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ABSTRACT 

Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been 

shown that the presence of activity cliffs in compound data sets can have a substantial impact not 

only on the design progress but also can influence the predictive ability of machine learning 

models. With the continued expansion of the chemical space and the currently available large and 

ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape 

of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary 

indices to quantify the structure-activity landscapes of large compound data sets using different 

types of structural representation rapidly and efficiently. We also discuss how a recently 

introduced medoid algorithm provides the foundation to finding optimum correlations between 

similarity measures and structure-activity rankings. The applicability of the n-ary indices and the 

medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with 

pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity 

indices, and 11 coincidence thresholds. 
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Exploring structure-activity and structure-property relationships of compound data sets is one 

of the first basic steps in drug discovery. To this end, one of the approaches is quantifying the 

activity (property) landscapes and identifying, if any, activity (or more general property) cliffs and 

similarity cliffs.1, 2 Activity cliffs point to key and small structural features associated with large 

changes in activity (information that can be used in lead optimization). Also, the presence of 

activity cliffs in data sets hamper the performance of predictive models.3 In contrast to activity 

cliffs, similarity cliffs point to different chemical features associated with very similar or identical 

biological activity and provide information for scaffold or R-group hopping. 

Over the past several years, different approaches have emerged and evolved to analyze visually 

and quantitatively activity (property) landscapes and identify activity cliffs.4-9 For instance, 

Aldeghi et al. recently introduced a roughness index (ROGI) to characterize quantitatively the 

property topology of a given data set.10 The metric ROGI can take values between zero and one 

and is intended to capture the total roughness (or flatness) of a normalized data set. Also recently, 

van Tilborg et al. evaluated the performance of twenty-four machine and deep learning approaches 

on curated bioactivity data from 30 macromolecular targets in the presence of activity cliffs. The 

authors concluded that the presence of activity cliffs in compound data sets affect the performance 

of the predictive models.11 

One of the earliest and straightforward approaches to capture the activity landscapes of 

compound data sets and rapidly detect activity cliffs is the Structure-Activity Landscape Index 

(SALI) proposed by Guha and Van Drie:9 
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where Pi and Pj are the property values of molecules i and j, respectively, and s(i,j) is the similarity 

of i and j. In most published applications of SALI, s(i,j) has been computed with the Tanimoto 

coefficient using molecular fingerprints as representation, but it can be quantified by any other 

combination of molecular representation and similarity index. However, for large and ultra large 

data sets calculating SALI can be inefficient. The key issue is that all these roughness measures 

are based on binary (pairwise) comparisons,12-16 so they will require O(N2) operations to study a 

library with N molecules, thus quickly becoming unmanageable. That is, while the standard 

molecule-to-molecule relations are very efficient to calculate (and, in many cases, pivotal to help 
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us navigate through chemical space), using the SALI (or SALI-inspired) measure to study full 

libraries is too computationally expensive. 

 Recently, we proposed a new class of similarity indices: extended similarity indices,17-19 

that allow comparing any number of molecules at the same time, with a much more attractive O(N) 

scaling. These new measures have been successfully applied in clustering tasks,20 studying 

phylogenetic trees,19 epigenetic-focused libraries,21 in feature selection,22 sampling of molecular 

dynamics simulations,23 and many other studies.24-27 More notably, it has been shown that these 

indices can provide a very efficient way to quantify the chemical diversity of large libraries.28 

However, up to this moment these indices have not been connected to molecular properties. The 

aggregative nature of the extended indices means that they are very attractive to study the global 

properties of large libraries (from quantifying their diversity, to their representation in chemical 

space). However, and perhaps a bit surprisingly, these new indices also allow us to zoom-in on 

these same large collections of molecules and analyze them at the local level. In this study, we will 

combine these two aspects. First, we will show how the n-ary indices can be used to provide a very 

efficient measure of heterogeneity, applicable at the library level. Then, we will study how our 

medoid algorithm provides the foundation to finding optimum correlations between similarity 

measures and structure-activity rankings. 

 

2. EXTENDED SIMILARITY FRAMEWORK 

The first step to calculate the n-ary indices is to accommodate all the molecular fingerprints 

in a matrix-like arrangement. (Notice that in this work we will be only considering binary 

fingerprints, but the extended indices could be calculated for other molecular representations as 

well, including arbitrary strings of characters, atomic coordinates, or latent space representations 

from arbitrary descriptors.) We then just have to compute the vector  1 2, ,..., N    , where k  

indicates the sum of all the elements in the kth column. Next, we calculate the indicators 

2 N    , which we use to determine if each column contributes to the similarity or 

dissimilarity of the set. This is done with the help of a coincidence threshold,  , which is 

essentially a hyperparameter indicating how many “characters of the same type” do we need in a 

column to consider it as similar. In more mathematical terms, whenever    , we will assign 

the column as similar (in particular, “1-similar” if 2 N    and a “0-similar” if 2N    ), 



4 

which means that    will correspond to a dissimilar column. If we would like to penalize the 

partial (e.g., not perfect) coincidence in a column we just need to include weight functions sf and 

df  to deal with the similar and dissimilar cases, respectively. There are many ways to choose these 

weights, but in all our studies so far we have only considered perhaps their simplest realization:  

    
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With this simple recipe we can then simply “translate” large classes of binary similarity indices, 

so they could be used now to quantify the similarity of N objects at the same time. For instance, 

the (extended) Jaccard-Tanimoto (or simply, Tanimoto) and Russell-Rao indices are given by: 
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s, 1-s, 0-s, and d represent summations over the similar, 1-similar, 0-similar, and dissimilar 

columns, respectively. 

 The most time-consuming step involved in the calculation of the n-ary indices is the 

formation of vector  . However, this only involves a sum over independent columns, so it scales 

linearly with the number of rows. In other words, this algorithm scales as O(N), in stark contrast 

with the inherent O(N2) scaling of methods based on pairwise similarity indices. For instance, if 

we have a set of molecules  1 2, ,..., NM m m m  and we want to estimate the roughness of this 

chemical (sub-)space with the standard SALI we would have to calculate some version of the 

following expression: 
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which obviously demands 
 1

~
2

N N 
 similarity (and property difference) calculations (with   

an arbitrary normalization). 
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We propose to alleviate this problem by instead using an extended SALI (eSALI) index calculated 

by: 
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Here, es  indicates the extended similarity (notice that the input to this index is the whole library, 

M), 
1

1 N

i

i

P P
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   is just the average of the property values over all the set, and the 
1

N
 is just a 

convenient normalization factor. Since  
1
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  scale at worst as O(N), this means 

that Eq. (6) is dramatically more efficient than Eq. (5). Notice that when we only consider two 

molecules,  1 2,M m m , Eqs. (5) and (6) are trivially related, since: 

 1 2 1 2P P P P P P       (7) 

and, by construction: 

     1 2 1 2 1 2, : , ,em m s m m s m m    (8) 

Hence: 
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
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So, an inconsequential factor aside, the eSALI can be interpreted as a natural extension of the 

SALI to any number of molecules. 

 Another attractive feature of the n-ary indices is their ability to find the medoid of a set or, 

more generally, rank every element in a set depending on whether they are more “important” or 

“central” (e.g., medoid or medoid-like) to those molecules that are “less important” or “outliers”. 

The main ingredient here is the concept of the complementary similarity of a molecule in a set. 

Formally speaking, the complementary similarity of the ith molecule, is , will be given by: 

   /i e is s M m   (10) 

In other words, it is the extended similarity of the set after removing the ith molecule. 

The algorithm to perform this calculation is very simple. If each molecule is represented by a 

fingerprint F, then we just need to calculate  i e is s F   , with   being the column-sum vector 

introduced above. Then, molecules with the lowest complementary similarity values will be closer 
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to the medoid regions of the library. This algorithm is essentially composed of two O(N) steps 

(e.g., calculating  , and performing the N iF   subtractions) so, just like the standard es  

calculations, it will scale linearly. 

 We will be using this medoid algorithm to propose a workflow aimed to dissect structure-

activity relations. The central idea is to correlate different rankings induced in the dataset both by 

means of the property values, and by the structural features of the molecules. The property ranking 

will be given by how much the molecules differ from the average value of a given property. That 

is, we will order the molecules from central to outlier as an increasing function of iP P . On the 

other hand, the structural ranking will be given by the previously explained complementary 

similarity calculations. It is to be expected that a similarity index will be all the more suitable for 

a particular problem if the structural ranking it induces has a good correlation with the associated 

property ranking. We will analyze this correlation using two different tools. In both cases, we 

begin by generating the two rankings, and then we proceed to select a subset from each of them 

containing a fraction of the data (e.g., 10%, 20%, etc. of the total number of molecules). In the first 

approach, we investigate how many molecules appear at the same time in the property subset and 

the structural subset. For this, we use the set theory version of the Tanimoto index (which, to avoid 

confusions with the extended Tanimoto index, we will either refer to as “set Tanimoto” or Jaccard 

index). That is, given two sets A and B, the set Tanimoto (or Jaccard) index will be given by: 

 _
A B

set Tanimoto
A B

  (11) 

The second analysis aims to see not the identical coincidence of some molecules between the 

rankings, but to quantify, overall, how similar are the molecules in each subset. That is, we average 

the pairwise similarities between molecules in the property subset and the structural subset (e.g., 

 ,s i j , with i in the property and j in the structural subset, respectively). Since the extended 

indices are very often very well correlated with their binary counterparts (they are externally 

consistent), we must be careful of not biasing our analysis with an incorrect selection of the 

pairwise index. Here we bypassed this issue by working with the pairwise cosine similarity, which 

was not included in the extended indices considered. 

 

3. MOLECULAR LIBRARIES AND COMPUTATIONAL CONDITIONS 
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From ChEMBL V.3129-32
 compounds tested against ten representative anti-diabetic  and anti-

cancer targets (Table 1) were retrieved.33-37 Only compounds associated with quantitative 

inhibitory values (expressed in pIC50) were retrieved on the final data set (used in this manuscript). 

Duplicate compounds for the same target were removed and the most potent compounds per case 

(lower pIC50 values) were conserved. Finally, 28,289 compounds were filtered and considered in 

the final data set. 

Each molecule has been associated with their respective SMILES38 that has been used to 

represent their chemical structures using different fingerprints: MACCs keys (166 bits), ECFP4 

(1024 bits), and RDKit (2048 bits). The fingerprints were computed using the RDKit module 

implemented by python programming language.39  

Finally, from each fingerprint of each molecule, the extended similarity values were 

calculated using different similarity indices (as been previously described the section 2). The 

extended similarity indices (AC: Austin-Colwell, BUB: Baroni-Urbani-Buser, CT1: Consoni-

Todeschini 1, CT2: Consoni-Todeschini 2, CT3: Consoni-Todeschini 3, CT4: Consoni-Todeschini 

4, Fai: Faith, Gle: Gleason, JT: Jaccard-Tanimoto, Ja0: Jaccard, RR: Russel-Rao, RT: Rogers-

Tanimoto, SM: Sokal-Michener, SS1: Sokal-Sneath 1, SS2: Sokal-Sneath 2) were computed using 

the code freely available at https://github.com/ramirandaq/MultipleComparisons. 

 

Table 1. Overview of the ten compound datasets used in this work. 

Identifier Database Property 
# of Molecules after 

curation 

1 Aldose reductase inhibitors 

pIC50 

 

914 

2 β-secretase 1 inhibitors 7364 

3 
Epidermal growth factor receptor erbB1  

(EGFR1) inhibitors 
9853 

4 
Free fatty acid receptor 1  

(FFA1) inhibitors 
66 

5 
Histone-lysine N-methyltransferase, H3 lysine-9 

(HDAC9) inhibitors 
250 

6 
Peroxisome proliferator-activated receptor α 

(PPARα)  inhibitors 
1096 

7 
Peroxisome proliferator-activated receptor γ 

(PPAR γ) inhibitors 
1686 

https://github.com/ramirandaq/MultipleComparisons
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8 
Protein-tyrosine phosphatase 1B  

(PTB1B) inhibitors 
3177 

9 Serine/threonine-protein kinase AKT inhibitors 3033 

10 Tubulin polymerization inhibitors 850 

 

In summary, we studied 3 fingerprint types (MACCS keys (166-bits), RDKit, and ECFP4), 16 

extended similarity indices (AC, BUB, CT1, CT2, CT3, CT4, Fai, Gle, JT, Ja0, RR, RT, SM, SS1, 

SS2), 10 libraries, and 11 coincidence thresholds (from Nmod2, to 10%, 20%, …, up to 90% of 

the elements in each library). 

 

4. RESULTS 

4.1 Extended SALI 

The study of the dependency of the eSALI values with the coincidence thresholds went exactly as 

expected (Fig. 1). Since increasing   causes the extended similarity to decrease, the denominator 

in Eq. (6) will increase, leading to smaller values of eSALI. Notice that, for a given combination 

of similarity index, fingerprint type, coincidence threshold, and property, bigger eSALI values 

indicate a prevalence of similar molecules with different property values, while a smaller eSALI 

corresponds to a more homogeneous activity landscape. 

 

Figure 1: Average eSALI values over the libraries, similarity indices, and fingerprint types vs. 

coincidence thresholds. 

 

More interestingly, the analysis of the dependency of the eSALI with either fingerprint type or the 

similarity index provides important insights regarding the optimum way to study the roughness of 



9 

property landscapes. This opens the possibility to discuss the impact of fingerprints, similarity 

index, and threshold of the dataset to quantify the eSALI values. For instance, the individual 

analysis of the similarity indices highlights some very interesting trends. If we look at the variation 

of the eSALI values resolved for the different   values (Fig. 2B) we can see that, overall, most of 

the indices that include the 0-similarity in their numerators (e.g., AC, BUB, CT1, CT2, Ja0, RT, 

SM, SS2) tend to result in higher eSALI values and more variability on the other conditions. This 

can be readily understood in the following way: since these indices reward the absence of common 

features (e.g., an increase in 0-similar columns will increase the similarity), they could end up 

giving artificially inflated similarity values, just by virtue of the coincidence of a large number of 

“off” bits in the molecular representation. Hence, it is easier to have molecules that appear to be 

structurally similar, even though they do not have similar values in their properties. In other words, 

property values depend more heavily on the characteristics that the molecules has, than on those 

that it has not. This heavily implies that similarity indices that only (or heavily) favor the presence 

of common “on” bits (1-similarity), and do not rely too much on the coincidence of “off” bits, 

provide more reliable measures of activity cliffs. These indices (e.g., CT3, CT4, Gle, Fai, JT, Ja, 

RR, SS1), present the same trends when we also average the results over all   values (Fig. 2A), 

where we can once again see a tendency towards less variability and lower eSALI values, 

compared to the 0-similarity cases. Moreover, even within the 1-similarity indices we see some 

slight variations in the dependency with the computational conditions. Notice that the indices that 

do not have the 0-similarity in their denominators (e.g., CT4, Gle, JT, Ja, SS1) tend to have more 

outliers than those that penalize the inclusion of “off” bits (e.g., RR and Fai). The only exception 

if CT3, but the variability in the CTn indices has been shown to be in part dependent on the length 

of the molecular representation. 
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 A  B 

Figure 2: Average eSALI values vs. extended similarity indices. A) Average over the libraries, 

coincidence thresholds, and fingerprint types; B)  -resolved averages. 

 

Another factor that is commonly glossed over when studying activity cliffs is the effect of the 

molecular representation. Fig. 3 includes the analysis of the behavior of 3 popular fingerprint 

types: MACCS, RDKit, and ECFP4. Here the same general guiding principle holds: we should 

expect to see lower eSALI values when the given representation is more adept at capturing the 

structural nuances that dictate the properties of the molecule. In this regard, we would have 

expected that MACCS would have corresponded to the largest eSALI values. This is so because 

the reduced number of bits (essentially encoding only 166 features) should make it easier to result 

in high similarity, given the (on average) higher chance of having bits with the same values across 

otherwise different molecules (e.g., very much like favoring 0-similarity in the previous example 

produced bigger similarity scores). However, ECFP4 was actually the representation that showed 

the highest variability, despite having ~10X more features than MACCS. The comparatively poor 

performance of ECFP4 mirrors that found by us in chemical diversity studies. The difference 

ECFP4 and MACCS is yet another reminder that a better description of a system does not depend 

as much on having more features, but on having the correct features for the problem at hand. On 

the other hand (and as it was also the case in our previous studies), RDKit fingerprints seem to 

provide the best way to encode structural information, providing more robust results. 
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 A  B 

Figure 3: Average eSALI values vs. fingerprint types. A) Average over the libraries, coincidence 

thresholds, and similarity indices; B)  -resolved averages. 

 

4.2 Local ranking analysis 

As remarked above, we can also use the extended similarity indices to explore structure-activity 

relations at the local level. We considered two approaches to study the correlation between selected 

subsets of structural and property similarity rankings: how many identical elements are in each 

subset (measured by the set Tanimoto or Jaccard index), and the pairwise relation between 

elements of each subset (calculated via cosine similarity). Fig. 4 presents the average behavior of 

these two measures, which show markedly different trends. On one hand (Fig. 4J), the set 

Tanimoto (Jaccard) values increase monotonically with the size of the subsets (represented by N, 

and taking values of 10%, 20%, …, up to 90% of the size of the original libraries). This is no 

surprise, because the more elements we consider, the more likely we are to have them replicated 

in the property and structural subsets, until we reach the obvious limit of Jaccard = 1 in the case in 

which we select 100% of the data. On the contrary, the cosine similarity (Fig. 4C) slightly 

decreases with increasing N, since by including more molecules in the subsets we are more likely 

to decrease their average pairwise similarity. 
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 J  C 

Figure 4: Average set Tanimoto (Jaccard, J) and cosine (C) similarity vs. the size of the selected 

subsets. 

 

Reassuringly, the trends in both the set Tanimoto (Fig. 5J1) and cosine (Fig. 5C1) values are 

virtually independent of the coincidence threshold. This means that we do not have to pay too 

much attention to the selection of this hyperparameter to perform a medoid-based analysis. Note 

also (Figs. 5J2, 5C2) the previously discussed tendency of the set Tanimoto and cosine values to 

increase/decrease with N, respectively. 
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 J1  J2 

C1 C2 

Figure 5: Average set Tanimoto (Jaccard, J) and cosine (C) similarity vs. coincidence threshold. 

1) Average over the libraries, similarity indices, fingerprint type, and N; 2) N-resolved averages. 

 

The dependency with the similarity indices (Fig. 6) is a more interesting. First, in the set Tanimoto 

case (Fig. 6J1), we see that all the indices have essentially exactly the same behavior (something 

that is also reflected in the N-resolved study, Fig. 6J2). That is, at least for the current selection of 

molecular libraries, properties, and similarity indices, none of the latter outperforms their 

counterparts as far as selecting exactly the same molecules from the property and structural 

rankings. If we consider the cosine analysis it is also certainly difficult to unambiguously say that 

a given index outperforms all the others. In the fully-averaged case (Fig. 6C1), we can only see 

some shy “local maxima”, with the RR index slightly outperforming the rest, but only by the finest 

of margins. Unsurprisingly (and as it was also remarked in the global case considered in the 

previous section), the 1-similarity indices seem to do a relatively better job (in particular, JT and 

CT3). This tendency appears more clearly when we consider each value of N separately (Fig. 6C2), 

with once again RR appearing to be the “shy” winner. Hence, even if all the indices are essentially 

equivalent if we are interested in the identical coincidence of the property and structural rankings, 
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the 1-similarity indices seem to do a slightly better job at finding molecules in the two rankings 

that are more similar to each other (albeit not identical). As a word of caution, we warn the reader 

to not take these conclusions as a universal truth. While we expect the (small) relative advantage 

of the 1-similarity indices over the 0-similarity ones to be applicable to broad classes of libraries 

and/or properties, the same should not be expected of the preference for the RR index. First, this 

index only appears to outperform the others by a very tiny margin. Second, even this small 

advantage should not be extrapolated beyond the particular properties considered here. The key 

take-home message from this section, however, is that one can (efficiently) perform this same 

structure-property medoid-ranking analysis in order to determine, for a particular combination of 

library/property, which is the similarity that provides the best agreement with the experimental 

results. 

 J1  J2 

C1 C2 

Figure 6: Average set Tanimoto (Jaccard, J) and cosine (C) similarity vs. similarity indices. 1) 

Average over the libraries, coincidence thresholds, similarity indices, fingerprint type, and N; 2) 

N-resolved averages. 
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As in the global case, the role of the molecular representation chosen also provides some very 

valuable insights. Once again, the exact equivalency between the property and structural rankings 

is virtually independent of the fingerprint type (see the Jaccard values in Figs. 7J1 and 7J2). 

However, the cosine analysis indicates that MACCS is the clear winner. It is surprising that this 

minimalistic representation can capture key structural features such as to provide a better proxy to 

identify molecules with related properties at a ratio consistently above RDKit (appearing now in a 

close 2nd place) and ECFP4 (once again with a performance markedly inferior to the other 

alternatives). 

 J1  J2 

 C1  C2 

Figure 7: Average set Tanimoto (Jaccard, J) and cosine (C) similarity vs. fingerprint type. 1) 

Average over the libraries, coincidence thresholds, similarity indices, and N; 2) N-resolved 

averages. 

 

4.3 Landscape studies using eSALI values 

Figure 8 illustrate examples of average eSALI values calculated for different datasets (combining 

all the coincidence thresholds, similarity indices, and fingerprint types previously considered in 
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this work). eSALI values enable to quantify the landscapes’ roughness (based on specific datasets) 

and at the same time, eSALI serves as a metric to determine the datasets “modelability”. For 

example, dataset 6 shows a higher average eSALI value (in contrast with the rest of the datasets) 

that suggests a major roughness in their data, and lower model ability.  

 

 A              B 

 

Figure 8: Average eSALI values of the tent datasets considered in this work. A) Average over the 

libraries, coincidence thresholds, similarity indices, and fingerprints types; B)  -resolved 

averages. 

 

Namely, eSALI index points to the presence of activity cliffs in data sets that interfere with the 

training and accuracy of machine learning models, as discussed recently.11 Also, eSALI index is 

an interesting option to explore the roughness of large datasets, owing to its ease of calculation 

and very low computational cost. 

One of the main perspectives of this work is that extended metrics (like eSALI index) could 

be applied to explore a plethora of properties related to the structure of compounds. For example, 

toxicity and side effects. Also, it is possible to use this index to develop consensus (or fused) 

similarity metrics that have demonstrated extensive applicability in drug design and discovery.40, 

41 

 

5. CONCLUSIONS 

In this study, we showed the applicability of the n-ary indices to quantify the activity landscapes 

of ten compound data sets retrieved from the literature using MACCS keys, RDKit, and ECFP4 

fingerprints: 16 extended similarity indices and 11 coincidence thresholds. A swift answer to the 
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title question on the efficacy of the Tanimoto is that, in most cases, this is a perfectly good choice. 

But the more nuanced study that we presented here shows that this is a characteristic shared by 

virtually all the similarity indices that put a higher importance on the coincidence of “on” bits 

rather than in the common absence of identical features between the molecules to be compared. 

Even more, we showed that there are situations in which the extensively used Tanimoto index can 

be (even if so slightly) surpassed by some of its lesser-known relatives, like the Russell-Rao index. 

It was also shown in this work that the medoid algorithm facilitates efficiently computing a 

structure-property medoid-ranking analysis to determine, for a particular combination of data 

set/property, which is the similarity coefficient that provides the best agreement with the 

experimental results as far as correlating structural motifs with nominal property values. 
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