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Abstract: 

Thermally activated delayed fluorescence (TADF) chromophores have attracted significant 

attention because they can harvest singlets and triplets in organic light-emitting diodes (OLEDs), 

resulting in high external quantum efficiency (EQE). This work aims to use a data-driven machine-

learning model to predict the relationship between EQE and essential features of TADF-based 

OLEDs. The study uses a set of experimental data and applies various machine-learning models 

to analyze the relationship between EQE and the features of the device. The Random Forest model 

is found to have the highest accuracy for predicting EQE for non-doped TADF emitters. The 

importance of feature selection and its correlation with EQE is also analyzed, providing insight 

into how to select the best machine-learning model for rapid material screening and device 

optimization for non-doped TADF materials. 

Introduction: 

In recent years, machine-learning (ML) has appeared as an influential complement to 

computational calculations because of its ability to produce first-principle results at significantly 

lower cost promoting a screening of extensive areas of chemical space.1-5 It provides a relationship 

between the input variable to the output performance resulting in a prediction performance vis-a-

vis mapping relationships. ML models can be prepared on experimental data, which implies they 

can learn from the existing data. In this context, several ML models, e.g., supervised and 
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unsupervised algorithm, has documented a successful application in many areas of chemistry, i.e., 

homogeneous catalysis, excited state, heterogeneous catalysis, electrocatalysis, and organic 

electronics.6-13 Based on the experimental and ab initio data set, several research works have 

reported excellent ML models on the fast prediction of the band gap, evaluation of singlet-triplet 

energy gap, and fluorescence and phosphorescence rates in reference to the excited state 

properties.14-18 The examples are persistent and continue to be applications in various fields.19-22 

  Thermally activated delayed fluorescence (TADF) materials have been regarded as the most 

promising approach to harnessing 100% efficiency theoretically from the singlet and triplet exciton 

in organic electronics.23-29 In the TADF process, chromophores are first excited to the singlet state 

manifold and transferred to the triplet state through inter-system (ISC) crossing pathways.30 

Consequently, a reverse inter-system crossing mechanism (rISC) happens between the triplet and 

singlet state, followed by delayed fluorescence. In recent times, significant experimental efforts 

have been made to capitalize on higher EQE of over 30.7% by in-silico design of molecular 

configurations and device fabrications.31, 32 Nevertheless, the higher performance of TADF-based 

organic-light emitting devices and an in-depth understanding of material properties based on the 

features representing the generalized model still need to be improved. Therefore, a design principle 

with good descriptors is a prerequisite to enhance the modeling of TADF materials for efficiency 

enhancement.33, 34 In this context, researchers have started to apply the ML model to quantify the 

electronic properties to explore the new TADF emitters with the variation of structural 

modulations.35-37 Guided by the ML, significant progress has been achieved for device 

optimization with materials selection in applying organic solar cells. 

   Aspuru-Guzik and co-workers have developed an ML model for accurately predicting the rISC 

rate over the 1.6 million chromophores data set.38 Based on the virtual screening and first-principle 
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calculations, they have been able to predict efficient TADF materials with maximum EQE of 

~22%.38 Successful applications of ML approaches for the prediction of physical quantities of 

OLED materials directly promoted the evaluation of EQE values from the electronic properties of 

the host/guest composite.39 Chan et al. have shown a Random Forest model that could extract 

correlations between various features over the 304 blue phosphorescent OLED materials.40 Lee et 

al. have shown occupied and unoccupied energy level positions, singlet-triplet energy level 

splitting, and measured PLQY of guests can make an efficient prediction of EQE for the host/guest 

OLED design.41 Based on these features, the Random Forest model predicts average correlation 

coefficients of r2 = 0.85 and 0.74 for the training set and testing set, respectively.33, 41 With a 

slightly different approach to constructing the molecular structure and features, Troisi and co-

workers have reported several TADF emitters from the high-throughput virtual screening.42, 43 

Recently, it is reported that an ensemble-based learning approach could better predict EQE of guest 

chromophores used in the device.44 A complex relationship arises between the several features 

leading to the deviation of importance ranking among them. Nevertheless, quantifying the critical 

factors between the features and the EQE is challenging and hardly recognized. One of the possible 

reasons is that the features considered in the analyses might alter EQE independently. 

  In this work, experimentally available feature properties based on the 200 data sets are assembled 

for ML algorithms to screen out the crucial factors of controlling TADF properties.45 Based on the 

dataset, which is solely from the experimental work, ML model reveals the critical feature, i.e., 

photoluminescence quantum yield (PLQY) along with power efficiency (PE), current 

efficiency(CE), and emission wavelength, that yields particular attention for device fabrication. A 

systematic comparison between the several ML methods, i.e., Random Forest Regression (RF), 

Support Vector Machine (SVM), K- Nearest Neighbors (KNN), Gradient Boosting (GB), Extreme 
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Gradient Boosting (XGB), Light Gradient Boosting Machine (LGB), the Random Forest model 

and Gradient Boosting model demonstrates more satisfactory accuracy for the forecast of EQE for 

the non-doped TADF emitters. It is important to note that this work can not predict new trends of 

EQE of the TADF materials in line with reported work in this field, but improving the dataset and 

selecting the right features to lead more accurate predictions. This work highlights the potential of 

using machine learning to optimize the EQE of TADF materials. 

Results and Discussion 

Data visualization plays a crucial role in any ML model. This is why it is essential to examine the 

distribution of the data sets carefully. To gain a better understanding of the data, parity plots of the 

chosen features are presented in Figure 1. These plots provide a visual representation of the data 

and allow for easy identification of patterns and outliers. The current data set, which is based on 

available experimental results, contains a total of 200 data points. This information is provided in 

the supporting information file, which is available for further reference. The primary objective of 

the current ML model is to predict the EQE of the materials. To achieve this goal, the model uses 

seven key features as input variables. These features are carefully selected based on their relevance 

and importance to the prediction of EQE. In general, TADF emitters that have not been doped 

typically have an emission peak within a range of 420 nm to 650 nm, which corresponds to orange 

to red emissions. This is an interesting feature to note as it is indicative of the potential of these 

emitters to be used in device structures. Furthermore, the data analysis of non-doped TADF 

emitters has revealed that their EQE and PLQY typically falls between 8% to 20% and 40% to 

80% respectively. This range is considered promising, as it suggests that these emitters can be used 

effectively in device structures. Overall, these data indicate that TADF emitters have the potential 

to be highly effective in a variety of device structures, and further analysis is warranted. 
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Figure 1. Initial inspection of the data set using parity plot.  

Figure 2 presents a heat map of the Pearson correlation between various features from the studied 

data set, as determined by a simple statistical analysis. The heat map clearly shows that CE, PE, 

and PLQY  have a strong correlation with EQE. On the other hand, turn-on-voltage (Von), which 

is an important descriptor related to the stability of the device, appears to have a low correlation 

with EQE. Additionally, some of the features such as Peak, Tp(ηs), Td(µs) have low variance, 

indicating that the value of these features remains unchanged across the studied data points. 
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Manually determining the most important feature that correlates with EQE can be a difficult task. 

However, by using a data-driven ML algorithm, it is possible to identify the intrinsic features that 

govern EQE as prerequisites. In other words, the data-driven ML algorithm can help to extract the 

most informative features from the dataset, which is useful for predicting EQE.  

 

Figure 2.  Correlation matrix of the material and TADF factors influencing the EQE. The positive 

and high Pearson correlation coefficient values (r) shown in the plot implies the strong correlation 

between the variables.  
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Figure 3. Regression scatter plots of EQE values versus PLQY of the constructed data set. 

The computed Pearson's correlation coefficient (r) indicates only a slight correlation between 

PLQY and EQE, and no clear trend was identified using a simple statistical algorithm. As can be 

seen in the scattered plot in Figure 3, the relationship between PLQY and EQE is inversely 

proportional. For example, when the PLQY distribution is high, around 75%, the EQE distribution 

is minimal at around 15%. However, when the PLQY distribution is around 40%, the EQE 

distribution is at its maximum, around 5%. While some of the materials have higher efficiencies 

surpassing 25%, it is unexpected that the majority of the EQE distribution falls within the range of 

10%. This suggests that the current statistical model needs to be revised in order to find a more 

accurate predictive model for device efficiency based on the available experimental data points. 
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Therefore, it is necessary to use a machine-learning algorithm to construct better models for the 

prediction of EQE, based on simple features.  

 

Figure 4. Comparison of measured and predicted EQE by different ML algorithms on train and 

test sets; (a) Support Vector, and (b) K-NN (K = 3), (c) Random Forest. 

Theoretically, a highly accurate prediction is mapped onto the coefficient of determination (r2) 

value, which is pictorially closer to the red line as seen in Figure 4. Based on the data set, 

application of Radom Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors 

(KNN) model to evaluate the relationship exhibits a mixed performance matrices as shown in 

Table1. For the RF model, r2 of 0.99 with RMSE of 0.01 is obtained for the training set and r2 of 

0.83 with of RMSE of 7.16 is obtained for the testing set. In contrast, a very poor performance of 

matrices based on the SVM and K-NN (K =3) ML model is found. In SVM model, r2 of the train 

and test set arises at 0.64 and 0.36 with RMSE value of 16.12 and 28.40, respectively. The K-NN 

with the nearest neighbor of the K=3 regression model has the training/testing RMSE of 10.25/9.87 

with an r2 value of 0.78/0.74. The fitting r2 values demonstrate the satisfactory execution of the 

RF model based on the data set and shows a better performance rather than SVM and K-NN model.  

Table 1. Performance evaluation of different ML algorithm on predicting EQE on the training and 

testing data set. r2 and RMSE are evaluated as the mean over the 10-fold cross validation protocol.  
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ML model Data rR22 RMSE 

SVM Train (80%) 

Test (20%) 

0.64 

0.36 

16.12 

28.40 

K-NN ( K= 3)  Train (80%) 

Test (20%) 

0.78 

0.74 

10.25 

9.87 

RF Train (80%) 

Test (20%) 

0.99 

0.83 

0.01 

7.16 

GB Train (80%) 

Test (20%) 

0.99 

0.73 

0.02 

11.45 

XGB Train (80%) 

Test (20%) 

0.98 

0.82 

0.52 

7.65 

LGB Train (80%) 

Test (20%)  

0.95 

0.80 

2.13 

9.57 

   

Inspired by the success rate of the RF model in the current data set, ensemble based classification 

model are employed further over the studied data set. The performance of matrices is tabulated in 

Table 1. It is seen that Gradient Boosting (GB) model has shown better performance compared to 

other Boosting models in this data set as seen in Figure5. Based on the 10-fold cross-validation 

method, GB shows an impressive r2 value of 0.99 and 0.73 with a lower RMSE value of 0.02 and 

11.45 for the train and test set, respectively. In comparison to the GB model, XGB has achieved 

an r2 value of 0.98/0.82 and an RMSE of 0.52/7.65 for the train/test set. The LGB model also 

executed with an RMSE value of 2.13 and 9.57 for 10-fold cross-validation over the train set and 

test set, while the r2 value for the train and test set arises at 0.95 and 0.80.  Meanwhile, evaluation 
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of performance matrices of the different models shows that the GB model is preferable than any 

other Boosting algorithm both in training and in testing set.  

 

Figure 5. Comparison of true EQE and predicted values by different ML algorithms on training 

and test sets; (a) Gradient Boosting, (b) Extreme Gradient Boosting, (c) Light Gradient Boosting 

machine, algorithm.  

To get insight into the importance of features to predict the EQE of non-doped TADF emitters, the 

RF model is taken as a further features evaluation. Surprisingly, CE and PE are the most 

dominating factor for the EQE prediction with the highest relative importance score of ~0.30. 

While, PLQY and Peak place second and third rank with a score value of ~0.17 and ~0.07, 

respectively (see supporting information file). It is important to note that emission wavelength is 

a crucial feature for the prediction of PLQY which has a smaller effect on EQE prediction based 

on the RF model. Similarly, other features have a negligible impact. In addition to the feature 

correlation in the RF model, very similar trends are observed in the GB model (see supporting 

information file). Similarity performance in both RF and GB models stresses that ensemble 

learning would be a reliable approach for the data-driven modeling of organic electronics. 

Ensemble learning techniques, such as Random Forest and Gradient Boosting Regression, are 

characterized by their low bias and low variance properties. This means that they are able to 
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effectively capture the underlying patterns within the training data and have a reduced risk of 

overfitting, even when the size of the training set is relatively small. The Random Forest 

Regression algorithm is based on the principle of Bagging, while the Gradient Boosting Regression 

method follows the principles of Boosting. As a result of this, these ensemble techniques possess 

excellent generalization capabilities. 

Conclusions 

This contribution aims to use a data-driven framework to unbiasedly compare the experimental 

features of efficient TADF materials. Machine learning algorithms are used to analyze and model 

key characteristics controlling the EQE of a TADF device. The analysis shows that four features - 

PE, CE, PLQY, and emission wavelength - strongly correlate with EQE. The Random Forest and 

Gradient Boosting models show the best performance accuracy for predicting EQE for non-doped 

TADF emitters. Feature importance and correlation analysis are performed to identify the key 

factors for EQE prediction. The results suggest that ensemble-based learning can be used to 

identify promising non-doped TADF materials for further study and to understand the relationship 

between material properties and device performance. 

 

Computational Methods 

In this work, python programming language was used in the google-colab and scikit-learn 

packages has been employed for the simulation of all ML algorithms.46, 47 Total 200 data set points 

were collected from the literature and the entire data sets are given in supporting information file. 

During the model fitting, data sets were divided into 80% and 20% as a training and test data set 

and10-fold cross-validation was performed to evaluate all ML model. The success of the ML 
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model has been quantified by the measurement of the r2 i.e. regression score function and root-

mean square error (RMSE) value using the following equations: 

r2 = 1 −
∑ (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑛𝑛
𝑖𝑖=1 )2

 

             RMSE = �1
𝑛𝑛
∑ (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  

where Yi and yi represent the ith value of the measured experimental data set and ith value of the 

predicted data set based on ML model. 𝑌𝑌�  and n indicate the average value obtained from 

experimental data set, and total number of dataset points, respectively.  

Linear Regression is a fundamental technique that is utilized to establish a linear relationship 

between a set of predictor variables and a target variable (EQE) in a given dataset. However, this 

simple model can fall short in its ability to accurately capture the underlying patterns within the 

data, which is why more advanced methods are often employed to improve the predictions. One 

such method is the K-Nearest Neighbour Regression algorithm, which is a distance-based 

approach that attempts to map the features to the EQE by analyzing the closest training examples. 

Another powerful method is Support Vector Machine Regression, which uses a hyperplane to fit 

a model that can capture more complex, non-linear patterns. Furthermore, I employed a variety of 

ensemble models such as Random Forest Regression, Gradient Boost Regression, Extreme 

Gradient Boosting Regression, and Light Gradient Boosting Machine Regression, which are tree-

based models that leverage multiple decision trees and take an average of the predictions to 

improve the overall predictions. Additionally, I have provided the results from 100 cross-validated 

distributions of training and prediction RMSE for each of the algorithms applied. 
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