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Abstract

Explainable machine learning is increasingly used in drug discovery to help rationalize

compound property predictions. Feature attribution techniques are popular choices to

identify which molecular substructures are responsible for a predicted property change.

However, established molecular feature attribution methods have so far displayed low

performance for popular deep learning algorithms such as graph neural networks (GNNs),

especially when compared with simpler modeling alternatives such as random forests

coupled with atom masking. To mitigate this problem, in this work a modification

of the regression objective for GNNs is proposed to specifically account for common

core structures between pairs of molecules. The presented approach showed higher

accuracy on a recently-proposed explainability benchmark. This methodology has the

potential to assist with model explainability in drug discovery pipelines, particularly in

lead optimization efforts where specific chemical series are investigated.
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Introduction

Drug discovery is one of the many fields where deep learning techniques have found extensive

applicability in the last few years.1 While the history behind traditional machine learning

(ML) in cheminformatics can be traced as far back to the 1960s,2,3 some recently-adopted

deep learning paradigms have become increasingly popular across many tasks (e.g., de novo

molecular design, synthesis prediction). Specifically, in silico molecular property prediction

(also commonly referred to as quantitative structure-property relationship modeling) is a

central challenge in drug discovery where graph neural networks (GNNs)4 have shown promis-

ing performance. Among the many factors that contributed to the popularity of GNNs in

chemistry and other areas, we can highlight their suitability to naturally perform automatic

feature extraction on arbitrarily-sized graphs and their scalability to existing commodity

hardware. In chemistry, GNNs can take advantage of the natural description of molecules as

graphs, where atoms and bonds can be represented as nodes and edges, respectively.

The popularity of GNNs has also been accompanied by an increasing need for explainabil-

ity,5–13 as these models have been notoriously known for their black-box character. Towards

this goal, explainable artificial intelligence techniques, such as feature attribution analyses,

have become relevant tools. These analyses provide an importance value for every input

feature, atom or bond in a molecular graph. Such importance values are often visualized

through atom or bond coloring, where the structural patterns that drive a prediction are

highlighted on top of the two-dimensional molecular representation of the compound of

interest.14

Towards disentangling what structural patterns are exploited by GNNs in compound

property predictions, a variety of feature attribution techniques have been previously reported

in the literature.15 Importantly, many research efforts have focused on benchmarking feature

attribution techniques, exploring their consistency and quality in atom coloring, and providing
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recommendations.16–19 In particular, one of such studies proposed a quantitative benchmark

based on publicly-available activity data for congeneric series and evaluated the performance

of several GNN architectures and feature attribution techniques.20 Therein, it was shown that

GNNs did exhibit some degree of accordance with the predefined colors of the benchmark,

but their explainability performance fell markedly behind simpler techniques such as atom

masking21 in combination with more traditional machine learning methods such as random

forests (RF).

In order to mitigate this issue, in this paper we propose a training loss modification for

GNNs that improves explainability performance on the aforementioned benchmark. Our

method takes advantage of the fact that lead optimization efforts focus on specific compound

series, where molecules share structural cores (i.e., scaffolds). The explicit consideration

of the molecular scaffold formalism can be leveraged to appropriately assign importance

of the uncommon substructures responsible for a property change during model training.

The proposed architecture is inspired by recent works on molecular representation learning

based on reaction data that explicitly encourage the similarity of reactants and reagents in

embedding space.22

Materials and methods

Benchmark data

Molecular scaffolds. A scaffold is defined as the core of the molecule where one or several

functional groups can be attached. Herein, the maximum common substructure (MCS)

formalism was used to define a molecular scaffold23 between pairs of compounds binding to a

specific target. To consider that two compounds share a molecular scaffold, such common

part should encompass a minimum fraction of their structure. Taking this into consideration
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Figure 1: Benchmark descriptive analyses. Reported are (a) the distribution of number of
pairs per protein target, (b) the number of compounds per protein target, and (c) the number
of compound pairs considered at varying scaffold size (different thresholds of minimum shared
MCS among pairs).

and in line with previous work, different thresholds of minimum shared substructures were

examined.20 For the development and evaluation of our methodology, MCS pairs were com-

puted using the FMCS24 algorithm, as available in the RDKit rdFMCS module.25

Data preparation. The benchmark data from a recently proposed study on feature

attribution20 was used, which consisted of 723 protein targets with associated small molecule

activity data (half maximal inhibitory concentration, IC50). In said data set, ground-truth

atom-level feature attribution labels were determined via the concept of activity cliffs.26,27

Specifically, these were defined as pairs of compounds in one or multiple congeneric series

sharing a molecular scaffold and with at least 1 log unit activity difference. Compounds for

each protein target were randomly divided into training (80%) and test (20%) sets. Only

protein targets with at least 50 compound pairs in the training set were kept. To avoid data

leakage, the same compound was not allowed to be present in different pairs in training and

test sets, resulting in a final selection of 350 protein targets. Figure 1 shows the distribution
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of the number of pairs and compounds per target at the minimum considered MCS threshold

of 50%, as well as the number of pairs sharing molecular scaffolds at different minimum

thresholds.

Models and feature attribution techniques

Models. Message-passing GNN28 models were trained to predict compound activity against

all available protein targets. These were optimized to minimize at least one of the following

loss functions: (i) mean squared error (MSE) between observed and predicted binding affinities

(in logarithmic scale), (ii) a relative affinity loss computed on pairs of related compounds,

hereby referred to as activity cliff (AC) loss, and (iii) the proposed uncommon node loss

(UCN). Both AC and UCN losses were considered on top of the standard MSE loss with

a fixed weighting term (see Substructure-aware loss Section). As a control, random forest

(RF) models trained with extended-connectivity fingerprints (ECFP4) were also considered.

Additional details regarding neural network hyperparameters, featurization, and optimization

details are provided in Section S4.

Feature attribution techniques. A variety of feature attribution methods that enable the

estimation of positive and negative atom contributions were investigated. Class Activation

Maps (CAM)29 and gradient-based methods, namely GradInput,30 Integrated Gradients,31

and Grad-CAM32 were utilized. Additionally, other perturbation-based approaches such

as node masking, where the contribution of each atom is determined as the difference in

prediction upon its artificial modification, were considered. For the presented GNN models,

node masking iteratively set node features to zero. For RF models, each atom was assigned an

atom type that was not present in the benchmark sets, and molecular features re-calculated.21

Section S5 reports additional details on the hyperparameters used in each feature attribution

technique.
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Figure 2: Schema of the proposed UCN loss. Two compounds sharing a scaffold are sampled
from the training set, and their atom latent spaces computed via a forward pass of a GNN
model. The uncommon latent nodes are used for the loss computation, targeting the activity
difference between the compound pairs. In the illustrated example, the compound pair is
composed by ci and cj , with a large MCS and two substitution sites, highlighted in red for ci
and green for cj. Substituents (or decorations) differ for both compounds, and correspond to
the uncommon nodes in the latent space.

Substructure-aware loss

A supervised learning problem was considered where a GNN model was trained to predict

compound activity against a specific protein target. Motivated by the fact that several drug

discovery efforts tend to focus on congeneric series (e.g., lead optimization), we propose a

loss that focuses on the uncommon structural motifs between ligand pairs. A schematic

representation of this procedure is provided in Figure 2. During training, compound pairs

with a common scaffold are sampled and the difference in predicted activity is attributed to

the uncommon node latent spaces. For each pair k of compounds i, j, with corresponding

molecular graphs ci, cj ∈ C and experimental activities yi, yj ∈ R, the proposed uncommon

node loss is computed as:
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LUCN (ci, cj, k) :=
∥∥(ξ (ϕ (Mk

i (hi)
))

− ξ
(
ϕ
(
Mk

j (hj)
)))

− (yi − yj)
∥∥2
, (1)

where hi ∈ RNi×d is the latent node representation of compound ci, Mk
i : RNi×d → Rni×d

is a masking function over nodes that retrieves those uncommon for compound i in the

context of pair k, ϕ : Rn×d → Rd is a mean readout function over nodes, ξ : Rd → R is a

multilayer perceptron with linear activation, and ∥·∥ is the vector Frobenius norm. During

model training, the UCN term was used alongside of a standard mean squared error (MSE)

loss on the absolute predicted versus experimental binding affinities of pair k:

LMSE (ci, cj) := ∥yi − ŷi∥2 + ∥yj − ŷj∥2 , (2)

where ŷi is an absolute activity prediction output that aggregates over all available nodes in

each pair (i.e., both common and uncommon). Since sampling compound pairs results in an

augmented data set that could artificially boost performance, additional models were trained

to minimize a relative binding affinity loss:

LAC (ci, cj) := ∥(yi − yj)− (ŷi − ŷj)∥2 . (3)

Specifically, the models considered in this study were trained to minimize either LMSE or

one of the two combinations LMSE+AC := LMSE + λLAC, LMSE+UCN := LMSE + λLUCN. For

all training and testing purposes in this study we fix λ = 1.

Evaluation metrics

Predictive performance. Regression model performance was evaluated with the root mean

squared error (RMSE) and Pearson’s correlation coefficient (PCC). RMSE and PCC metrics

were calculated to evaluate activity prediction against individual targets. To aggregate results

across all targets in the data set, both the unweighted (simple) and weighted average values

were calculated. For the weighted average calculation, RMSE or PCC values were weighted
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by the number of compounds pairs in the test set of each target.

Explainability. The performance of the feature attribution methods was evaluated using

global direction and atom-level accuracy metrics.20 Global direction is a binary metric assessing

whether average feature attribution across the uncommon nodes in a pair k of compounds

preserves the direction of the activity difference. Assuming ψ : C → RN×d is a feature

attribution function that assigns a score to each node feature in an input graph, the metric

for a single pair is computed as:

gdir (ci, cj) = 1
[
sign

(
Φ
(
Mk

i (ψ (ci))
)
− Φ

(
Mk

j (ψ (cj))
))

= sign (yi − yj)
]
, (4)

where Φ : RN×d → R is a mean aggregator over nodes and features. The score is averaged

over all pairs in the benchmark test sets.

Atom-level accuracy, also hereby referred to as color agreement, measures whether the

feature attribution assigned to a node has the same sign as the experimental activity difference

of the compound pair (ground truth). In previous work, ground-truth atom attribution labels

were obtained by assuming that the structural changes between a pair of compounds were

responsible for the observed potency changes.20 Therefore, structural parts in the most potent

compound of the pair were assigned a positive feature attribution, and vice versa. For every

atom in a compound with corresponding molecular graph ci with mi common atoms in pair

k, and with ground truth atom color tki ∈ {−1, 1}mi , the (vector-valued) metric is defined as:

gatom (ci) := 1mi

[
sign

(
η
(
Mk

i (ψ (ci))
))

= tki
]
, (5)

where η : C → RN is a mean aggregation function over features and 1mi
is an indicator

vector with mi binary entries. The mean value ḡatom is then used as a summary of the color

accuracy for compound ci.

Jiménez-Luna et al.20 noted that the ground-truth colors assigned by gatom can be ill-

defined for a compound, since they are dependent on the other compound in the pair (i.e.,
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the assigned colors to one compound could either be positive or negative depending on the

specific comparison). In contrast, gdir does not suffer from this problem. For this reason, the

analyses reported here focus on the gdir evaluation metric and, for completeness, gatom results

are reported in the Supporting Information.

Results and discussion

ML models were generated to predict compound potency against 350 protein targets. Message-

passing GNNs were trained to minimize different loss functions, including the standard MSE

loss, and its linear combination with relative (AC), or uncommon node (UCN) losses. More-

over, RF models were built for comparison. First, prediction performance was assessed for all

GNN and RF models. Next, model explainability was benchmarked and the influence of the

UCN loss analyzed for individual targets.

Predictive performance.

There is a known trade-off between model interpretability and accuracy.33 Moreover,

only explanations from well-performing methods can be used to assist in the interpretation

of predictions, and thus drug design. Therefore, prediction performance was evaluated for

all GNN and RF models. Table 1 reports the simple and weighted average values for root

mean squared error (RMSE) and Pearson’s correlation coefficient (PCC) metrics. Results

are shown for GNNs built with different loss functions, i.e., solely MSE loss (LMSE), MSE

in combination with AC (LMSE+AC) or UCN losses (LMSE+UCN), and RF. Average RMSE

values across all targets ranged from 0.32 (RF) to 0.43 (GNN with LMSE+UCN). Average

correlation between predicted and experimental potency values ranged from 0.86 (GNN with

LMSE+UCN) to 0.95 (RF). Importantly, performance differences between methods were smaller

when considering a weighted average across targets. In such case, per-target performance

results are weighted by the number of compound pairs in each test set. The smallest and
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Table 1: Test set predictive performance. Reported are the average (Avg.) and weighted
average (W. Avg., over number of compounds per target) of root mean squared error (RMSE)
and Pearson’s correlation coefficient (PCC) values (± 1 standard deviation).

Avg. RMSE W. Avg. RMSE Avg. PCC W. Avg. PCC

RF 0.32 (±0.11) 0.30 (±0.08) 0.95 (±0.07) 0.96 (±0.04)
GNN LMSE 0.34 (±0.26) 0.24 (±0.14) 0.89 (±0.23) 0.96 (±0.08)
GNN LMSE+AC 0.34 (±0.27) 0.23 (±0.11) 0.89 (±0.23) 0.97 (±0.08)
GNN LMSE+UCN 0.43 (±0.29) 0.30 (±0.14) 0.86 (±0.24) 0.95 (±0.09)

largest weighted average RMSE were 0.23 (GNN with LMSE+AC)and 0.30 (RF and GNN with

LMSE+UCN), respectively. In addition, weighted average correlation values were between 0.95

(GNN with LMSE+UCN) and 0.97 (GNN with LMSE+AC). Only minor differences favouring the

simpler LMSE loss for both RMSE and PCC values were observed, with most results lying

within one standard deviation of each other.

Explainability evaluation at varying scaffold size.

Explainability was primarily evaluated using the global direction score, which focuses

on the uncommon decorations in a pair of compounds and assesses whether the direction of

the activity difference is preserved. Global direction values were calculated at varying MCS

thresholds among compound pairs. Figure 3 shows the global direction values for all test

pairs and targets considered in the study. Many feature attribution methods applied to GNNs

with the proposed UCN objective (LMSE+UCN) exhibited larger global direction values over

the absolute MSE (LMSE) and relative MSE (LMSE+AC) losses. Improvements were observed

for most methods, but were more pronounced for CAM, Grad-CAM, and GradInput. Addi-

tionally, the GNN-based masking method also exhibited a slight increase. Most importantly,

this improvement held across different thresholds of minimum MCS between pairs. Figure 3b

reports the results with the weighted color direction metric, where similar conclusions can

be drawn. In this case, Integrated Gradients showed larger improvements compared to the

non-weighted analyses. Despite the improvement of the global direction metric for GNNs
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Figure 3: Global direction at varying scaffold size and across feature attribution methods. (a)
Global direction and (b) weighted global direction values are reported at different thresholds
of minimum shared MACS among testing pairs (%). In (b), global direction is weighted by
the number of pairs per each target. Results are shown for three loss functions, i.e. LMSE

(left panel), LMSE+AC (middle panel), and LMSE+UCN (right panel). Colors report different
feature attribution methods, five for GNN models and atom masking for RF models. Since
the three losses functions are only applied to GNN models, RF results are equivalent in the
three panels.

using LMSE+UCN loss, RF models with an atom masking approach achieved larger values.

Among the GNN methods, the CAM and masking approaches provided top-performing global

direction results. Global direction values were overall stable across different scaffold size. Only

when the uncommon structural parts in compound pairs were small (>85-90% thresholds),

global direction values significantly decreased for all methods.
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Figure 4: Per-target comparison of global direction values. The two-dimensional kernel
density plot shows the target-specific global direction values with LMSE (x-axis) and LMSE+UCN

(y-axis) loss functions. The text-box reports the percentage of protein targets for which global
direction (gdir) was larger with LMSE+UCN loss. Compound pairs considered at the minimum
50% MCS threshold.

Explainablity for individual protein targets.

In the previous section, explainability methods were benchmarked using the average global

direction across all targets. Nevertheless, for specific protein targets, the best explainability

method might differ. To evaluate how often this is the case, global direction with LMSE and

LMSE+UCN loss functions were compared on a target-by-target basis (Figure 4). From this

analysis, we observed that global direction values were higher for 60-66% of the targets when

including the UCN loss. Additionally, most feature attribution methods showed improvements

with the inclusion of the UCN loss, with CAM exhibiting the largest improvements (66%).
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Figure 5: Protein targets with global direction improvements. Reported are the number of
targets (y-axis) displaying a given improvement of the global direction metric gdir using the
proposed LMSE+UCN loss compared to LMSE (x-axis). Global direction improvements were
binned into ≤5%, between 5 and 10%, between 10 and 20%, and ≥20%. Colors indicate
the loss function utilized during GNN training (LMSE, blue; LMSE+UCN, orange). For the
compound pairs’ generation, a minimum threshold of 50% MCS was considered.

Additional plots and analyses can be found in Sections S1 and S2, where we highlight that

CAM approached performance close to the RF masking method when evaluated on the

training sets. Section S3 reports results with color agreement as an alternative metric. In this

case, the proposed UCN loss produced an improvement for several of the feature attribution

methods evaluated in both training and test sets, albeit the advantage was less observed to

be less pronounced than for the global direction metric.

Figure 5 reports the number of targets for which the addition of the UCN loss term led

to a negligible (≤5%), small (between 5% and 10%), medium (between 10% and 20%), or

large (≥20%) global direction improvement. Results indicate that GNNs with LMSE+UCN loss

led to larger global direction values for the same or higher number of targets than GNNs with

the standard LMSE loss. Interestingly, differences across loss functions became larger when

considering targets with medium to large global direction improvements in their explanations.
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Figure 6: Effect of the number of substitution sites on global direction. Global direction
(x-axis) is reported for compound pairs with a single (orange) or multiple (blue) substitution
sites. For the derivation of compound pairs, a minimum 50% MCS threshold was set.

CAM, GradInput, and Grad-CAM were the methods showing the largest benefit of UCN loss

inclusion, with many targets showing global direction improvements higher than 20% (133

for Grad-CAM, 138 for GradInput, and 81 for CAM).

Potential factors influencing explainability.

As a way of elucidating which factors contribute to a successful feature attribution

assignment, the benchmark was extended by evaluating whether gdir is affected by (i) the

number of substituent sites in the compound pair, or (ii) the chemical diversity within each

target. Figure 6 reports the global direction values for compound pairs that differ by one or

at least two substitution sites. Results suggested that feature attribution methods did not

showcase an overall higher performance for compounds pairs that differ in a single substitution

site. Additionally, chemical diversity was estimated via the Bemis-Murcko scaffold34 formalism

(Figure 7). In more detail, chemical diversity was defined as the total number of scaffolds

divided by the number of compounds available for each target. Apart from a slightly higher

concentration of targets around areas where both the number of scaffolds is low and gdir is

high, no significant correlation between these values was observed.
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Figure 7: Effect of structural diversity on global direction. Reported are the per-target
chemical diversity and global direction values per each protein target. Results reported for
the minimum 50% MCS threshold.

Conclusions

In this study, a substructure-aware loss was proposed to improve the explainability of GNN

models in the context of congeneric series data for drug discovery. This modified loss function

was evaluated on a previously-reported benchmark for molecular ML explainability and it

was observed that most GNN-based feature attribution techniques markedly benefited from

its usage. Global direction values were used to evaluate compound explanations. Our results

showed that the average global direction as well as the percentage of targets with global

direction improvements were superior with the consideration of the UCN loss during GNN

training. Specifically, a 66% and 63% of the targets improved global direction scores for CAM

and GNN masking, respectively, which were identified as the best-performing GNN feature
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attribution methods. Moreover, when explaining activity predictions for a specific target

protein, large global direction improvements were more likely with the newly proposed loss

function. However, despite the observed superiority of the substructure-aware loss in GNN-

based feature attribution methods, the RF models coupled with an atom masking approach

still remained the best approach for explainability in the benchmark.21 Nevertheless, the

feature attribution performance gap between RF and GNNs was reduced with the inclusion

of the proposed loss.

The requirement of precomputed common substructures between pairs of compounds is

admittedly a limitation of the presented method. Exact MCS algorithms are computationally

expensive, but the issue may be bypassed using approximations or matched molecular pair

analyses.35,36 Moreover, we believe that feature attribution approaches may be hindered

by some of the current GNN training limitations. As ventures for future research, the

exploration of additional GNN architectures (e.g., those that avoid the Weisfeler-Lehman

graph isomorphism issue) or tackle the well-known oversmoothing effect on GNNs37 by

applying regularization,38,39 self-supervised learning,40,41 or pretraining techniques42 might

be promising.

All in all, a new strategy for GNN explainability was introduced, inspired by the lead

optimization efforts in drug discovery, which are centered on specific chemical series. We

expect that the presented explainability approach will help rationalizing GNN-based model

decisions in that context.
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