from EFP2 (termed as QM/MM + EFP2 hereafter), while

the other one is a Huzinaga projection based embedding model (PbE ) augmented with an

EFP2 (ground state) dispersion contribution (termed as PbE + EFP2 ).

2.3 Coupling schemes

The off-diagonal elements of the Hamiltonian matrix (Eqn. (10)) represent the coupling be-

tween excitations of the different chromophore groups. To consider possible approximations

for Ṽ (1, 2), let us use the original partitioning of the Hamiltonian (Eqn. (1)) which treats

both fragments equivalently. With this Hamiltonian, it is more reasonable to use the unbi-

ased basis (Eqn. (2)) for the evaluation of the matrix elements. This approximation is not

so severe since, presumably, the non-covalent interactions considered do not substantially
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change the fragment wavefunctions. This means that

Ṽ (1, 2) ≈ V (1, 2) = ⟨Φ1,1(r1)Φ2,0(r2)|Ĥ1(r1) + Ĥ2(r2) + V̂1,2(r1, r2)|Φ1,0(r1)Φ2,1(r2)⟩

= ⟨Φ1,1(r1)Φ2,0(r2)|V̂1,2(r1, r2)|Φ1,0(r1)Φ2,1(r2)⟩, (17)

i.e. the coupling is just the matrix element of the interaction potential V̂1,2(r1, r2).

A simple way to calculate this term is to approximate the potential by the dipole ap-

proximation, first suggested by Förster63

V̂1,2(r1, r2) ≈ µ̂µµ1(r1) · µ̂µµ2(r2)

R3
1,2

− 3
(µ̂µµ1(r1) ·R1,2) (µ̂µµ2(r2) ·R1,2)

R5
1,2

, (18)

where R1,2 is the vector connecting the center-of-mass (COM) of the two choromophores,

R12 is the distance between them, and µ̂µµi(ri) is the dipole operator of fragment i.

With this approximation, the coupling can be calculated from the transition dipoles of

the fragments:

V (1, 2) =
µµµ10
1 µµµ

01
2

R3
12

− 3
(µµµ10

1 ·R12)(µµµ
01
2 ·R12)

R5
12

, (19)

with

µµµkl
i = ⟨Φi,k(ri)|µ̂µµi(ri)|Φi,l(ri)⟩.

This approach (called the Transition Dipole Approximation (TrDA) hereafter) is a simple

and economical way to estimate the coupling. Note that the second term in Eq. 19 is needed

only if the two transition dipole moments are not parallel, i.e. it gives no contribution in

the stacked systems we investigate here.

The dipole approximation can be extended by considering transition monopoles e.g. at

atomic centers64 or by higher multipoles like in an extension of the PMM (Perturbed Matrix

Method) approach (PMM-QQ).65 However, Ref. 65 reveals that the extension in this form

does not necessarily improve the accuracy of the coupling.

A more accurate approximation of V̂1,2 is to consider the exact Coulomb interaction
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between the electrons of the two fragments

V̂1,2(r1, r2) =
∑
i(1)

∑
j(2)

1

|ri − rj|
, (20)

where the indices (i(1) and j(2)) run over the electrons of fragments 1 and 2, respectively.

(The contribution of the nuclei to V̂1,2 vanishes in the commonly adopted Born-Oppenheimer

and Condon approximations.66) With this, the coupling becomes:

V1,2 =

∫
dr1 dr2 Φ1,1(r1)Φ1,0(r1) V̂1,2(r1, r2) Φ2,0(r2)Φ2,1(r2)

=

∫
dr1 dr2 ρ0→1

1 (r1) V̂1,2(r1, r2) ρ0→1
2 (r2), (21)

i.e. it can be calculated from the transition densities (ρ0→i
i ) of the two fragments.66,67

Krueger and co-workers67 suggested to evaluate this expression on a grid and named the

procedure the Transition Density Cube (TDC) method,67,68 and we will use this nomencla-

ture in the following.

We have implemented the grid representation of transition densities in the CFOUR69,70

program system. This enables the calculation (within the numerical accuracy) of the elec-

tronic Coulomb interaction between the fragments at any theoretical level for which the

transition density is available.

There are also other attempts in the literature to include accurate couplings for Frenkel-

type excitonic interaction with specific electronic structure methods: CIS by Herbert and

co-workers,27 TD-DFT by Martinez and co-workers,71 Curutchet and Mennucci72 as well

as Head-Gordon and co-workers,73 and CC2 and related methods by Fückel et al.66 These

often also include the exchange type (Dexter) coupling,74 which is relevant only at very short

intermolecular distances. Since the Dexter coupling is not available at the CCSD level, it

could not be included here. However, from the results presented, the distance where this

term becomes important can be deduced.

Note that the same coupling also appears in Electron Energy Transfer (EET) processes,75

and many approximate schemes have been suggested to include it. An overview of these
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techniques is beyond the scope of this paper, more detail can be found e.g. in Refs. 76, 77.

3 Molecular systems

To find the approximation most suitable for excited states of non-covalently interacting

dimers of nucleobases, we investigate, as in our previous paper on the ground state,21 bimolec-

ular complexes of nitrogen–containing heterocycles: stacked pyrrole-pyrole dimer (denoted

by (Pyr)2 hereafter), and cytosine-uracil complex (Cyt-Ura ). In addition, the homodimers

of cytosine ((Cyt)2 ) and uracil ((Ura)2 ), as well as that of formaldehyde ((CH2O)2 ) are

included to better understand trends. The test systems are shown in Fig. 1. In the discus-

sion below, the “distance” of monomers refers to that between the centers of masses. All

the complexes were investigated in a stacked (sandwich) structure, with oppositely oriented

dipoles, except for the (Pyr)2 where the symmetry was lowered by a 10 o in-plane rotation

away from the C2h structure. The equilibrium structures of the monomers (optimized at

the MP2/6-31G* level) were taken from Ref. 78 and are documented in Tables S1-S4 of the

Supplementary material along with the geometries of dimers at a representative distance in

Tables S5-S9.

The performance of methods describing excitonic states, as it has also been pointed out

recently by Hancock and Goerigk,62 should not just be evaluated in single point calculations.

Therefore, the tests presented here include potential curves along the intermolecular sepa-

ration. Although the proposed methodology can be generalized to practically any number

of states, in this first application we limit consideration to the interaction of just two states.

These tests should provide a better understanding on how the different approximations work

in the suggested scheme.

In order to investigate the interaction of just a pair of states, these need to be energetically

well separated from other electronic states. It turned out that selecting such pairs is not an

easy task, in particular in calculations with diffuse basis functions; Rydberg states appearing

among the excited states of molecules with π electronic structure result in a high density

of states with strong interactions between them. In addition, at short distances charge

transfer (CT) states complicate the spectrum. Therefore, to find appropriate states for the
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(Pyr)2 Cyt-Ura

(Cyt)2 (Ura)2

(CH2O)2

Figure 1: Orientation of the molecules in the test systems used in this study. The measure
of the distance is represented by the blue dotted line connecting the centers of mass of the
fragments.
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tests, certain compromises were necessary, which will be be discussed later. The monomer

electronic states considered in this study are summarized in Table 1.

Table 1: Summary of the monomer electronic states investigated in this study.

Basis set State ∆E a / eV f b

CH2O cc-pVDZ
1 1A1 (ground) 0.00
1 1B1 (σ − π∗) 9.36 0.002
2 1A1 (π − π∗) 9.95 0.011

CH2O aug-cc-pVDZ

1 1A1 (ground) 0.00
2 1A1 (n−R) 8.07 0.058
1 1B1 (σ − π∗) 9.24 0.001
3 1A1 (π − π∗) 9.59 0.166

Pyrrole cc-pVDZ
1 1A1 (ground) 0.00
1 1B2 (π − π∗) 7.03 0.146

Pyrrole aug-cc-pVDZ
1 1A1 (ground) 0.00
1 1B1 (n−R) 5.14 0.000
1 1A2 (n−R) 5.87 0.021

Cytosine cc-pVDZ
1 1A’ (ground) 0.00
3 1A’ (π − π∗) 6.07 0.157

Uracil cc-pVDZ
1 1A’ (ground) 0.00
2 1A’ (π − π∗) 5.78 0.199

a EOM-CCSD vertical excitation energies, in electron volts; b Oscillator strength evaluated at the EOM-CCSD level.

4 Computational details

The primary goal of developing fragment methods is to replace high level (Coupled Cluster

(CC) type) electronic structure calculations on the complex with appropriately chosen cal-

culations on the fragments. The family of CC-type methods allows systematic improvement

of the accuracy, but approximate versions (like CC279 and ADC(2)80 in particular with spin

scaling81,82) enable an increase of the size of the fragments. Still, to avoid any ambiguity

caused by the approximate methods, the first tests will be done with the Equation of Mo-

tion Coupled Cluster with Singles and Doubles (EOM-CCSD) method,83,84 which can be

performed not only for middle sized fragments considered in this work, but also for their

complexes.

Double-zeta quality basis sets with diffuse functions have been selected for the calcula-

tions, giving a reasonable description of excited states and also of intermolecular interac-
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tions85 while making the corresponding EOM-CCSD calculations also feasible on the com-

plexes. However, to be able to investigate valence π − π∗ excitations, the primary source

for excimer states, some calculations had to be done without diffuse functions, even if the

interaction energies obtained this way are clearly underestimated. One should proceed with

great care when performing comparisons without diffuse functions, details are given below.

To summarize, all reference, QM/MM, and high-level steps of the PbE calculations were

done with CCSD86 and EOM-CCSD83,84 level of theory in the frozen core approximation.

Two basis sets were used in these calculations: cc-pVDZ87 and aug-cc-pVDZ.88 Only calcu-

lations using the same method and basis have been compared, allowing the evaluation of the

fragment methods. Specific details of the calculations are discussed below.

4.1 Reference ab initio calculations

To assess the accuracy of a new scheme, appropriate comparison is necessary, which turned

out to be a significant bottleneck of this study.

First, it was a major challenge to identify and converge valence excited states when diffuse

functions were included in the basis due to the presence of interacting Rydberg states. This

was not the case when the basis without diffuse functions was used. Clearly, this way just

a limited portion of the interaction energy is captured, but with a careful selection of the

parameters of the fragment calculations (see below) meaningful comparisons can be made.

Second, the calculations on the complex need to be corrected for basis set superposition

error (BSSE) since the fragment calculations are free from this artificial lowering of the

interaction energy. In our previous paper,21 we used counterpoise correction (CP)89 to

correct the ground state energies of the complex. Although it is often claimed that CP

corrections overestimate BSSE, particularly in correlated calculations,90 it is still the state

of the art in most studies of non-covalent interactions.91 Note that the SNOOP method by

Jorgensen et al.92 is a noteworthy attempt to calculate a CP correction for correlated ground

states, but requires special code which at present is only available in the LSDalton program

suite.93

The definition of BSSE corrections for excited states is not obvious. Rocha-Rinza et al.94

suggested the use of the CP correction formula analogous to the ground state one. This has
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been used in some applications (see e.g. refs. 95, 96) but diffuse basis functions were not

usually included in these calculations. Serrano-Andrés and Serrano-Pérez, in their review

on excited states97 suggested the use of the ground state CP correction also for the excited

state due to the uncertainties of the above definition, particularly for delocalized situations.

We have performed some test calculations applying the formula of Rocha-Rinza et al.,94 the

results are shown in Figure 2 for (CH2O)2 in aug-cc-pVDZ basis. While for some low-lying

states the CP correction is similar to the ground state value at any distance, some states

show unreasonably large CP corrections at close inter-fragment distances. A quick look

into this problem revealed that the CP correction removes the charge transfer component

of the solution, which is an artifact; many excited states of interacting fragments indeed

have charge flow. Considering that CP correction is a basis set effect and mostly influences

the orbitals,90 the CP correction obtained at the HF level was used for both the ground

state and the excited states. Note that this way the CP correction does not change the

excitation energy, but does indeed influence the shape of the excited state energy surfaces.

It is certainly worth investigating the problem in more detail, and such study is underway.

Nevertheless, the present results indicate that this approximation is reasonable.
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Figure 2: Counterpoise (CP) corrections calculated for several states of (CH2O)2 .
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All reference calculations have been performed using the CFOUR program package.69,70

4.2 Fragment calculations

The QM/MM calculations were performed at the same levels of theory as the reference

calculations using CFOUR,70 with the CHELPG point charges incorporated into the one-

electron Hamiltonian.

The CHELPG point charges were obtained at the CCSD level using GAMESS98 with

the aug-cc-pVDZ basis set. Further details of the CHELPG calculations, as well as the

determined atomic charges can be found in the Supplementary material .

The PbE calculations were performed using the MRCC program suite99 with the resolu-

tion of the identity (RI) approximation applied for both the SCF and correlation components

of the calculations. The active subsystem was treated at the same level as the reference and

PBE functional100 was used for the low level method. The localization and partitioning of

the occupied and virtual orbital spaces was done by SPADE.48 The energy expression of

Eqn. (16) was used as the diagonal term in the Frenkel matrix. For all systems the PbE

calculations used localized virtual orbitals; otherwise the excited state spectrum was spoiled

by artifactual CT states. However, the (CH2O)2 dimer was also investigated using the full

virtual space (in ground state calculation), as well as an extended SPADE-localized virtual

space containing two additional orbitals to test the incorrect behavior of the method with

diffuse basis functions (see Section 5.2).

The EFP2 dispersion and Pauli repulsion potentials were determined from the restricted

Hartree-Fock wave function using the built-in routine of GAMESS98 with the default set-

tings as described in the manual of the program package.101 The basis sets for these calcu-

lations were adjusted to the electronic structure calculations. For the augmented basis tests

these interaction terms were calculated with the 6-311++G(3df,2p) basis set as suggested

by Slipchenko and Gordon.102 On the other hand, to compare with the reference results

obtained with the cc-pVDZ basis, which clearly includes only a smaller portion of the inter-

action energy, the EFP2 parameters were also obtained with this non-augmented basis set.

It will be checked below whether the EFP2 scheme gives reasonable interaction energies in

this case.
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4.3 Calculation of interstate couplings

The transition moments and transition densities of the investigated excited states were de-

termined from monomer calculations on the same level as the reference calculations using

CFOUR.70 In the TDC scheme the transition densities were represented on a COM-centered

grid of stepsize 0.25 Å with maximum dimension of 16x20x24 Å for formaldehyde and

20x20x20 Å for all other monomers corresponding to the Cartesian coordinates given in

Tables S1-S4 in the Supplementary material . The numerical accuracy of the TDC procedure

was evaluated by integrating the transition density for the entire space, as well as by com-

paring the transition moment obtained on the grid with that from the EOM-CC calculation.

Due to the bi-orthogonality of the CC framework, the above schemes need further adjust-

ment. There are (slightly) different left and right transition properties which would result in

slightly different interaction energies. Following the procedure that the physically relevant

oscillator strength is calculated from the product of left and right transition dipoles, we use

the geometric mean of the left and right transition properties to evaluate the coupling.

5 Results and discussion

In this section the different approximations defining our scheme are tested. The validity of

approximations of the interaction energy is investigated in Section 5.1, the performance of

different coupling schemes is presented in Section 5.3, while the final results, i.e. the total

PESs of both states in question, are evaluated in Section 5.1.2. In addition, in Subsection 5.2

the problem related to the virtual space localization of the PbE scheme is discussed.

5.1 Interaction energy

5.1.1 Ground states

First, we review the quality of the ground state interaction potentials, including the EFP2

contributions, for the setups used later in the excited state calculations. In Figure 3 relative

potential energy curves of the ground states of the (CH2O)2 and (Pyr)2 dimers are shown,

obtained with the aug-cc-pVDZ basis set. In the case of (CH2O)2 , good agreement can
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be observed for the QM/MM + EFP2 curve, the difference to the reference getting clearly

noticeable only at very short distances close to the equilibrium. The discrepancy seems to

be larger for (Pyr)2 .

On the other hand, the PbE + EFP2 curves deviate considerably from the reference ones.

This problem turns out to be a general flaw of the embedding approach and is discussed in

detail in Subsection 5.2.
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Figure 3: Relative potential energy curves of the ground states of the (CH2O)2 (Panel A)
and (Pyr)2 (Panel B) dimers, calculated with different models using the CCSD/aug-cc-pVDZ
method as their wavefunction component.

In Figure 4 the relative potential energy curves of the ground states of the investigated

complexes are shown, as calculated with cc-pVDZ basis set.
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Figure 4 shows that both QM/MM + EFP2 and PbE + EFP2 overestimate the interac-

tion energy for all systems, resulting in potential energy curves running below the reference

ones. While at larger distances the two models give similar results, at shorter distances the

PbE + EFP2 curve is less bound. This indicates that the dispersion is overestimated at the

EFP2/cc-pVDZ level while Pauli repulsion is better described within the PbE model than

with EFP2/cc-pVDZ. Note that the ground state of (Pyr)2 is not bound at the CCSD/cc-

pVDZ level, thus the comparison is less relevant in that case.

5.1.2 Excited states

For homodimers it is possible to separately investigate the quality of interaction potentials

without the effect of the coupling, by comparing the EFP2-corrected QM/MM and PbE

curves to the average of the two reference ones. This is done here, focusing on the most

important 4-10 Å range of separation. For states showing a minimum with respect to the

intermolecular distance, this range covers the practically relevant parts of the attractive

region.

In Figure 5 the distance dependence of various interaction potentials between two formalde-

hyde molecules, one in a valence excited state and the other in ground state, are plotted.

The calculations were done at the CCSD/aug-cc-pVDZ level. A relatively good agreement

of the QM/MM + EFP2 curve and the averaged reference curve is observed for the σ → π∗

state, suggesting that this model correctly describes the interaction and the ground state

Pauli exchange and dispersion interactions are well suited for this excited state. In the π−π∗

state, similar agreement is observable only until 6 Å separation, below which the QM/MM

+ EFP2 result deviates significantly from the reference. A closer analysis reveals a Charge

Transfer (CT) state crossing the π − π∗ curve in this region, causing the fast descent of the

reference curves (see Figure S3 in Supplementary material). Since the effect of CT states

is not included in the fragment model at the present stage, these curves obtained with the

fragment models are only reasonable above 6 Å.

The curve obtained by the PbE + EFP2 scheme is, on the other hand, repulsive, similarly

to the ground state case seen above. The reason of this failure is discussed below in more

detail.
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Figure 5: Distance dependence of various interaction potentials (not including interstate couplings)
in the σ − π∗ (Panel A) and π − π∗ (Panel B) local valence excitations of the (CH2O)2 dimer,
calculated with different models using the CCSD/aug-cc-pVDZ method as their wavefunction com-
ponent.

In Figure 6 the same comparisons are shown for valence excitations of the homodimers,

obtained with the cc-pVDZ basis. Now the π− π∗ state of (CH2O)2 can also be considered,

since no interaction with CT states is present in the reference. The QM/MM + EFP2 curves

overestimate the interaction energy in all cases, just like they did in the ground state. The

PbE + EFP2 results are remarkably close to the QM/MM + EFP2 ones, except in the case

of (Pyr)2 where it produces an early minimum, deviating from the attractive QM/MM +

EFP2 and reference curves.
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While the present results are encouraging, one has to keep in mind that the EFP2 correc-

tions used here were calculated with the cc-pVDZ basis set. Obviously there is no evidence

that EFP2 could reproduce the interaction energy of the reference dimer calculations in this

rather artificial situation. This question is, however, of moderate importance since in real

applications the fragment methods should and will be used with an appropriate basis set.

On the other hand, we can answer the question whether the vdW corrections obtained for

the ground state represent a reasonable approximation for the case of an interacting ground

state fragment and one in its excited state. To that end, we have calculated the ‘exact’

vdW contribution of the ground state as the energy difference of the reference ground state

energy and that of the uncorrected QM/MM and PbE energies and used this quantity as an

approximate vdW correction for the excited states. The corresponding curves are shown in

Figure 7 for the (Ura)2 and (Cyt)2 systems. One finds a much better agreement with the

averaged reference curve in both cases, the curves from our models running slightly above

the reference ones. This means that the vdW correction from the ground state is slightly

smaller than it should be in the excited state. The solid agreement of the QM/MM and PbE

results indicates that it is mostly the dispersion part which is underestimated in this case.
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Figure 7: Distance dependence of various interaction potentials in the π− π∗ excited states of the
(Ura)2 (Panel A) and (Cyt)2 (Panel B) homodimers, with the vdW correction calculated from the
ground state reference potential, at the CCSD/cc-pVDZ level of theory.

Continuing the investigation with the inspection of Rydberg states, in Figure 8 the dis-

tance dependence of various potentials for the Rydberg states of (CH2O)2 and (Pyr)2 are
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shown, obtained with the aug-cc-pVDZ basis. A striking feature one observes here is the

clearly inappropriate, strongly repulsive curve produced by the by PbE + EFP2 model (see

discussion below). For QM/MM + EFP2 the situation is much better: the curves are qual-

itatively correct, although the interaction energy is (except perhaps in the case of the 2nd

Rydberg state pair of (Pyr)2 ) slightly underestimated.
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Figure 8: Distance dependence of various interaction potentials in Rydberg excited states of the
(CH2O)2 (Panel A) and (Pyr)2 (Panels B and C) homodimers, calculated with different models
using the CCSD/aug-cc-pVDZ method as their wavefunction component.

5.2 Failure of the Huzinaga embedding scheme with diffuse basis

sets

In the above discussions we have observed that the PbE + EFP2 scheme worked well for

valence excited states if used with the cc-pVDZ basis, but repulsive potential curves were
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obtained with the diffuse aug-cc-pVDZ basis set. The possibility that the failure is caused

by the EFP2 dispersion term can be excluded, since the same dispersion is used in QM/MM

+ EFP2, which works excellently.

On the other hand, an important feature of the present PbE scheme is the restriction

of the virtual space to orbitals localized on the active fragment. As discussed earlier in

Subsection 2.1.2, this step is necessary to avoid the appearance of artifactually too many

charge transfer type CC excited states and to keep the cost of the correlated calculation to

that of a single fragment. Unfortunately, however, this operation may seriously distort of

the virtual space if diffuse functions (Rydberg orbitals) are present whose localization to the

individual fragments is less obvious.

To illustrate that it is this restriction causing the problem, we have performed additional

calculations on (CH2O)2 including a) all virtual orbitals of the complex (denoted as PbE +

EFP2 with full virtual space) and b) two additional, normally excluded virtual orbitals that

have the largest contribution on the active fragment (PbE + EFP2 with extended virtual

space). The results are included in Figures 3, 5 and 8 for the ground state, for the valence

excited states and for Rydberg states, respectively.

For the ground state (Figure 3), even with just two additional orbitals in the extended

virtual space, the potential becomes attractive, in fact too attractive, especially if all virtual

orbitals are included. Neither choice seems to be appropriate: with all orbitals included in

the virtual space we see a special kind of BSSE since by decreasing the distance between the

fragments, more and more virtual orbitals become available in the spatial region of the active

fragment, an effect which is expected to be strong in particular with diffuse basis functions.

On the other hand, restricting the virtual space to that of the active fragment causes a

“reverse BSSE”: by decreasing the distance, the diffuse functions of the active fragment will

spatially overlap with those of the environment, causing the localization procedure to assign

them to the latter. Although this effect is only visible with diffuse basis sets, it should

eventually appear also with non-diffuse basis sets at very small distances.

For the valence excited states (see Figure 5) the PbE + EFP2 curve is repulsive again,

but now already with the extended virtual orbital space a minimum is observed. For the

σ−π∗ state it is very close to the QM/MM + EFP2 curve showing deviation only at shorter
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distances. Also for the π − π∗ state the agreement is excellent until the the critical distance

of 6Å (see above). Note that the identification of proper states with the full virtual space

was not possible due to the proliferation of artificial CT states.

The concept of “reverse BSSE” is strongly supported by the fact that for Rydberg excited

states the PbE + EFP2 scheme always produces strongly repulsive potential curves (see

Figure 8): here the effect is more severe since diffuse orbitals are needed to describe the

dominant excitation but only orbitals spatially restricted to the active fragment are available.

This effect is demonstrated on Fig. S4 in the Supplementary material . Note that not even

the above described extension of the virtual space does solve the problem here, the curve

produced by embedding with extended virtual space being still repulsive.

In summary, the present PbE scheme does not work with diffuse basis sets, and a new

version is needed with proper definition of the virtual space that includes all the virtual

orbitals on the active fragment, but none on the other.

5.3 Quality of the coupling schemes

The other factor that plays key role in reproducing the energy levels of interacting states is

the accuracy of the coupling between local excitations, as defined in the schemes presented

in Subsection 2.3. The models containing coupling terms predict a certain splitting (in the

case of homodimers) or a shift (for non-symmetric complexes) of the energy levels due to the

interstate interaction. To evaluate the quality of the couplings, these energy changes should

be compared to those of the respective reference calculations, i.e., high-level calculations on

the entire complex.

Figures 9 – 12 show the energy splittings in the symmetric complexes as functions of the

intermolecular separation. For the (CH2O)2 system with aug-cc-pVDZ basis (Figure 9), a

strong dependence of the results on the type of electronic state is apparent. In the σ − π∗

state the transition dipole approximation fails completely, predicting a practically zero split-

ting of the states. The TDC approach, on the other hand, gives accurate results throughout

the investigated range, indicating that in this state the interaction is appropriately described

by the electrostatic model if the charge distribution is considered at high resolution. For the

π − π∗ state the TDC curve is correct down to 6Å and the deviation from the reference is
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still moderate around 5Å. Below this point, as discussed above, the states in the reference

calculations show strong CT character, thus our model is not appropriate. In the n-Rydberg

state the coupling is overestimated by the transition dipole approximation, while the pre-

diction based on TDC gives correct results well down to an intermolecular distance of 4.5Å,

where some deviation from the reference curve starts to show up, presumably because the

contributions of the coupling that are ignored in the TDC model also become significant.

We note that the TDC results also have an obvious dependence on the electronic structure

method through the accuracy of the transition density matrix predicted for the state in

question. In this regard, both a close similarity as well as a significant discrepancy between

the CC2 and CCSD levels could be observed, depending on the electronic state. Details are

shown in Figure S2 of the Supplementary material .
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Figure 9: Dependence of the splitting (in atomic units) of the energy levels of the (CH2O)2
dimer on the intermolecular distance, as predicted by various coupling schemes.
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Fig. 10 shows the couplings in the π−π∗ states of the (Pyr)2 , (Cyt)2 and (Ura)2 dimers.

(Note that cc-pVDZ basis set was used for these calculations.) In these valence states, an

inconsistent behavior of the transition dipole approximation is observed. While this model

underestimates the coupling for (Pyr)2 below 4.5Å, a remarkable overestimation is seen for

the (Cyt)2 and (Ura)2 states even at larger separations. TDC, however, closely follows

the reference curve in all states in the range where the Coulomb contribution dominates the

coupling (about 5 Å for (Pyr)2 , 4 Å for (Cyt)2 and 3.5 Å for (Ura)2 ). Below these points,

it starts to deviate from the reference, indicating the importance of the missing exchange

(Dexter) contributions to the splitting. Since for the latter two systems these points are

comfortably close to the ground state equilibrium separation, it can be inferred that the

TDC model provides a reliable prediction of the splitting in the entire attractive side of the

interacting PES.
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Figure 10: Dependence of the splitting (in atomic units) of the π − π∗ energy levels of the
(Pyr)2 (panel A), (Cyt)2 (panel B) and (Ura)2 (panel C) dimers on the intermolecular
distance, as predicted by various coupling schemes.

The energy splitting of the corresponding states in the asymmetric Cyt-Ura complex is

shown on Fig. 11. Since in this case the energy gap is nonzero even at infinite separation,

the splitting is defined here as

∆Esplit(R) := ∆E(R) − ∆E(∞), (22)

for all methods.

The change of the gaps with the distance is much smaller in this complex than in either

the (Cyt)2 or the (Ura)2 systems. TrDA shows a behavior similar to the above cases,

severely overestimating the growth of the energy gap with the fragments approaching each
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other. The TDC model, on the other hand, shows a good agreement with the reference, with

only a moderate underestimation of the splitting below 5Å.
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Figure 11: Dependence of the difference (in atomic units) of the π − π∗ energy levels in the
Cyt-Ura complex on the intermolecular distance, as predicted by various coupling schemes.
The reference curve is defined relative to the energy gap at infinite separation.

A very different picture is seen for the 1st and 2nd pairs of Rydberg states of the (Pyr)2

dimer on Fig. 12. (Note that, obviously, the diffuse basis aug-cc-pVDZ was used here.) TrDA

completely fails for the 1st pair, predicting a zero coupling between these dark excited states.

The refined evaluation of the Coulombic coupling by the TDC model provides a reasonable

result for the first pair of states until 6 Å, but severely underestimates the reference curve at

smaller separations, indicating the necessity of the exchange (Dexter) terms for a reasonable

prediction of the coupling. The monomer state of the 2nd Rydberg pair possesses a non-zero

transition dipole moment, hence the splitting could in principle be approximated from this

scheme. However, it is larger than its TDC counterpart, similarly to the n-R excitation of

(CH2O)2 discussed above. This insinuates the conclusion that for these type of states TrDA

overestimates the Coulombic (Frenkel) coupling between the two monomers. The resulting

splitting is, however, still much smaller than that of the reference curves, showing that the

overestimation is far from canceling the error from the absence of the Dexter terms in our

methods. These findings make it clear that both models investigated here are inappropriate

for modeling couplings between Rydberg type excited states.
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Figure 12: Distance dependence of the splitting (in atomic units) of the first (Panel A) and
second (Panel B) pair of Rydberg energy levels in the (Pyr)2 complex, as predicted by
various coupling schemes at the CCSD / aug-cc-pVDZ level of theory.

5.4 Potential energy curves

The different interaction energy and interstate coupling models result in a variety of final

predictions for excited state potential energy curves. Since the evaluation of the coupling

terms in Section 5.3 demonstrated the clear superiority of the TDC scheme over the one

based solely on transition dipoles, surfaces resulting from the combination of TDC couplings

(calculated at the CCSD level of theory) and various interaction energy potentials will be

discussed in this chapter to assess the final results. As in Section 5.1, the 4 - 10 Å range of

intermolecular separation is investigated.

5.4.1 Valence excited states

The potential energy surfaces, relative to the sum of the respective monomer electronic

energies, are shown for the valence type electronic states in Figs. 13 and 14. For (CH2O)2

results obtained with the aug-cc-pVDZ basis set are shown (Figure 13), while for the larger

complexes (Figure 14) the cc-pVDZ basis set was used.

In the σ − π∗ state of (CH2O)2 the QM/MM + EFP2 model is generally well suited to

describe the PES of both states in the whole investigated range, with the same accuracy.

Severe discrepancies are seen for the PbE + EFP2 scheme, however: both states turn strongly
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repulsive at as early as 6Å separation. This behavior stems from the incorrect virtual orbital

selection as described earlier in Section 5.2.

The π − π∗ state of the formaldehyde dimer is, as discussed in Section 5.1.2 strongly

influenced by a crossing CT state below 6 Å if diffuse functions are present in the basis

set. Since the models do not include charge transfer effects, neither method can be expected

to produce a satisfactory result at short separations. This is, as seen on Figure 13, indeed

the case, the surfaces obtained from the PbE + EFP2 model being so overly repulsive

that only the lower one features a shallow intermolecular minimum around 5Å, while the

upper one exhibits a strong, obviously incorrect repulsive character. QM/MM + EFP2 also

underestimates the attraction in both states, as seen already on the coupling-free surfaces of

Figure 5. On the other hand, anywhere above 6 Å, both models agree well with the reference.

From the two the QM/MM + EFP2 results are to some degree more accurate, but the

difference is insignificant. This suggests that without the interacting CT states complicating

the wavefunctions, both approaches could produce meaningful potential energy surfaces even

at shorter distances.
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Figure 13: Potential energy curves (relative to the values at infinite separation, in atomic
units) of the investigated σ−π∗ (Panel A) and π−π∗ (Panel B) valence excited states of the
(CH2O)2 complex, calculated at with different models using CCSD/aug-cc-pVDZ method
as their wavefunction component.

The effect of other states is mostly eliminated if no diffuse functions are present in the

basis set, as seen on Figure 14. In the investigated π−π∗ state pair of (Pyr)2 (Panel A) both
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the PbE + EFP2 and the QM/MM + EFP2 models produce a nearly perfect agreement

with the reference until 6 Å. Below this point, the PbE + EFP2 potential energies start to

become somewhat too low and show an unphysical minimum between 4 and 6 Å . This turn-

back is likely caused by the truncation of the virtual orbital space in the PbE excitation

energy calculations, artificially eliminating certain excitations of the dimer wavefunction.

The QM/MM + EFP2 results are, in principle, correct until 5 Å, where both curves start

to run under the reference. While the error still remains moderate for the rapidly decreasing

lower state, the upper one is significantly overstabilized and fails to reproduce the repulsive

nature of the reference surface.

The approximate models are generally well suited for the (Ura)2 and (Cyt)2 π − π∗

dimer states (Panels B and C of Fig. 14). The shape of the potential energy curves follow

those of the reference, with a modest underestimation by both methods. The QM/MM

+ EFP2 approach turns out slightly more accurate until 4.5 Å, but the difference to the

embedding results is negligible anywhere over 5 Å. The deviation from the reference is more

significant in the (Cyt)2 case, both in relative and nominal terms. Based on the findings

discussed in Section 5.3 it is clear that the discrepancy is mostly caused by the error of the

interaction energy modeling, as the interstate couplings are almost perfectly reproduced in

the investigated region.

The potential energies of the same electronic states of the Cyt-Ura complex are shown in

Panel D of Figure 14. (Note that the zero point of the energy scale is defined as the mean

of the dimer excited state energies at infinite separation.) Here the PbE + EFP2 potentials

are in good agreement with the reference in the entire region. The QM/MM + EFP2 result

is also correct, almost indistinguishable from the PbE + EFP2 one above 4.5 Å, while a

somewhat stronger underestimation of the reference energies is produced below this point.

Generally, the relative agreement with the reference is better in this non-symmetric complex

than expected from the results on the homodimers (Cyt)2 and (Ura)2 . This accentuates the

complexity of the excited state interactions in stacked π-complexes.
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Figure 14: Potential energy curves (relative to the mean total energies at infinite separation,
in atomic units) of the investigated π − π∗ excited states in the (Pyr)2 (Panel A), (Cyt)2
(Panel B), (Ura)2 (Panel C) and Cyt-Ura (Panel D) complexes, calculated with different
models using CCSD/cc-pVDZ method as their wavefunction component.

5.4.2 Rydberg states

Rydberg type electronic states, as seen above in Sections 5.1.2 and 5.3, represent a big

challenge for the interaction modeling. The potential energy curves, shown on Fig. 15

for (Pyr)2 and the (CH2O)2 , reflect many features already seen on the interaction energies

above. The PbE + EFP2 model produces nonphysical, repulsive surfaces for both interacting

states in all cases. This makes it clear that this approach in its present form is not suited for

Rydberg type excited states. The QM/MM + EFP2 energies, on the other hand, follow the

reference with good parallelism in the whole range. However, due to the improper prediction

of the coupling for Rydberg states (see Section 5.3), the splitting of the states is severely
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underestimated. The resulting surfaces are thus also incorrect from the very point where

the interaction becomes significant - as early as 6Å separation in these cases. This clearly

indicates that for a qualitatively correct recovery of the Rydberg surfaces in the QM/MM +

EFP2 framework, the appropriate modeling of the coupling is also indispensable.
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Figure 15: Potential energy curves (relative to the values at infinite separation, in atomic
units) of the investigated Rydberg excited states in the (CH2O)2 (Panel A) and (Pyr)2
(Panels B and D) dimers, evaluated with different models using CCSD/aug-cc-pVDZ method
as their wavefunction component.

6 Conclusions

For the theoretical description of non-covalent interactions in excited states, various fragment-

based methods have been formulated and tested on stacked complexes of formaldehyde,

pyrrole, uracil, and cytosine.
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Regarding the electronic structure calculations on the fragments, both the QM/MM

model (with CHELPG point charges representing the environment), and the projector-based

embedding approach (PbE) were found to be good choices, as long as no diffuse functions are

present in the basis set. With diffuse basis functions included, QM/MM performs similarly,

but a PbE model fails due to the use of a localized and truncated virtual space that results

in incorrectly repulsive potential energy curves.

Achieving satisfactory accuracy for the potential energy curves requires that the van der

Waals-type interactions (dispersion and Pauli repulsion) are also properly included. The

examples presented in this work confirm that the respective EFP2 terms obtained for the

ground state provide a convenient and accurate approximation for these interactions between

a ground state and an excited state fragment.

An appropriate consideration of the Frenkel splitting is also necessary to model interacting

states; it was found that the relatively simple TDC scheme is able to predict the Coulomb

part of the associated excitonic coupling at a high accuracy. Neglect of the Dexter part

of the coupling was noticeable only at small intermolecular separations (below 4 Å in the

complexes investigated here).

The proposed methodology produces reasonably accurate potential energy curves above

separation of 4 Å. This is essentially the range from the intermolecular energy minima (when

the electronic state exhibits one) up to dissociation, thus representing the regime relevant

for phenomena related to complex formation and stability.

Despite the encouraging results presented here, we see several points where the suggested

methodologies could be improved. First, the PbE scheme needs to be made suitable for cal-

culations with diffuse basis sets. To this end, a new localization scheme for the virtual orbitals

is apparently needed. Second, we believe that the development of state-specific dispersion

and Pauli repulsion terms could improve the reliability of the interaction energy. Note that

similar developments are needed for TD-DFT methods to include state-specific dispersion

interaction.62 Third, to also reliably predict equilibrium structures of these complexes, the

inclusion of the Dexter coupling is necessary. At present, the highest-level wavefunction

method available for this purpose is CC2,66 but our results (discussed in the Supplementary

material of this paper) show that the transition properties predicted by this method can be
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very different from those obtained with CCSD (see also Ref. 103). Finally, the interaction

between valence and charge transfer states needs to be included in this scheme, which could

be done by means of the adaptation of the TD-DFT procedure suggested by Li et al.71

Significant effort has also been put into producing CCSD-level benchmark data for a

reliable test of the fragment methods. The associated difficulties (e.g correction for BSSE

of excited states) have also been discussed. These data can later be used in benchmarking

cheaper supermolecular methods, similarly to a recent study by Hancock and Goerigk62 on

different TD-DFT methods. The data are provided in Tables S10-12 of the Supplementary

material .
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Theoretical investigation of electronic excitation energy transfer in bichromophoric as-

semblies. The Journal of Chemical Physics 2008, 128, 074505.

67. Krueger, B. P.; Scholes, G. D.; Fleming, G. R. Calculation of Couplings and Energy-

Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density

Cube Method. The Journal of Physical Chemistry B 1998, 102, 5378–5386.

68. Krueger, B. P. The Transition Density Cube method. http://www.chem.hope.edu/~k

rieg/TDC/TDC_home.htm, 1998; [Online; accessed Dec-2022].

69. Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-

C.; Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-cluster techniques for computational

chemistry: The CFOUR program package. The Journal of Chemical Physics 2020, 152,

214108.

70. Stanton, J. F.; Gauss, J.; Cheng, L.; Harding, M. E.; Matthews, D. A.; Sza-

lay, P. G. CFOUR, Coupled-Cluster techniques for Computational Chemistry, a

quantum-chemical program package. With contributions from A.A. Auer, R.J. Bartlett,

U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, F. Engel, R.

Faber, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson,
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99. Kállay, M.; Nagy, P. R.; Rolik, Z.; Mester, D.; Samu, G.; Csontos, J.; Csóka, J.;
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