The Production of Biodiesel from Algae Using Flocculation and Nanoparticles

Gehad Ibrahima and lemar Al Ghabrab

Knights of knowledge international school, Jeddah 22233, Saudi Arabia

aEmail: gehadgad2019@gmail.com

bEmail: lemaralghabra2006@gmail.com

Abstract

Although fossil fuels propelled society to our current level of technology, the future of energy lies in renewable resources, beginning with vehicles. Despite accounting for only 5% of total vehicles in the US, medium to heavy-duty trucks that run on diesel fuel account for an astounding 23% of annual CO2 emissions in the transportation sector. The full implementation of greener biodiesel is frequently regarded as an impractical method of pollution reduction because the production of such biodiesel competes directly with the agricultural industry for available arable land. (“Optimizing Nannochloropsis Growing Conditions for ...”) Energy-dense algae are better biodiesel feedstocks because they avoid many of the issues that current biodiesel feedstocks do, and their potential can be used to propel the biodiesel industry into the future of sustainable energy. Because of its high productivity and lipid content, Nannochloropsis is a promising algae genus. The research shows how to quantify the constituent fatty acid type and composition in order to optimize the growing medium composition for increased biodiesel quality while maintaining high productivity (GC). The algae are grown in three 2.5 L glass jugs with three different nitrate and phosphate concentrations. Throughout the trials, a growing "1/2" medium is used. A flocculating solution of aluminum sulfate and vacuum filtration are used to harvest the algae. In situ transesterification is used to maximize fatty acid conversion into fatty acid methyl esters, which are then analyzed using GC. After 32 days of growth, the algae grown in low, medium, and high nutrient concentrations had average absorbance values (a measure of biomass concentration) at 750 nm of 0.91, 0.99, and 1.18, respectively. In a low nutrient concentration, the maximum monounsaturated fatty acid (MUFA) concentration of 62.68 percent of total fatty acids was achieved, corresponding to high-quality biodiesel. This study resulted in a scientific breakthrough by maximizing both the quality of biodiesel produced, which is superior to any currently available biodiesel, and the quantity, with a productivity that is more than one hundred times that of current biodiesel feedstocks. The research also discusses nano-technology application that concluded nanomaterials could stimulate microorganism metabolism, implying that including nanomaterials in cultivation could boost microalgae lipid production. Furthermore, the use of nanomaterials could improve the efficiency of lipid extraction while causing no harm to the microalgae, as well as the research needs and future directions for sustainable microalgae biofuel production. Since we did not have access to the materials needed, the information gathered in this study was culled from a variety of sources.

Keywords: Renewable fuels; Algae; Biodiesel; Nanotechnology

* Corresponding author.
1. Introduction

The growing concern about the continued use of fossil fuels and the rapid depletion of fossil fuel reserves, global climate change, rising crude oil prices, and environmental degradation have compelled scientists and researchers to look for alternative energy sources. The potential of microalgae as a renewable energy source has sparked considerable interest. However, current microalgal biomass production and harvesting techniques, as well as downstream processing of microalgae to produce biofuels and other valuable bioproducts, are still too expensive to ensure a competitive production price for algae-based biofuels. If microalgal biofuel production is to be economically viable and sustainable, mass culture and harvesting conditions, as well as biofuel processing techniques, must be further optimized. The technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products, on the other hand, are not yet commercially viable. Crude oils, such as Petro diesel, have long been the primary source of energy and fuel. Since the 1970s, however, major public worries about crude oil's long-term viability, price volatility, and negative environmental impact have grown. In recent decades, biooils and biooil-based biodiesel fuels have evolved as viable alternatives to crude oils and crude oil-based Petro diesel fuels. Although petroleum-based fuels are still widely used, biodiesel fuels are becoming more popular in the transportation and power sectors. As a result, the development of algae biodiesel fuels as the fourth generation of biodiesel fuels has piqued public attention. Algae are multicellular organisms that range in size from single-celled organisms to multicellular organisms with differentiated and differentiated forms. Algae thrive in wet locations or bodies of water, making them widespread in both terrestrial and aquatic habitats. Algae, like plants, rely on three things to thrive: sunlight, carbon dioxide, and water. Algae exist in large-scale natural sources. Lipids and fatty acids are found in microalgae as membrane components, storage products, metabolites, and energy sources. Lipids/oils can make up anywhere from 2% to 40% of the weight of algae. However, it is required to lower the total cost of biodiesel production by lowering the feedstock cost by increasing algal biomass productivity. Nano-technology applications have been also implemented to biofuel industries, since the existing controversial approaches of traditional microalgal culture-biofuel production contain a number of limitations such as inconsistent industrial-scale and high microalgal production, and harvesting cost, energy consumption for biofuel production from microalgae, and the increase of greenhouse gas intensity in environmental. As a result, the important findings of these most-prolific research on algal biomass production & Nanotechnology

2. Methodology

2.1. Supplies

This study's instrumentation will include, but will not be limited to, gas chromatography, standard lab equipment (beakers, flasks, graduated cylinders, etc.), Nannochloropsis oculata, 2.5L glass jugs for algae growing, grow lights, and pump. For the nanotech we used PEI-coated (Fe3O4) (Superparamagnetic Iron Oxide Nanoparticles).

2.2. Controls

Across the three growing containers, the following factors will be remained constant:

- **Algae grown**: Nannochloropsis oculata - The same algae are grown in all experimental mediums.

- **Culture medium**: All tests employ the same culture medium composition (Guillard (1975),) EXCEPT for the nutrients listed in section.

- **Lamp illuminance**: 30-35 lux - Maintained at a constant distance from the grow containers using a fluorescent grow light in a dark environment. A Vernier light probe is used to measure illumination (LS-BTA).
- It has been demonstrated that under this illumination, algae produce the largest concentration of lipids (including MUFA, PUFA, and SFA based lipids).

- **The temperature** :22.5-23.5°C.

- Under the algae growing containers, a heating mat is placed. The amount of power given to the heating mat is automatically adjusted.

 - Buffering salts are added.

 - **Growth volume**: 2 L

Water is provided to each 2 L developing algal solution in 2.5 L glass jugs as needed to counteract the effects of evaporation.

2.3. **Experimental design**

Nannochloropsis oculata was grown for 32 days at three different nutrient levels. The nitrate and phosphate concentrations used are the same as those specified by the f/2 medium. The high and low concentrations were chosen to double and halve the concentrations, respectively. The baseline medium, f/2, is derived from the original f medium, which had concentrations at twice the concentration of f/2, hence the name of divided by two. The high nutrient concentration was chosen to be the same as the f medium, which is twice the concentration in the f/2 medium, to evaluate the f medium condition. To maintain symmetry, the low nutrient concentration was chosen to cut the f/2 concentration in half.

To increase statistical validity, each cultivation was performed in duplicate, completing a two-by-three design. Each sample in this study is labeled L1, B1, H1 for the first group of low, baseline, and high nutrient concentrations, respectively. Three glass jugs were used for cultivation in a temperature and light-controlled room. To increase statistical validity, each analyte produced from individual algae suspension samples is analyzed in triplicate using GC.

2.3.1. **Cultivation (same for both Experiments)**

The green microalga *Nannochloropsis oculata* is grown in three separate containers. The algae are grown on a 20" x 48" 100 W heating mat to keep the temperature constant at 25°C. To keep the illuminance at 30-35 lux, a fluorescent grow light set on a 12:12 hour light:dark photoperiod is used. Three 1.3 L/min air stones are linked to a 58 W, 75 L/min air pump to continuously aerate the algae. Due to the lack of a dissolved oxygen probe, an oxidation-reduction potential probe is used to measure the dissolved oxygen concentration because the reading is directly proportional to the amount of dissolved oxygen.

Prepare duplicates of the three 2 L f/2 Medium in a 2 L volumetric flask using the specified NaNO and NaH2PO2 • 2H2O concentrations. Pour the medium into two 2.5 L glass jugs. Inoculate each jug with 50 mL of algae suspension from the first batch of algae. The algae will grow in the cultivation medium for several weeks. When the absorbance of the algae suspension equals or exceeds the original value, proceed to the next step of harvesting algal biomass.
Harvesting experiments.

15

(25

i

is for All

3

10

1: 2

5

both Algal

be

situ Growth

transesterification

30

In

2.3.2. Harvesting Algal Biomass

The algae are harvested from suspension using the flocculation process, which employs a charged flocculant that interacts with the surface charge of the algae to produce flocs much larger in size than the algal cell size. In deionized water, a stock solution of 20 g/L Al2(SO4)3 is prepared and stored at room temperature. The precipitant is allowed to settle before using the transparent solution. Three beakers of algae suspension (250 mL each with 200 mL of algae suspension) are collected from each experimental group and placed on a stir-plate. Chatsungnoen et al. provided the methodology for the flocculation test. All beakers were treated at the same time as follows: (1) 6 mL of 20 g/L Al2(SO4)3 was added with a micropipette, (2) rapid mixing at 80 rpm for 2 minutes to disperse the flocculant, (3) gentle mixing at 50 rpm to allow flocculation, and (4) no agitation for 30 minutes to allow the flocs to settle. Also, in these processes of flocculation, calcium sulfate which showed efficiency in flocculating pathogens and heavy metals in our previous research on treating wastewater treatment. The other processes is TBD-functionalized Fe3 O4 silica for the removal of algae cells. The TBD-functionalized Fe3 O4 silica were created using a solvothermal method that involved depositing a polyethyleneimine (PEI) shell onto (Fe3O4) to add positive charges to their surfaces. The sizes of PEI-coated and uncoated (Fe3 O4) is were determined using TEM images to be 30–50 and 15–30 nm, respectively. Furthermore, TEM images show that the as-synthesized PEI-coated SPIONs have matrix-dispersed structures. Furthermore, DLS measurements revealed particle sizes of 87.93 and 158.9 nm for uncoated and PEI-coated TB functionalized Fe3 O4 silica.

2.3.3. In situ transesterification (same for both experiments)

Algal lipids must be extracted from harvested biomass and transesterified into FAMEs before biodiesel can be produced. Direct transesterification of lipids performed concurrently with lipid
extraction eliminates the need for an initial lipid extraction in a single step in situ transesterification. In situ transesterification also has the advantage of allowing for the quantification of all fatty acids as FAMEs, regardless of lipid extraction efficiency. This allows for a more accurate depiction of biodiesel potential.

Because each fatty acid directly correlates to one FAME, lipid composition can be determined without transesterification of its constituent fatty acids. However, due to the high elution temperatures of fatty acids, quantification of such fatty acids via GC is difficult. FAMEs, on the other hand, have a much lower elution temperature, making them much more suitable for GC Quantification

Wychen et al. provided the inspiration for the in-situ transesterification methodology. The method is performed on 5 to 10 mg of dried sample, extracting lipids in 0.2 mL chloroform: methanol (2:1, v/v) and simultaneously transesterifying the lipids in situ with an acid-catalyzed reaction using 0.3 mL HC1: methanol (0.6 M HCl in methanol) for 1 hr. at 85°C in the presence of 250 pg pentadecanoic acid methyl ester.

3. Data Analysis and discussion

It has been demonstrated that nutrient deprivation stresses algae during growth, resulting in a 14.56 percent higher concentration of monounsaturated fatty acids (MUFA) than nutrient-replete circumstances (table 2) Furthermore, the data show that a fourfold drop in nutrient concentration from H-NP culture to L-NP farming decreases the concentrations of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) by 8.79% and 5.77%, respectively (table 2). This observation supports the hypothesis. As a consequence, the hypothesis that Nannochloropsis growing in low nitrate and low phosphate conditions produces more MUFA and less SFA and PUFA is accepted. It has been demonstrated that nutrient deprivation stresses algae during growth, resulting in a 14.56 percent higher concentration of monounsaturated fatty acids (MUFA) than nutrient-replete circumstances (. Furthermore, the data show that a fourfold drop in nutrient concentration from H-NP culture to L-NP farming decreases the concentrations of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) by 8.79% and 5.77%, respectively (table 2). This observation supports the hypothesis. As a consequence, the hypothesis that Nannochloropsis growing in low nitrate and low phosphate conditions produces more MUFA and less SFA and PUFA is accepted. When the algae are stressed, their fatty acid profile is comparable to that of canola oil rather than soybean oil. As a result, the research objective has been attained.

Table 2 data proves the theory discussed in the hypothesis. The data in the stud confirm this assumption since the relative concentration of MUFA in L-NP is 30.26 percent higher than in H-NP, implying that more fatty acids are desaturated once to yield MU-FAs. Furthermore, the relative concentration of longer 18-carbon chain fatty acids in L-NP is 10.76% lower than in H-NP, indicating that fewer fatty acids are elongated. As a result, the evidence supports the theory that desaturation and elongation are interrelated.

The data acquired is statistically significant; nevertheless, this does not indicate practical relevance, which is one of the most crucial factors to examine. the MUFA concentration of L-NP is near to that of canola oil and considerably higher than that of soybean oil, indicating that the quality of L-NP biodiesel is equivalent to that of canola oil and much higher than that of soybean oil. The SFA and
PUFA concentrations in L-NP and canola oil are practically polar opposites, which influences the cetane number, cloud point, and oxidative stability of the biodiesel formed.

The cetane number, cloud point, and oxidative stability are used to assess how fatty acid concentration changes impact biodiesel quality. Comparing the quality of L-NP-based biodiesel, canola oil-based biodiesel, and soybean oil-based biodiesel to that of petroleum-based diesel. Analyses and comparisons of individual fatty acid types with present feedstocks are used to estimate the values of L-NP biodiesel. (1) L-NP biodiesel has a cetane number of roughly 62, which is significantly higher than all other cetane values, including petroleum-based diesel. This indicates that L-NP biodiesel would have the optimum combustion quality in a diesel engine, burning more cleanly and emitting less emissions while enhancing performance.

(2) The cloud point is a measurement of the fluidity of diesel and biodiesel fuel at low temperatures; a lower figure is preferred. L-NP biodiesel has a cloud point that is roughly equal to that of canola biodiesel and is equivalent to that of diesel. A critical comparison is that the cloud point of L-NP biodiesel is substantially lower than that of soybean biodiesel, suggesting the fact that L-NP biodiesel will be far more practical in the industry, and that the number of diesel vehicles capable of burning L-NP biodiesel will be significantly greater than the number of vehicles capable of burning soybean biodiesel.

3) The oxidative stability, which is a measure of the fuel's storage capacity, is the final and most essential indication of fuel quality. Milligrams of insoluble particles per 100 milliliters of fuel are the units of measurement for oxidative stability. As a result, a lower number is beneficial, as it correlates to a purer fuel. The National Renewable Energy Laboratory acquired the oxidative stability data for this study using ASTM D2274- Standard Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method). Under accelerated oxidizing conditions, D2274 assesses the inherent stability of middle distillate petroleum fuel. In the procedure, the fuel is aged at 95°C for 16 hours while oxygen is circulated through the sample at a rate of 3 L/H.

After cooling the sample to room temperature, the sample is filtered to extract the filterable insoluble. The higher values for canola and soybean biodiesel emphasize the disadvantages of present biodiesel feedstocks, which are much less stable than diesel. When comparing L-NP biodiesel to petroleum-based diesel, one of the most significant benefits of L-NP algal lipids is their similar oxidative stability measurements, attributing to a higher Diesel quality. Overall, the results are practically significant in the industry, and they have the potential to dramatically improve the quality of biodiesel produced when compared to present feedstocks. This is vital in the mission of developing a biodiesel that all Diesel engines can combust.

Both the total fatty acid concentration and the relative MUFA concentration must be optimized to maximize the practicality of developing algae biodiesel in an industrial field. This would boost both the quality and the quantity of the algal biodiesel. Previous study, on the other hand, determined that quality and quantity are incompatible, and researchers were obliged to pick between the two. Previously, all studies valued quantity above quality. However, this restricts the use of biodiesel in society. It is not a feasible solution to have a large supply of lower-quality fuel that cannot be used by many diesel engines. These observations on the relationship between quality and quantity were validated and confirmed in this study. As demonstrated in, a higher quantity of biodiesel corresponds to a lower MUFA concentration, resulting in a lower quality biodiesel.

To boost the efficiency of synthesizing algal biodiesel in an industrial field, both the total fatty acid concentration and the relative MUFA concentration must be maximized. Both quality and quantity of the algal biodiesel would be maximized in this manner. Prior studies, on the other hand, indicated that quality and quantity are incompatible, and compelling researchers to priorities one over the other.
Previously, all studies emphasized on quantity. However, this considerably lowers the usability of biodiesel in society. Having a large supply of lesser quality fuel that cannot be utilized by numerous diesel engines is not a feasible option. This research corroborated the relationship between quality and quantity. Choosing a larger quantity corresponds to a lower MUFA content, resulting in a lower quality biodiesel, as seen in both excellent quality and high quantity were attained in this research. Cultivating the algae at the L-NP nitrate and phosphate nutrient concentration and slightly starving the algae yields a high-quality biodiesel equivalent to petroleum-based diesel. L-NP algae biodiesel is compatible with all diesel engines. Most notably, as compared to all other biodiesel feedstocks, such high quality can be achieved without affecting functionality. While L-NP has low productivity that is 12.447 percent lower than Nannochloropsis grown in H-NP nutrient concentration (table 1), it nevertheless has more than 100 times the productivity of all current biodiesel feedstock (table 2).

Moreover, algae will be cultivated in vast pools near waste processing plants in an industrial field. There will be ample sunshine and air in this environment to stimulate algae development. As previously stated, algae are capable of filtering waste water while simultaneously increasing its productivity, making it twice as effective. In these conditions, algae will not only offer a high-quality feedstock for biodiesel, but it will also partially reduce the demand for major waste treatment facilities via chemical processes. This will alleviate society’s environmental impacts even further.

Table 1. The concentration of each identified fatty acids in mg/g oven dry weight after 32 days cultivation in L-NP, Baseline, and H-NP nutrient concentrations. For each, the mean (±SD) is given, n

<table>
<thead>
<tr>
<th>Nutrient Concentration</th>
<th>L-NP</th>
<th>Baseline</th>
<th>H-NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total FA Content</td>
<td>11.459</td>
<td>13.898</td>
<td>13.088</td>
</tr>
<tr>
<td>Saturated Fatty Acids (SFA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td>0.399 (0.015)</td>
<td>0.932 (0.014)</td>
<td>0.705 (0.023)</td>
</tr>
<tr>
<td>C18:0</td>
<td>3.0166 (0.104)</td>
<td>4.189 (0.073)</td>
<td>4.346 (0.067)</td>
</tr>
<tr>
<td>Σ SFA</td>
<td>3.416 (0.119)</td>
<td>5.121 (0.087)</td>
<td>5.052 (0.090)</td>
</tr>
<tr>
<td>Monounsaturated Fatty Acids (MUFA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:1</td>
<td>3.090 (0.095)</td>
<td>2.206 (0.065)</td>
<td>2.182 (0.057)</td>
</tr>
<tr>
<td>C18:1c</td>
<td>4.093 (0.131)</td>
<td>5.105 (0.058)</td>
<td>4.116 (0.077)</td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>7.183 (0.226)</td>
<td>7.311 (0.123)</td>
<td>6.298 (0.134)</td>
</tr>
<tr>
<td>Polyunsaturated Fatty Acids (PUFA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18:2</td>
<td>0.861 (0.018)</td>
<td>1.467 (0.091)</td>
<td>1.739 (0.120)</td>
</tr>
<tr>
<td>Σ PUFA</td>
<td>0.861 (0.018)</td>
<td>1.467 (0.091)</td>
<td>1.739 (0.120)</td>
</tr>
</tbody>
</table>

Table 2. The fatty acids composition relative to total fatty acid content after 32 days cultivation in L-NP,

<table>
<thead>
<tr>
<th>Nutrient Concentration</th>
<th>L-NP</th>
<th>Baseline</th>
<th>H-NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0</td>
<td>3.48%(0.02)d6.70%(0.05)</td>
<td>5.39%(0.03)</td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td>26.32%(0.07)d30.14%(0.13)</td>
<td>33.21%(0.36)</td>
<td></td>
</tr>
<tr>
<td>Σ SFA</td>
<td>29.81%(0.09)d36.85%(0.17)</td>
<td>38.60%(0.33)</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated Fatty Acids (MUFA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:1</td>
<td>26.97%(0.02)d15.87%(0.12)</td>
<td>16.67%(0.01)</td>
<td></td>
</tr>
<tr>
<td>C18:1c</td>
<td>35.71%(0.01)d36.74%(0.38)</td>
<td>31.45%(0.24)</td>
<td></td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>62.68%(0.01)d52.61%(0.25)</td>
<td>48.12%(0.24)</td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated Fatty Acids (PUFA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18:2</td>
<td>7.51%(0.08)d10.54%(0.43)</td>
<td>13.28%(0.57)</td>
<td></td>
</tr>
<tr>
<td>Σ PUFA</td>
<td>7.51%(0.08)d10.54%(0.43)</td>
<td>13.28%(0.57)</td>
<td></td>
</tr>
</tbody>
</table>

Baseline, and H-NP nutrient concentrations. For each, the mean (±SD) is given, n = 2.

For the first time, innovative iron-based nanoparticles were synthesized, characterized, and tested for
harvesting single and mixed algal cultures. Using a concentration of MNPs (CMNP) of 25 0.3 (std. dev = 0.08) mg, the tailor-made magnetic nanoparticles (MNPs; Fe-MNP-I and Fe-MNP-II) achieved a percentage algae harvesting efficiency (percent AHE) greater than 95 percent. L, mixing speed (Mspeed) of 120 2 (standard deviation = 0.10) rpm, short contact time (Ct) of 7 0.1 (standard deviation = 0.05) min, and separation time (SPt) of 3 0.1 (standard deviation = 0.09) min. The optimal harvesting conditions for Nannochloropsis were determined to be (CMNP = 40 0.4 (std. dev = 0.5) gMNPs. L, SPt = 2.5 0.4 (standard deviation = 0.1) min, Using surface response methodology, Mspeed = 145 3 (std. dev = 1.50) rpm and Ct = 5 0.3 (std. dev = 0.10) min. The Langmuir model better describes the adsorption behavior of the algae-Fe-MNP-I system, whereas both Langmuir and Freundlich models fit the adsorption behavior of the algae-Fe-MNP-II system. Nannochloropsis (SP.PL) (18.27 0.07 (std. dev = 0.19) mgDWC.mgparticles 1) had a higher maximum adsorption capacity than Chlorella vulgaris (C.v) (11.52 0.01 (std. dev = 0.34) mgDWC.mgparticles 1) and mixed algal culture (M.X) (17.20 0.07 (std. dev = 0.54) mgDWC. Electrostatic interaction controls the adsorption mechanism between MNPs and algal strains, according to zeta potential measurements.

<table>
<thead>
<tr>
<th>Oil source</th>
<th>Catalyst</th>
<th>1st step yield of FAMESes [%]</th>
<th>Catalyst</th>
<th>2nd total yield of FAMESes [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algae concentrate</td>
<td>H2SO4</td>
<td>20.2</td>
<td>TBD-Fe3O4@silica NPs</td>
<td>37.8</td>
</tr>
<tr>
<td>Algae concentrate</td>
<td>AlCl3</td>
<td>14.9</td>
<td>TBD-Fe3O4@silica NPs</td>
<td>26.2</td>
</tr>
<tr>
<td>Algae concentrate</td>
<td>Amberlyst-15</td>
<td>3.8</td>
<td>TBD-Fe3O4@silica NPs</td>
<td>4.0</td>
</tr>
<tr>
<td>Algae oil</td>
<td>H2SO4</td>
<td>20.1</td>
<td>TBD-Fe3O4@silica NPs</td>
<td>38.8</td>
</tr>
</tbody>
</table>

4. Conclusion

To thrive and prosper, the biodiesel industry requires high-quality biodiesel with a MUFA concentration of more than 60%. Until now, all biodiesel research, particularly algal biodiesel research, has concentrated on obtaining the highest amount of lipids and boosting biodiesel production. On the other hand, large amounts of biodiesel are pointless unless the quality of the biodiesel approaches that of petroleum-based fuel.

Unfortunately, the quality criteria for biodiesel produced from first and second-generation feedstocks are not nearly rigorous enough to ensure high-quality biodiesel by requiring a precise concentration of MUFA in the feedstock utilized. Because biodiesel made from soybean oil has a worse quality than petroleum-based diesel due to its higher viscosity and freezing point, it is improbable to be widely adopted since many engines are unable to efficiently combust low-quality biodiesel. The findings of this research present scientific statistics and evidence that could lead to more stringent standards and regulatory laws.

Canola oil stands for the top-quality biodiesel of almost any feedstock exploited in the United States due to its high MUFA content and lower SFA and PUFA content; yet it is not the most...
often used feedstock. It is because canola oil is in rising demand as a cooking oil. This disadvantage highlights that an effective feedstock must be cultivated primarily for the goal of producing biodiesel, rather than for agricultural objectives with biodiesel production as a byproduct.

A high-quality feedstock is significant logistically to increase the probability of biodiesel completely replacing diesel as a fuel in diesel engines. Furthermore, it is critical that this feedstock does not compete with the agricultural business for enormous expanses of fertile land. According to the results of this study, algae is an ideal option for this goal due to its extremely high productivity and lack of reliance on arable land.

The objective of this research has been to identify the ideal nutrient concentration for Nannochloropsis growth that will improve both the relative MUFA content of the algae, and hence the quality of biodiesel created, while also achieving high productivity. A scientific breakthrough was reached when it was recognized that nitrate and phosphate nutrient concentrations of 4.41 102 M and 1.81 105 M, respectively, should be applied in the algae cultivation medium to achieve a fine balance of enhancing biodiesel quality while retaining high efficiency.

The objective of this research has been to identify the most appropriate nutrient concentration for Nannochloropsis growth that will optimize both the relative MUFA content of the algae and hence the quality of biodiesel created, while also yielding high productivity. The revelation that a nitrate and phosphate fertilizer content of 4.41 102 M and 1.81 105 M should be applied in the algae growing medium to achieve a precise balance of boosting biodiesel quality while retaining high production was a scientific breakthrough.

When maintained in a medium with the specified nutrient content, the MUFA concentration of algae matches that of canola oil. Furthermore, the cetane number and oxidative stability are superior to those present biodiesel feedstocks, and in some instances, superior to even petroleum-based diesel. Most notably, the Nannochloropsis algae maintained excellent productivity even at this concentration. These properties distinguish algal biodiesel made by algae grown in nutrient-stressed circumstances as the best quality biodiesel currently available and the most ideal for large-scale production.

In conclusion, this study has identified one of the most critical and frequently disregarded areas of biodiesel production: the optimization of quality as well as quantity, by finding the ideal growth conditions of Nannochloropsis oculata for high quality and quantity biodiesel production. Algae, as a whole, is a high-quality, high-productivity feedstock for waste-processing. Furthermore, the algae accomplish this without the use of agricultural land. These results represent the development of algae biofuels, which are the biodiesel industry's future.

It was discovered that nanomaterials could stimulate microorganism metabolism, implying that including nanomaterials in cultivation could boost microalgae lipid production. Furthermore, the use of nanomaterials could improve the efficiency of lipid extraction while causing no harm to the microalgae. The results obtained in this study show that our TBD-functionalized Fe3 O4 silica nanoparticles could effectively convert algae oil to biodiesel with a maximum yield of 97.1 %. Additionally, TBD-Fe3 O4 silica nanoparticles act as an efficient algae harvester because of their adsorption and magnetic properties.
5. Ideas for future research

Future research could, for instance, look into how to reduce the cost of the manufacturing process while still being efficient and capable of producing high lipid concentrations. Such research could help to make algal biodiesel an ideal source of biodiesel fuel.

Acknowledgements

Specials thanks to our parents for the support, Dr. Walaa Aldosoki and for her inspiration that led to this idea, Dr. Sameh Abdel Hamid, Engineer; Tawfik Al ..And for our supportive and leading science coordinators Mrs. Sana ,Mr. Ammar Salah for their guide in our research journey. And our science teachers for answering our endless questions. and for our peer Rafeef Mauz for supporting us.
Bibliography