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Abstract

The vast size of chemical space necessitates computational approaches to

automate and accelerate the design of molecular sequences to guide experimental

efforts for drug discovery. Genetic algorithms provide a useful framework to

incrementally generate molecules by applying mutations to known chemical

structures. Recently, masked language models have been applied to automate the

mutation process by leveraging large compound libraries to learn commonly

occurring chemical sequences (i.e., using tokenization) and predict

rearrangements (i.e., using mask prediction). Here, we consider how language

models can be adapted to improve molecule generation for different optimization

tasks. We use two different generation strategies for comparison, fixed and

adaptive. The fixed strategy uses a pre-trained model to generate mutations; the

adaptive strategy trains the language model on each new generation of molecules

selected for target properties during optimization. Our results show that the

adaptive strategy allows the language model to more closely fit the distribution of

molecules in the population. Therefore, for enhanced fitness optimization, we

suggest the use of the fixed strategy during an initial phase followed by the use of

the adaptive strategy. We demonstrate the impact of adaptive training by

searching for molecules that optimize both heuristic metrics, drug-likeness and

synthesizability, as well as predicted protein binding affinity from a surrogate

model. Our results show that the adaptive strategy provides a significant

improvement in fitness optimization compared to the fixed pre-trained model,

empowering the application of language models to molecular design tasks.
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Introduction

The goal of rational drug design is to identify molecules with specified properties

associated with therapeutic value. Emerging infectious diseases (e.g. SARS-CoV-2

and the associated pandemic) highlight the need for rational design to accelerate

the discovery of drugs in response to novel protein targets [1, 2]. Computer aided

drug discovery (CADD) provides a set of tools to shorten the time and cost of

searching chemical space for new applications [2–7]. In addition to the development

of biophysical models and simulations traditionally associated with CADD [5–7],

much recent work has focused on using methods from machine learning (ML) and

artificial intelligence (AI) for molecular design [4, 5, 7–9].

The use of ML models in drug design has been enabled by the availability of large

compound libraries [10] and experimental datasets [11, 12] along with computa-

tional libraries for cheminformatics [13]. Within a design application, models gener-

ally serve one of two possibly overlapping roles, molecule generation and molecule

scoring. Generative models, such as variational autoencoders [8, 14] and generative

adversarial networks [15, 16], are capable of sampling new molecules from chemical

space based off a training set. Scoring models, on the other hand, take a molecule as

input and generate a prediction for a given property (e.g. protein binding affinity).

Through iterations of generation and scoring, searches over chemical space can be

performed to optimize a given property. The iterative process for optimization is

commonly referred to as a genetic algorithm [17].

Genetic algorithms provide a useful strategy for the design of molecular sequences

for drug discovery applications. To use a genetic algorithm, a representation for a

chemical sequence must be chosen along with a mutation operator to generate new

sequences. The mutation operator is then used to explore chemical space and se-

lection is performed according to a pre-defined fitness objective. Previous studies

have used genetic algorithms successfully for a range of drug discovery applica-

tions [18–22]. Furthermore, benchmark studies have shown that genetic algorithms

can achieve state-of-the-art results for molecule generation, comparing favorably to

recent machine learning techniques [19, 21].

Despite the success of genetic algorithms, the need to define an appropriate rep-

resentation for a chemical sequence and a mutation operator poses a challenge.

Previous studies have often utilized a simple representation by enumerating indi-
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vidual atoms and bonds within a molecule [18, 19, 22]. For mutation, hand-crafted

rules, such as add an atom, delete an atom, or create a ring, have been proposed and

used for large scale exploration of chemical space [18]. Additional studies have used

data mining techniques to discover commonly occurring multi-atom fragments and

used custom mutation operators to rearrange the specified fragments [20, 22–25].

However, specifying fixed rules for rearrangements limits the ability to adapt the

optimization procedure to a given task. Ideally, the mutation operator can be au-

tomatically inferred from the data, reducing the need for intuition and generalizing

the genetic algorithm approach to new molecular design tasks.

A related approach to molecule generation utilizes recurrent neural network

(RNN) based architectures such as the Long Short-Term Memory (LSTM). More

generally, statistical language-based models utilize different structural representa-

tions (e.g., molecular fingerprints) for generation and optimization based architec-

tures. For example, Segler et al. [26] had showed how a LSTM based models can be

used for transfer learning as they are fine-tuned on smaller population of molecules

to achieve activity towards certain biological target and thus be used to generate

novel set of molecules with desired activities. Along that direction, Arús-Pous et

al. [27] have carried out an extensive study on different RNN based models (such

as LSTM and Gated recurrent unit or GRU) using different Simplified Molecular

Input Line Entry System (SMILES) representations like canonical, randomized and

DeepSMILES versions. These different experiments designs are then tested on var-

ious size of molecule populations ranging from 10k to 1 million. In another recent

RNN based work [28] on two different string representation namely SMILES and

SELF-referencing Embedded Strings (SELFIES) demonstrated that RNN-based

language models can deliver powerful generative capabilities while learning com-

plex chemical rules of the molecular representations better than graph-based mod-

els. This observation is then further extended by the works of Awale et al. [29] when

they trained LSTM based generative models on different dataset including full size

drug molecules along with fragments and performed transfer learning to demon-

strate that fragments-based training is as capable as training on full size molecules

in producing efficient drug analogs. In related work on biogenic compounds Zheng

et al. [30] developed a quasi-biogenic molecule generator (QBMG) with GRU RNN

to generate quasi-biogenic compounds, libraries including stereochemistry and a de
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novo approach to produce focused libraries influenced by certain scaffold. On the

other hand, recent proposed methods based on conditional generative adversarial

networks [31] or GAN, offers an alternative strategy to take advantage of all in-

formation stored in compound-induced gene expression data to generate active-like

molecules. As their method requires no explicit activity or target annotation infor-

mation during training process, this can be used as a target-independent generalized

approach. But algorithm wise these types of models are very different than bidirec-

tional transformers-based models. Transformer based large language models (LLM)

are different than RNN or LSTM type language models. These transformer-based

molecule generators in recent times demonstrates how effective these LLMs could

be in designing novel molecules for different purposes as required. Bidirectional En-

coder Representations from Transformers (BERT) [32] based LLMs showed advan-

tages while tested on established benchmark models and dataset for downstream

tasks and gCT [33] (i.e., generative chemical Transformer) showed improved or

at-least on-par performance. Similarly generative pre-training (GPT) [34] models

delivers comparable performance in generating novel, valid and unique molecules

when tested on benchmark dataset with other models.

The present work i.e., a novel strategy about how to generate new population of

molecules resembling initial highly optimized molecules population by adapting the

original optimized properties while restricting from generating a generic broader

population distribution of new molecules, is a direct improvement over using fixed

pre-trained model as demonstrated. Under-the-hood our implementation is based

on Transformer architecture specially to be mentioned as Bidirectional Encoder

Representations from Transformers (BERT) [32]. This particular type of architec-

ture has shown proven advantage when used on established benchmark datasets

such as GuacaMol [21] for targeted benchmark tasks such as virtual screening and

QSAR applications by positively impacting subsequent downstream tasks, augment-

ing the constancy of learnt molecular representation and improved performance over

present dataset [32]. In related work using transformers model on chemical design-

ing, analogous architecture namely gCT [? ] (i.e., generative chemical Transformer)

also able to successfully generate valid new molecules that satisfy various required

target properties while showing either improved (or at-par in some cases) compared

to other benchmark reference models (such as MOSES models [35]). Also, on using



Blanchard et al. Page 5 of 22

related large language models (LLM) based architecture such as using generative

pre-training (GPT) [34] models we see results and performance that are comparable

to previously implemented machine learning algorithms to task like designing valid,

novel, and unique molecules when compared with MOSES [35] benchmark models

and datasets.

Inspired by the advances in natural language processing (NLP) [36], recent studies

have shown how to automate both the choice of representation for chemical structure

and the mutation operator [2, 37]. Starting with a text-based representation for

molecules, SMILES [38], the process of tokenization is used to determine commonly

occurring subsequences [39, 40]. The subsequences are stored as a vocabulary and

are used to map a given molecule sequence into a list of token IDs. Each token ID

may correspond to multiple characters (i.e., atoms and bonds) in a given molecule.

Once a tokenization scheme is defined, the molecule data can be used to train a

masked language model. In the training for such a model, tokens are randomly

masked and the loss is determined by how well the model reproduces the original

sequence when predicting the masked tokens [36].

Without the need for labels, unsupervised training of masked language models can

be performed on large compound libraries (e.g. Enamine REAL database) [10]. For

a given mask, a trained model will rank possible ways to complete the molecular se-

quence based on the vocabulary. Therefore, sampling from the top mask predictions

provides an automated mutation operator for a genetic algorithm [37]. Therefore, in

contrast to manually defining rules for mutations, masked language models provide

an automated solution for discovering both useful molecular representations (i.e.,

through tokenization) and mutations (i.e., through mask prediction) as shown in

Figure 1.

Although the use of a fixed pre-trained masked language model provides a useful

improvement over manually defined rules, the challenge to adapt molecule gener-

ation for different optimization tasks remains. For example, the dataset used for

model pre-training may have certain biases that limit structural rearrangements

useful for a new task. In order to overcome this difficulty, we here propose a novel

way to use language models within genetic algorithm optimization. Specifically, we

continue to train the masked language model on populations selected for a specified

fitness objective. By continued training on the selected population, we hypothesized
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Figure 1: Strategy for molecule optimization using a language model. An initial

population of molecules is used as input. The language model then generates

mutations using predictions for randomly placed masks. Molecules are ranked

according to a specified score and top performers are selected for another round

of mutations. Two approaches for the language model are investigated, fixed and

adaptive. For the fixed approach, the language model is pre-trained on a large

molecule dataset and it does not change during the optimization process. For

the adaptive approach, the language model is trained on the selected population,

which itself changes during the optimization process.

that the language model would adapt to new regions of chemical space useful for

optimization.

In order to test our hypothesis, we implemented two approaches for comparison -

fixed and adaptive. In the fixed approach, a pre-trained language model was used to

generate new molecules. In the adaptive approach, the pre-trained language model

is used as a starting point and further trained using mask prediction on a specified

population. Continued training is performed after each iteration of the genetic algo-

rithm to produce a new population of molecules. Our results show that the adaptive

approach produces data that more closely mimics the genetic algorithm population.

For optimization, the adaptive approach leads to increases in fitness for tasks using

both heuristic metrics and a ML surrogate model. Therefore, by introducing the

adaptive approach for automating mutations we broaden the capabilities of genetic

algorithm optimization for molecular design.
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Methods

Genetic Algorithm

In this work, we focused on the molecule generation capabilities of a masked lan-

guage model for fitness optimization. The source code for this work can be found at

https://code.ornl.gov/candle/mlmol in the adaptive-lm directory. As described in

previous work [37], a masked language model can be used as an automated muta-

tion operator within a genetic algorithm. Figure 1 shows the major components for

optimization. An initial population of molecules, in the form of SMILES strings are

used as input to the masked language model. Portions of a given SMILES string

are then randomly masked and the language model is used to predict mutations

to the original molecule. The generated molecules are then scored and selection

is performed based on the specified fitness to generate an optimized population.

The process of mutation and selection can be repeated for a specified number of

iterations.

For the language model acting as the mutation operator, we considered two differ-

ent training strategies, fixed and adaptive. In both cases, we started by pre-training

a masked language model on a dataset with billions of molecules (for further de-

tails on the dataset, see Methods Section - Molecule Data). For the fixed strategy,

weights of the pre-trained model were frozen, and the model was used only for in-

ference (i.e., mask prediction) as part of the genetic algorithm. For the adaptive

strategy, however, model training based on mask prediction was performed for one

epoch during each generation, with the current population of molecules used as the

training data. The language model, therefore, adapted to the patterns found in the

current population of the genetic algorithm before generating mutations.

To distinguish between the optimization performance of the fixed and adaptive

strategies, we utilized a relatively simple genetic algorithm with a (µ+ 5µ) survivor

selection scheme. Random uniform sampling with replacement was used to select µ

parents from the population, and only mutation was used to generate new molecules,

similar to our previous work [37]. A population size (µ) of 105 was used for all

reported genetic algorithm simulations. Mutations were generated by taking the top

5 predictions from the masked language model for a given set of masks. Validity and

uniqueness of the generated molecules were determined using rdkit [13] to convert

SMILES strings into canonical form. Only unique molecules were retained in the
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population. All reported results, except for example histograms, show the mean

over six repeated runs, with the standard deviation used to calculate error bars.

Example histograms show the distribution of metric values for a single run.

For mask generation, we considered the following different values for the mutation

rate (i.e., probability that a given token will be masked): [0.15, 0.30, 0.45, 0.60, 0.75].

In addition, three different types of mutation (replacement, insertion, and deletion)

were used. For each type, the number of mutations was determined using the bi-

nomial distribution for the appropriate number of tokens and mutation rate. A

minimum number of 1 mask per molecule was enforced. The locations for each mu-

tation within the molecule string were then randomly sampled. For replacement,

the sampled token locations were replaced with a mask. For insertion, one sampled

location was used to insert a mask before the given token. Similarly, for deletion, one

sampled location was used to delete the token following the mask. The remaining

sampled locations for both insertion and deletion were used for replacement.

Fitness in the genetic algorithm simulations was determined using the harmonic

mean of multiple molecular metrics. For example, for two metrics (x1 and x2), we

used a fitness F given by:

F (x1, x2) =
2x1x1
x1 + x2

(1)

By default, we used quantitative estimations of drug-likeness and normalized syn-

thesizability, similar to several previous studies on molecular optimization [15, 16,

41, 42]. To apply the genetic algorithm strategies on a more realistic drug discovery

scenario, we also utilized a recently released model for protein binding affinity pre-

diction to generate a molecular metric [43]. Specifically, we used a predicted affinity

score for the main protease of SARS-CoV-2. The resulting fitness was, therefore, the

harmonic mean of drug-likeness, synthesizability, and the predicted affinity score.

Molecule Data

Similar to previous work [2], we generated a molecule dataset starting from the

Enamine REAL database [10]. Using a data augmentation strategy with a previously

trained language model, we increased the number of molecules to approximately

3.6 ·1010. The strategy for data augmentation is inspired by the pre-training process

of the masked language models [2]. The pre-trained models are capable of designing
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novel, valid and unique molecules by structural rearrangements including combining

two molecules. But in order to be selected to augmented data the newly predicted

molecules also should be valid, unique and with synthesizability score to be more

than certain threshold (in the case 0.30). In preparation for model training, the

dataset was partitioned into 7.2 · 104 files, each with 5 · 105 molecules, stored using

the WebDataset [44] library for shared data loading during model training.

In addition to the constructed molecule dataset, we used two additional datasets

as the starting population for genetic algorithm simulations. First, we used a subset

of 105 molecules from QM9 [45, 46], referred to in the text and figures as GDB9.

Second, we selected the top 105 in terms of drug-likeness and synthesizability from

a hold-out set of the training data, referred to in the text and figures as Top.

These two datasets were used to show the difference in performance for the fixed

and adaptive strategies when starting from a relatively low and high initial fitness

respectively.

Language Model Training

Language model pre-training consists of two different stages, tokenization and mask

prediction. During tokenization, a vocabulary is generated for the model based on

commonly occurring subsequences within the SMILES string for molecules. Here,

we split the SMILES string during pre-processing based on punctuation, which is

the default splitting used for the BERT WordPiece tokenizer in the Hugging Face

transformers library [47]. The vocabulary for the WordPiece tokenizer was then

generated using the full 36 billion molecule dataset, with the vocabulary size set to

32,768.

For mask prediction, we used PyTorch and Hugging Face transformers along with

DeepSpeed for distributed training [48]. The transformer architecture that has been

used here for the molecule language model is BERT-based. This has approximately

109 million parameters that are learnable. We Pre-train the model with data par-

allelism technique where each of the GPUs is trained with the model on separate

data. As described in [2], we used data parallelism with DeepSpeed’s fused LAMB

optimizer to train at scale on a dataset of 3 billion molecules (i.e., the first 6000

partitions of the full molecule dataset). Pre-training was performed on the Sum-

mit supercomputer using 1000 nodes (6 Nvidia 16 GB V100 GPUs per node), with
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each partition of the dataset assigned to a single GPU. We used a batch size of 80

molecules with 3 gradient accumulation steps per GPU, leading to a global batch

size of 1.44 million. As stated the primary objective has been to develop a novel al-

gorithm that adapts to initial highly optimized dataset generating similar optimized

molecules and not to attain generic distribution of novel molecules or to predict in-

dividual molecules with some specific properties. For this purpose, we required a

dataset that will be as large as possible to begin with so that the pre-trained model

will benefit from learning through the largest chemical dataset available. More so

because having trained on as wide a distribution of training data as practicable, we

minimize the bias related to data being in or out of distribution in the results of

the adaptivity experiment. To have a model that is trained on this large and with

wide distribution of molecule dataset we used required large number of GPUs. But

once these models are trained, these pre-trained models can be used with one GPU

on small dataset for fine-tuning or downstream tasks as required. Pre-training was

done for 7 epochs, taking approximately 2.5 hours, and model validation was done

using mask prediction on a hold-out set of molecules. The best validation accuracy

occurred for the final epoch, and the resulting model weights were frozen for lan-

guage model mutations in the fixed strategy. The model weights were used as the

initial conditions for continued training in the adaptive strategy.

Mutation rate 0.15 0.30 0.45 0.60 0.75

% valid: GDB9 28 26 21 16 9.7

% novel: GDB9 25 24 20 15 9.2

% valid: TOP 29 31 26 15 4.7

% novel: TOP 26 29 25 15 4.7

Table 1: Valid and novel molecules generated by the language model.

To further validate the pre-trained model, we randomly sampled 100,000 molecules

with different mutation rates for each of the two data sets used throughout the

manuscript as initial populations. New molecules were generated by sampling

masked tokens using the Gumbel-softmax layer implemented in PyTorch. We com-

puted the percent of novel and valid molecules present in each population, showing

that increasing the mutation rate decreases the number of valid and novel molecules

(Table 1).
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Surrogate Model for Binding Affinity

In addition to the heuristic metrics for drug molecules, synthesizability and drug-

likeness, we also used an ML model to predict protein binding affinity for a given

target, in this case the main protease of SARS-CoV-2. As described in previous

work [2], the binding affinity model was generated by fine-tuning language models

for both molecule and protein sequences. The output of the model is the predicted

negative log (base 10) of the binding affinity. To convert to an affinity score for

fitness, we divided the prediction by 10 and clipped the resulting values between 0

and 1. Although the validation and discussion of this model are beyond the scope

of the current work, we chose it as an example to illustrate that our proposed opti-

mization strategies can be applied to find high-scoring candidates for both heuristic

and ML surrogate scoring models.

Results

Fixed and Adaptive Strategies for Molecule Generation

Before analyzing the impact of continued language model training on molecule

optimization, we considered a simpler task: generating mutations for a fixed set of

initial molecules. We implemented this task by using the genetic algorithm without

selection (i.e. the parent population remains unchanged). During each generation,

mutations are generated and the resulting unique molecules are saved for further

analysis. For the fixed strategy, mutations are generated from the fixed pre-trained

model, while for the adaptive strategy, the language model is trained for 1 epoch

on the initial data in each generation before producing mutations.

As shown in Figure 2, we used two different initial datasets, GDB9 [46] and Top

(see Methods Section - Molecule Data). The mutation rate determines the fraction

of tokens that are randomly masked during the generation of new molecules. Each

genetic algorithm simulation was run for 5 generations. For each run, the mean

drug-likeness and synthesizability scores were calculated for all unique molecules

produced in each generation outside of the original data. In terms of time there is

no significant difference in generating the molecules between these approaches. For

example, the fixed strategy is able to generate ∼308k valid molecules in ∼42 minutes

out of which ∼284k are novel molecules using one GPU while adaptive strategy is

able to generate ∼250k valid molecules out of which ∼212k molecules are novel
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molecules in ∼32 minutes. The histograms show an example of the distributions

for novel molecules with a metric value greater than zero produced from the final

generation of a single run with a mutation rate of 0.3.
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Figure 2: Distributions of molecules produced by a fixed and adaptive approach.

Two datasets (GDB9 and a custom dataset with the top scoring molecules for

drug-likeness and synthesizability) are used as training data. The fixed approach

(blue) generates a broad distribution of molecule scores, while the adaptive ap-

proach (orange) more closely mimics the training dataset. Notice that for initial

training data with low scores (i.e., GDB9), the adaptive approach produces lower

scores on average than the fixed approach, while the situation is reversed for ini-

tial training data with high scores (i.e., Top).

Due to the continued training of the language model, the mutations generated by

the adaptive strategy are much closer, in terms of synthesizability and drug-likeness,

to the initial population of molecules. This leads to a decrease in typical values for

the GDB9 dataset. However, for the Top molecules, the adaptive strategy produces

higher scores. This result can be intuitively explained, as the fixed model is biased

by the data used in pre-training (i.e., the pre-trained model will tend to produce

mutations that were prevalent in its training dataset). Continued training allows

the model to adapt to the new data, either GDB9 or Top.

Fixed and Adaptive Strategies for Molecule Optimization

For molecular optimization, the ability to adapt to a given initial dataset may or

may not be beneficial. In the case of initial data with relatively low scores, we expect

the adaptive strategy to slow down optimization, as the generated molecules with

have scores similar to the poor initial data. To test this hypothesis, we applied a
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genetic algorithm (GA) to optimize molecules for drug-likeness and synthesizability

starting from the GDB9 dataset. As shown in Figure 3, the adaptive strategy indeed

results in decreased fitness relative to the fixed strategy. This molecular optimization

task can be contrasted with the fixed strategy for molecular generation in Figure 2

as a baseline (shown in dark blue throughout Figure 3). The fitness plot shown over

five generations and histograms of the final molecular populations were generated

with a mutation rate of 0.3. Furthermore, the adaptive strategy produced less valid

molecules and less accepted molecules (i.e., molecules accepted into the population

during selection) for all mutation rates.

The same genetic algorithm applied to the Top dataset produces the opposite re-

sults in terms of fitness. Here, the adaptive strategy outperforms the fixed strategy

for all mutation rates considered. Interestingly, although the adaptive strategy pro-

duces fewer valid molecules for most mutation rates (similar to the GDB9 dataset),

it produces more accepted molecules in all cases. The decrease in valid molecules

can be understood as adaptive training leading to possible issues with over-fitting

the current dataset, rather than learning from the large compound library used for

pre-training. However, the increase in accepted molecules suggests that molecular

rearrangements learned from a high scoring dataset can improve fitness optimiza-

tion despite the decrease in valid molecules. The fixed and adaptive GA-based

approaches provided much higher fitness than random search despite generating a

similar number of valid molecules. For the following analysis, we fixed the mutation

rate to 0.3 and focused on ways to use the fixed and adaptive strategies together

for molecular design.

Combining Fixed and Adaptive Strategies

The trade-off in performance for the fixed and adaptive strategies, depending on the

distribution of values in the initial dataset, suggests that mixing fixed and adaptive

strategies may be useful for molecular optimization. For a new optimization task, a

previously optimized dataset will likely not exist to serve as an initial population.

In many cases, generating a reasonably optimized dataset may be the entire goal

of applying the optimization procedure. Therefore, we assume that the case with

poorly optimized initial data, similar to GDB9, is more representative of a typical

molecular design problem. In this case, our results have shown that the fixed strategy
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Figure 3: Optimization of molecules for drug-likeness and synthesizability pro-

duced by a fixed language model, adaptive language model, or fixed language

model without a genetic algorithm based optimization scheme. Two datasets

(GDB9 and a custom dataset with the top scoring molecules for drug-likeness

and synthesizability) are used as initial data. In the Fitness vs Generations sub-

plots, the y-axis is the average fitness of the population over six runs. The related

standard deviations are small compared to the mean values in the order of 0.1%-

0.2%. The fixed approach (blue) results in a faster increase in fitness, along with

greater valid and accepted molecules for the GDB9 dataset. For the top dataset,

however, the adaptive approach leads to a faster increase in fitness along with

greater accepted molecules. Both the adaptive and fixed approaches outperform

the baseline of a fixed language model without the genetic algorithm. The his-

tograms show synthesizability and drug-likeness of the final population after six

generations for each approach.

outperforms the adaptive strategy for optimization. However, as the fitness of the

population increases, we expect that the adaptive strategy may provide a better

alternative to optimize fitness.

To test this hypothesis, we implemented various schedules for combining the fixed

and adaptive strategies. As show in Figure 4, the fixed strategy was used initially

and then replaced by the adaptive strategy after a specified number of generations.
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As expected, the optimal strategy involves a combination of the two strategies,

with five generations of fixed followed by 20 generations of adaptive. Interestingly,

although the purely adaptive strategy (orange) increases much more slowly than

the purely fixed strategy (blue), adaptive overtakes fixed in terms of fitness after

approximately 15 generations. This suggests that the difficulties associated with

fitting more closely to a poor initial dataset can be overcome with the ability to

adapt to the population as fitness increases.
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Figure 4: Combining fixed and adaptive approaches during optimization. The

fixed approach is used during optimization for 25 epochs. For comparison, the

adaptive approach is used starting from the output population of the fixed ap-

proach at different generations. The highest fitness is achieved in the case where

the adaptive approach is used after 5 epochs of the fixed approach. In the Fitness

vs Generations subplots, Y-axis is average fitness of the and calculated as mean

over six runs with standard deviations in the order of 0.1%-0.2% of mean value.

Notice that the adaptive approach starting from the same initial data as the

fixed approach achieves a higher fitness after approximately 15 epochs.

Molecular Optimization Using a Surrogate Model

All of the results we have shown so far have used heuristic functions to score

molecules (i.e., synthesizability and drug-likeness scores). However, molecular opti-

mization applications may involve additional ML-based surrogate models for scor-

ing. For example, a ML model may be trained on a limited experimental dataset
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in order to search for molecules with related properties. Here, we use a previously

trained surrogate model, which is available for download [43], developed to predict

binding affinity for a given protein and molecule. We fix the protein sequence to the

main protease of SARS-CoV-2, as described previously [2], and generate a normal-

ized affinity score to use in fitness calculations. During the evaluation of surrogate

model for predicting binding affinity for a given protein and molecule, that is also

then used in calculating fitness function, the cost of computation increased because

the large population size. Due to long runtimes with the surrogate model, a given

genetic algorithm simulation was split into multiple sequential jobs, with each job

running for five generations. Upon restarting, the model weights were initialized to

the fixed pre-trained model.

Building off the results for optimization with heuristic metrics, we compare two

optimization schedules. We first apply the fixed strategy for five generations. This

is followed by the adaptive strategy for 20 generations, with the continued fixed

strategy for comparison. As shown in Figure 5, the adaptive strategy results in

a substantial increase in fitness over the fixed strategy for optimization with the

surrogate model. By comparing the histograms for synthesizability, drug-likeness,

and affinity score, we determined that the increase in fitness values was primarily

the result of increases to the affinity score, suggesting that the adaptive strategy

is particularly useful for optimizing the ML scoring model. We also show examples

of molecules with different values for the three metrics used during fitness opti-

mization. Beyond generating molecules with high values for all three metrics, the

examples show how changes in the chemical structure for a family of molecules

result in trade-offs amongst synthesizability, drug-likeness, and affinity score.

Discussion

Sequence-Only Models for Drug Design

The models presented in this work for both molecule generation and scoring rely only

on the molecular sequence (i.e., the SMILES is the only model input). A sequence-

only approach is in contrast to ML models that utilized many local and global

features (e.g. molecular fingerprints) [3]. Simulation and modeling approaches out-

side of ML, such as molecular dynamics and docking, use the full three-dimensional

structures of both the protein and molecule to predict binding affinity [5]. The pri-
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Figure 5: Fixed and adaptive approaches to optimize fitness given by the har-

monic mean of synthesizability, drug-likeness, and affinity score. Changing to the

adaptive approach after 5 generations results in an increase in fitness as shown

by the histograms for drug-likeness and affinity score. The histograms were gen-

erated from the final population for the runs with the highest fitness for fixed

and adaptive approaches. In the Fitness vs Generations subplots, Y-axis denotes

average fitness of the population and plotted as mean over six runs. The related

standard deviations are in the order of 0.1%-0.2% of the mean values. Sample

molecules with similar chemical structures are shown for the adaptive approach.

Mutations proposed by the language model show how modifications result in

changes in the metrics used to calculate fitness.

mary strength and weakness, therefore, of sequence-only models is the simplicity of

the model input. By using SMILES, the model has no direct information concern-

ing geometry or chemical properties. However, SMILES enables the model to be

used to train and make predictions on data without known three dimensional struc-

tures or previously calculated chemical properties, enabling searches and screening

over large portions of chemical space. Furthermore, sequence-only models have been

shown to compare favorably to more traditional approaches with manually defined

features [49–51].

Molecule Generation through Mutations

In this work we have considered molecule generation for design using a language

model to generate mutations. This strategy differs from other approaches to develop
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generative models, such as variational autoencoders [14, 52] and generative adver-

sarial networks [15, 16]. The mutation strategy is dependent on an original molecule

in which certain subsequences are changed rather than generating an entire molecule

by sampling from a latent space or noise distribution. Although mutation relies upon

an original molecule, and thus limits the amount of chemical space accessible for a

given round of molecule generation, it has multiple benefits. First, mode collapse

should not in principle present a problem for molecule generation through muta-

tion. Because mutations are sampled from each molecule in the population, the full

training set is represented in each generation of generated molecules. Second, each

round of mutations can be manually inspected along with the scores for each respec-

tive molecule, enabling a user to better understand the types of mutations being

generated and their impact on fitness. Furthermore, through multiple iterations of

mutations and selection, large regions of chemical space can be explored [18], even

though a single iteration remains close to the original data.

Adaptive strategy

As mentioned earlier the masked language models enable us to attain two major

design targets - 1) discovering useful molecular representation through tokenization

and 2) injecting mutation through masking. In this work our primary objectives are

- firstly, given a highly optimized dataset available for initial dataset whether we

could devise a certain novel way to generate newer dataset that also guarantees to

be optimized in similar fashion. Towards that goal we develop an effective algorithm

that overcomes the challenges to generate new set of molecules from an optimized

dataset through necessary molecular reconstruction for performing particular dif-

ferent optimization tasks while simultaneously restricting from attaining a generic

broader population distribution. In other words, we intend to demonstrate a novel

way that will get rid of the certain biases that obstructs necessary structural re-

arrangements during mutation process, automatically adapt the required chemical

region from the original population required for specific user-defined new tasks so

that a certain population distribution can be produced. Secondly the other goal

of the work is to generate a new population of molecules that are more similar

in nature to the original highly optimized data than finding few individual novel

molecules with certain specific properties. Together fulfilling both of the above ob-
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jectives means the improvement that our new strategy offers will be to adapt to

specific highly optimized datasets for generating novel molecules that are able to

perform highly optimized tasks and be prevented from a broader generic distribu-

tion.

Conclusions

Masked language models coupled with genetic algorithms provide a useful frame-

work for molecular optimization. During tokenization and pre-training, the model

determines commonly occurring chemical sequences and rearrangements that can

be leveraged for molecule generation through mutations. Furthermore, the language

model can be refined using continued training on populations of molecules selected

for desired properties. Here, we have shown that the continued training of a lan-

guage model during genetic algorithm optimization provides a powerful approach

to search for molecules according to both heuristic and ML model scoring functions.

Models pre-trained on large compounds libraries serve as a useful starting point for

both initial optimization from a poorly optimized dataset and initial weights for

continued training.

Availability of data and materials

The source code for this work can be found at https://code.ornl.gov/candle/mlmol in the adaptive-lm directory.
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22. Lameijer, E.W., Kok, J.N., Bäck, T., Ijzerman, A.P.: The molecule evoluator. An interactive evolutionary

algorithm for the design of drug-like molecules. Journal of Chemical Information and Modeling 46(2), 545–552

(2006). doi:10.1021/ci050369d

23. Nicolaou, C.A., Apostolakis, J., Pattichis, C.S.: De novo drug design using multiobjective evolutionary graphs.

Journal of Chemical Information and Modeling 49(2), 295–307 (2009). doi:10.1021/ci800308h

24. Lameijer, E.W., Kok, J.N., Back, T., Ijzerman, A.P.: Mining a chemical database for fragment co-occurrence:

Discovery of ”chemical clichés”. Journal of Chemical Information and Modeling 46(2), 553–562 (2006).

doi:10.1021/ci050370c

25. Schneider, G., Lee, M.L., Stahl, M., Schneider, P.: De novo design of molecular architectures by evolutionary

assembly of drug-derived building blocks. Journal of Computer-Aided Molecular Design 14(5), 487–494 (2000).

doi:10.1023/A:1008184403558

26. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery

with recurrent neural networks. ACS Central Science 4(1), 120–131 (2018). doi:10.1021/acscentsci.7b00512.

1701.01329
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