
QD3SET-1: A Database with Quantum Dissipative1

Dynamics Data Sets2

Arif Ullah1, Luis E. Herrera Rodrı́guez2, Pavlo O. Dral1,*, and Alexei A. Kananenka2,*
3

1State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and4

Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen5

University, Xiamen 361005, China6

2Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States7

*corresponding author(s): Pavlo O. Dral (dral@xmu.edu.cn) and Alexei A. Kananenka (akanane@udel.edu)8

ABSTRACT9

Simulations of the dynamics of dissipative quantum systems utilize many methods such as physics-based quantum, semiclassi-
cal, and quantum-classical as well as machine learning-based approximations, development and testing of which requires
diverse data sets. Here we present a new database QD3SET-1 containing eight data sets of quantum dynamical data for
two systems of broad interest, spin-boson (SB) model and the Fenna–Matthews–Olson (FMO) complex, generated with two
different methods solving the dynamics, approximate local thermalizing Lindblad master equation (LTLME) and highly accurate
hierarchy equations of motion (HEOM). One data set was generated with the SB model which is a two-level quantum system
coupled to a harmonic environment using HEOM for 1,000 model parameters. Seven data sets were collected for the FMO
complex of different sizes (7- and 8-site monomer and 24-site trimer with LTLME and 8-site monomer with HEOM) for 500–879
model parameters. Our QD3SET-1 database contains both population and coherence dynamics data and part of it has been
already used for machine learning-based quantum dynamics studies.
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Background & Summary11

The simulation of the inherently quantum-mechanical dynamics underlying charge, energy, and coherence transfer in the12

condensed-phase is one of the most difficult challenges for computational physics and chemistry. The exponential scaling of the13

computational cost with system size makes the quantum-mechanically exact simulations of such processes in complex systems14

infeasible. With the exception of a few model Hamiltonians whose form makes the numerically exact quantum-dynamics15

simulations possible, any simulation of general condensed-phase systems must rely on approximations.1–28 Data-driven16

machine learning (ML) methods for quantum dynamics emerged as attractive alternative to the physics-based approximations17

due to their low computational cost and high accuracy.29–46 Development and testing of new simulation methodologies, both18

physics- and ML-based, would be greatly facilitated if high-quality reference quantum-dynamics data for a diverse set of19

quantum systems of interest were available.20

Here we present a QD3SET-1 database, a collection of eight data sets of time-evolved population dynamics of the21

two systems: spin-boson (SB) model and the Fenna–Matthews–Olson (FMO) light-harvesting complex. The data sets are22

summarized in Table 1. The SB model describes a (truncated or intrinsic) two-level quantum system linearly coupled to a23

harmonic bath.47, 48 The physics of both the ground state and the dynamics of the SB model is very rich. It has been a continuous24

object of study during the past decades. SB has become a paradigmatic model system in the development of approximate25

quantum-dynamics methods and, nowadays, it is becoming a popular choice for the development of ML models.30, 33, 40
26

The FMO system has become one of the most extensively studied natural light-harvesting complexes.49–55 Under physio-27

logical conditions, the FMO complex forms a homotrimer consisting of eight bacteriochlorophyll-a (BChla) molecules per28

monomer. The biological function of the FMO trimer is to transfer excitation energy from the chlorosome to the reaction center29

(RC).56 An interest in this light-harvesting system sparked when two-dimensional electronic spectroscopy experiments detected30

the presence of quantum coherence effects in the FMO complex.57–59 These observations triggered intense debates about the31

role this coherence might play in the highly efficient excitation energy transfer (EET).32

Early studies of the FMO complex considered only seven-site FMO models comprising of BChla 1–7. Until BChla 833

was discovered, BChla 1 and 6 were both assumed to be possible locations for accepting the excitation from the chlorosome34

because they are believed to be the nearest pigments to the antenna which captures the sunlight.60–62 From there, the energy is35

subsequently funneled through two nearly independent routes: from site 1 to 2 (pathway 1) or from site 6 to sites 7, 5, and 436

(pathway 2). The terminal point of either route is site 3, where the exciton is then transferred to the RC.63
37

Ever since the discovery of the eighth BChla, the role of this pigment in the EET has been extensively investigated.53, 63–70
38



In particular, it was shown that while the population dynamics of the eight-site FMO model is markedly different from a39

seven-site configuration, the EET efficiencies in both models were predicted to remain comparable and very high.63 BChla 840

has also been suggested as possible recipient of the initial excitation.41

The dynamics of the FMO model has been a subject of numerous computational studies primarily focusing on understanding42

the role of the protein environment on the efficiency of EET (see e.g., Refs. 71–74). Numerical simulations typically employ43

one of the several parameterized or fitted into the experimental data FMO model Hamiltonians that differ in the BChla excitation44

energies and the couplings between different BChla sites.49, 56, 75–79 Simulations of the full FMO trimer containing 24 BChl45

have also been performed.80, 81
46

Reported in this Data Descriptor a QD3SET-1 database contains seven data sets of time-evolved population dynamics of47

FMO models with different system Hamiltonians and initial excitations for several hundreds of bath and system-bath parameters.48

Hierarchy of equations of motion (HEOM) approach5, 7 was used to simulate the population dynamics of SB and FMO models,49

in one of the seven FMO data sets. HEOM is a numerically exact method that can describe the dynamics of a system with a50

non-perturbative and non-Markovian system–bath interaction. The high computational cost of HEOM, however, limits the51

number of FMO simulations that can be performed with this method. To generate other six FMO data sets, an approximate52

method—local thermalizing Lindblad master equation (LTLME)82, 83 was used.53

Some of our data was already used in previous studies developing and benchmarking ML models for quantum-dynamics54

simulations.30–33 Here we regenerate one of the data sets to augment with more data and provide many new data sets generated55

from scratch (Table 1). To facilitate their use, we organize the data sets in a coherently formatted database and provided56

metadata and extraction scripts. We expect our Database that accompany this Data Descriptor will serve as valuable resources57

in the development of new quantum-dynamics methods.58

Methods59

SB data set60

This data set is re-generated with the same settings and the same parameters as in on our previous SB data set33 in order to61

include all the elements (populations and coherences) of the system’s reduced density matrix (RDM). The populations and62

population differences were published and used before.30, 33 Below we provide a brief summary for self-containing presentation63

of the data set.64

Spin-boson model65

The spin-boson model comprises a two-level quantum subsystem (TLS) coupled to a bath of harmonic oscillators. The
Hamiltonian has the following standard system-bath form: Ĥ = Ĥs + Ĥb + Ĥsb. The Hamiltonian of the TLS in the local (or
site) basis {|+⟩, |−⟩} is given by (ℏ=1)

Ĥs = ε (|+⟩⟨+|− |−⟩⟨−|) + ∆(|+⟩⟨−|+ |−⟩⟨+|) , (1)

where ε is the so-called energetic bias and ∆ is the tunneling splitting. The harmonic bath is an ensemble of independent
harmonic oscillators

Ĥb =
Nb

∑
j=1

(
p̂2

j

2m j
+

1
2

m jω
2
j x̂2

j

)
, (2)

where {x̂ j} and {p̂ j} are the coordinates and momenta, respectively, of Nb independent harmonic bath modes with masses
{m j} and frequencies {ω j}. The TLS and bath are coupled through the additional term

Ĥsb =−
Nb

∑
j=1

c j x̂ j (|+⟩⟨+|− |−⟩⟨−|) , (3)

where {c j} are the coupling coefficients.66

The effects of the bath on the dynamics of TLS are collectively determined by the spectral density function84

J(ω) =
π

2

Nb

∑
j=1

c2
j

m jω j
δ (ω −ω j). (4)

In this work we choose to employ the Debye form of the spectral density (Ohmic spectral density with the Drude–Lorentz
cut-off)85

J(ω) = 2λ
ωγ

ω2 + γ2 , (5)
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where λ is the bath reorganization energy, which controls the strength of system-bath coupling, and the cutoff frequency67

γ = 1/τc (τc is the bath relaxation time).68

All dynamical properties of the TLS can be obtained from the RDM

ρ̃αβ (t) = Trb⟨α|e−iĤt/ℏ
ρ̂(0)eiĤt/ℏ|β ⟩, (6)

where α,β ∈ {|+⟩, |−⟩}, ρ̂ is the total density operator, and the trace is taken over bath degrees of freedom. For example,69

the commonly used in benchmark studies population difference is obtained from the RDM as follows: p+(t)− p−(t) =70

ρ̃++(t)− ρ̃−−(t).71

The initial state of the total system is assumed to be a product state of the system and bath in the following form

ρ̂(0) = ρ̂s(0)ρ̂b(0). (7)

In Eq. (7) the bath density operator is an equilibrium canonical density operator ρ̂b(0) = e−β Ĥb/Trb

[
e−β Ĥb

]
, where β =72

(kBT )−1 is the inverse temperature and kB is the Boltzmann constant. The initial density operator of the system is chosen to be73

ρ̂s(0) = |+⟩⟨+|. These conditions corresponds to instantaneous photoexcitation of the subsystem.74

Data generation with spin-boson model and the hierarchy equations of motion approach75

The data set for the spin-boson model was generated as described previously.33 We also summarize it below. The following76

system and bath parameters were chosen: ε̃ = ε/∆ = {0,1}, λ̃ = λ/∆ = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}, γ̃ =77

γ/∆ = {1,2,3,4,5,6,7,8,9,10}, and β̃ = β∆ = {0.1,0.25,0.5,0.75,1}, where the tunneling matrix element ∆ is set as an78

energy unit. For all combinations of these parameters the system’s RDM was propagated using HEOM approach implemented79

in QUTIP software package.86 The total propagation time was tmax∆ = 20 and the HEOM integration time-step was set to80

dt∆ = 0.05. In total, 1,000 of HEOM calculations, 500 for symmetric (ε/∆ = 0) and 500 for asymmetric (ε/∆ = 1) spin-boson81

Hamiltonian were performed. The data set contains a set of RDMs from t∆ = 0 to tmax∆ = 20, saved every dt∆ = 0.05, for82

every combination of the parameters (ε̃, λ̃ , γ̃, β̃ ) described above.83

Fenna–Matthews–Olson complex data sets84

In this section we first describe the general theory behind the FMO model Hamiltonian and later for each data set we provide85

specific technical details. See also Table 1 for an overview of each data set.86

FMO model Hamiltonian87

The FMO complex in this work is described by the system-bath Hamiltonian with the renormalization term Ĥ = Ĥs + Ĥb +
Ĥsb + Ĥren. The electronic system is described by the Frenkel exciton Hamiltonian

Ĥs =
Ne

∑
n=1

En|n⟩⟨n|+
Ne

∑
n,m=1,n̸=m

Vnm|n⟩⟨m|, (8)

where |n⟩ denotes that only the nth site is in its electronically excited state and all other sites are in their electronically ground
states, En are the transition energies, and Vnm is the Coulomb coupling between nth and mth sites. The couplings are assumed
to be constant (the Condon approximation). Note that the overall electronic ground state of the pigment protein complex |0⟩
is assumed to be only radiatively coupled to the single-excitation manifold and as such it is not included in the dynamics
calculations. In analogy with the SB model the bath is modeled by a set of independent harmonic oscillators. The thermal bath
is coupled to the subsystem’s states |n⟩ through the system-bath interaction term

Ĥsb =
Ne

∑
n=1

Nb

∑
j=1

cn j x̂ j|n⟩⟨n|, (9)

where each subsystem’s state is independently coupled to its own harmonic environment and cn j are the pigment-phonon88

coupling constants of environmental phonons local to the nth BChla.89

The FMO model Hamiltonian contains a reorganization term which counters the shift in the minimum energy positions of
harmonic oscillators introduced by the system-bath coupling. In the case that each state |n⟩ is independently coupled to the
environment the renormalization term takes the following form

Ĥren =
Ne

∑
n=1

λn|n⟩⟨n|, (10)
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where λn = ∑ j c2
n j/(2m jω

2
j ) is the bath reorganization energy. The bath spectral density associated with each electronic state is90

assumed to be given by the Lorentz–Drude spectral density (Eq. 5).91

Analogously to the SB data set the initial state of the total system is assumed to be a product state of the system and bath.92

The initial electronic density operator given by ρ̂s(0) was varied as described below. The bath density operator is taken to be93

the equilibrium canonical density operator.94

FMO-Ia, FMO-Ib, and FMO-II data sets: 7-site FMO models with the local thermalizing Lindblad master equation approach95

We generated data sets for the two 7-site system (Ne = 7) Hamiltonians. FMO-I data set was generated for the system
Hamiltonian parameterized by Adolphs and Renger49 and given by (in cm−1)

Hs =



200 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 320 30.8 8.2 0.7 11.8 4.3

5.5 30.8 0 −53.5 −2.2 −9.6 6.0
−5.9 8.2 −53.5 110 −70.7 −17.0 −63.6
6.7 0.7 −2.2 −70.7 270 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 420 39.7
−9.9 4.3 6.0 −63.3 −1.3 39.7 230


, (11)

FMO-Ia data set comes directly from our previous studies31, 32 and FMO-Ib data set was generated here for a broader parameter96

space as described below.97

FMO-II data set was generated for the Hamiltonian parameterized by Cho et al.76 which takes the following form (in cm−1)

Hs =



280 −106 8 −5 6 −8 −4
−106 420 28 6 2 13 1

8 28 0 −62 −1 −9 17
−5 6 −62 175 −70 −19 −57
6 2 −1 −70 320 40 −2
−8 13 −9 −19 40 360 32
−4 1 17 −57 −2 32 260


. (12)

The diagonal offset of 12210 cm−1 is added to both Hamiltonians. Each site is coupled to its own bath characterized by the98

Drude–Lorentz spectral density, Eq. 5, but the bath of each site is described by the same spectral density.99

For FMO-Ia data set, the following spectral density parameters and temperatures were employed: λ = {10, 40, 70, . . . , 310}100

cm−1, γ = {25, 50, 75, . . . , 300} fs rad−1, and T = {30, 50, 70, . . . , 310} K. For FMO-Ib and FMO-II data sets, the spectral101

density parameters and temperatures were: λ = {10, 40, 70, . . . , 520} cm−1, γ = {25, 50, 75, . . . , 500} cm−1, and T = {30, 50,102

70, . . . , 510} K.103

For FMO-Ia, FMO-Ib, and FMO-II data sets, the farthest-point sampling87 was employed to select the most distant points104

in the Euclidean space32 of parameters which typically more efficiently covers relevant space compared to random sampling.87
105

We choose the top 500 (most distant) combinations of (λ , γ , T ) based on farthest-point sampling. For each selected set of106

parameters the system RDM was calculated using the local thermalizing Lindblad master equation (LTLME) approach82, 83
107

implemented in the QUANTUM_HEOM package.83, 88 Two subsets of the data set were generated, one for the initial electronic108

density operator ρ̂s(0) = |1⟩⟨1| corresponding to the initial excitation of site-1 and the other one for the initial density operator109

ρ̂s(0) = |6⟩⟨6| which corresponds to the initial excitation of site-6. In each case, 500 RDM trajectories were generated. The110

data set contains both diagonal (populations) and off-diagonal (coherences) elements of the RDM on a time grid from 0 to 1 ns111

(in the case of FMO-Ia) and 0 to 50 ps (in the case of FMO-Ib and FMO-II) with the 5 fs time step.112

FMO-III and FMO-IV data sets: 8-site FMO models with the local thermalizing Lindblad master equation approach113

Using the same LTLME-based approach, we generated a data set for two different Hamiltonians for the 8-site FMO model. The
first Hamiltonian (FMO-III data set) was parameterized by Jia et al.89 The electronic system Hamiltonian is given by (in cm−1)

Hs =



218 −91.0 4.1 −6.3 6.3 −8.8 −7.8 32.4
−91.0 81 28.7 8.2 1.0 8.8 3.4 6.3

4.1 28.7 0 −46.6 −4.4 −9.3 1.3 1.3
−6.3 8.2 −46.6 105 −73.9 −17.7 −59.1 −1.9
6.3 1.0 −4.4 −73.9 105 76.0 −3.1 4.2
−8.8 8.8 −9.3 −17.7 76.0 186 25.9 −11.6
−7.8 3.4 1.3 −59.1 −3.1 25.9 169 −11.9
32.4 6.3 1.3 −1.9 4.2 −11.6 −11.9 154


, (13)
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with the diagonal offset of 11332 cm−1.114

The FMO-IV data set was generated for the Hamiltonian parameterized by Busch et al.64 (site energies) and Olbrich et al.67

(excitonic couplings) and takes the following form (in cm−1)

Hs =



310 −80.3 3.5 −4.0 4.5 −10.2 −4.9 21.0
−80.3 230 23.5 6.7 0.5 7.5 1.5 3.3

3.5 23.5 0 −49.8 −1.5 −6.5 1.2 0.7
−4.0 6.7 −49.8 180 63.4 −13.3 −42.2 −1.2
4.5 0.5 −1.5 63.4 450 55.8 4.7 2.8

−10.2 7.5 −6.5 −13.3 55.8 320 33.0 −7.3
−4.9 1.5 1.2 −42.2 4.7 33.0 270 −8.7
21.0 3.3 0.7 −1.2 2.8 −7.3 −8.7 505


, (14)

with the diagonal offset of 12195 cm−1.115

The same set of spectral density parameters and temperatures that was used in generation of the FMO-Ib and FMO-II116

data sets was used here. LTLME method was used to propagate system’s RDM from 0 to 50 ps with 5 fs time-step and three117

initial states of the electronic system were considered: sites-1, 6 and 8. The data set contains both diagonal (populations) and118

off-diagonal (coherences) elements of the RDM. The calculations was performed with the QUANTUM_HEOM package88
119

with some local modifications to make it compatible for the Hamiltonians with larger dimension. We will refer to this as120

MODIFIED-QUANTUM_HEOM implementation.121

FMO-V data set: FMO trimer with local thermalizing Lindblad master equation approach122

Additionally, we also generated a data set for the FMO trimer. The overall excitonic Hamiltonian of all three subunits is given
by

Hs =

HA HB HT
B

HT
B HA HB

HB HT
B HA

 (15)

where HA is the subunit Hamiltonian for which we used the same Hamiltonian as in FMO-IV data set (Eq. 14), while HB is the
intra-subunit Hamiltonian which is taken from the work of Olbrich et al.67 and is given by (in cm−1)

HB =



1.0 0.3 −0.6 0.7 2.3 1.5 0.9 0.1
1.5 −0.4 −2.5 −1.5 7.4 5.2 1.5 0.7
1.4 0.1 −2.7 5.7 4.6 2.3 4.0 0.8
0.3 0.5 0.7 1.9 −0.6 −0.4 1.9 −0.8
0.7 0.9 1.1 −0.1 1.8 0.1 −0.7 1.3
0.1 0.7 0.8 1.4 −1.4 −1.5 1.6 −1.0
0.3 0.2 −0.7 4.8 −1.6 0.1 5.7 −2.3
0.1 0.6 1.5 −1.1 4.0 −3.1 −5.2 3.6


. (16)

We propagate dynamics with LTLME from 0 to 50 ps with 5 fs time-step for the same parameters as was adopted in calculations123

for the FMO-Ib—FMO-IV data sets. The calculations were performed with the MODIFIED-QUANTUM_HEOM implementation124

for the initial excited sites-1, 6 and 8.125

FMO-VI data set: 8-site FMO model with the hierarchy of equations of motion approach126

The LTLME approach provides only approximate description of quantum dynamics of the FMO complex. Therefore, the127

FMO-I—FMO-V data sets are useful merely for the developing machine learning models for quantum dynamics studies. For128

example, they can be used to train a neural network model which can then be further improved on more accurate but smaller129

data sets (e.g., via transfer learning). However, LTLME dynamics cannot be used to benchmark other quantum dynamics130

methods. In the latter case the high-quality reference data is needed.131

To generate a data set with accurate FMO dynamics we performed HEOM calculations for the 8-site FMO model with the132

Hamiltonian given by Eq. 14. HEOM calculations were performed using the parallel hierarchy integrator (PHI) code.90 The133

initial data set was chosen on the basis of farthest-point sampling similar to how it was done in the FMO-Ib—FMO-V data134

sets with the only difference being that instead of 500 most distant sets of parameters that were chosen in the preparation of135

FMO-Ib—FMO-V data sets, 1100 most distant set of parameters were used to prepare the initial FMO-VI data set. For certain136

parameters, the RAM requirements exceeded the RAM of computing nodes available to us (1 TB). Therefore, such parameter137

sets were excluded from the data set. Excluded parameters correspond to low temperatures, high reorganization energies, and138
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low cut-off frequency. Such strong non-Markovian regimes pose significant challenges in the computational studies of open139

quantum systems. Approximately 20% of the initial data set was removed because of prohibitive memory requirements. We140

note that even though graphics processing units (GPU) implementations of HEOM (e.g., Ref. 91) are much faster than their141

CPU-based counterparts, they are still limited by the small amount of memory in presently available GPUs.142

For the remaining 80% of the data set HEOM calculations were performed for 2.0 ps. To speed up calculations, an143

adaptive integration Runge–Kutta–Fehlberg 4/592 (RKF45) method was used as implemented in the PHI code. Using adaptive144

integration reduces both the total computation time and memory requirements but can lead to artifacts if the accuracy threshold145

is set too large.90 In this work the PHI default accuracy threshold of 1 ·10−6 was used. The initial integration time step was146

set to 0.1 fs. In RKF45 the integration time step is varied and, therefore, the output comprises time-evolved RDMs on an147

unevenly spaced time grid. To obtain the RDMs on an evenly spaced time grid of 0.1 fs, cubic-spline interpolation was used.148

The interpolation errors were examined on a few cases where 0.1 fs fixed time step integration was feasible. The errors in the149

populations were found to be less than 10−5 which is much smaller compared to the convergence thresholds discussed below in150

Technical Validation. The final FMO-VI data set contains 879 entries each comprising all the populations and coherences for151

the RDM from 0 to 2 ps with the time-step of 0.1 fs.152

Data Records153

All data sets can be accessed at https://figshare.com/s/ed24594205ab87404238. The data sets are stored154

in standard NumPy93 binary file format (.npy) files. The following format of file names was adopted in the SB data set155

2_epsilon-X_Delta-1.0_lambda-Y_gamma-Z_beta-XX.npy, where X denotes the value of the energetic bias156

(ε̃), Y is the reorganization energy λ̃ , Z is the cut-off frequency γ̃ , and XX is the inverse temperature β̃ . The following format of157

file names was adopted in all FMO data sets X_initial-Y_gamma-Z_lambda-XX_temp-YY.npy, where X denotes158

the number of sites in the FMO model, Y is the initial state, Z is the value of bath frequency, XX is the value of reorganization159

energy, and YY is the temperature.160

Technical Validation161

Central to the HEOM approach is the assumption that the bath correlation function Ca(t) for site a can be represented by162

an infinite sum of exponentially decaying terms Ca(t) = ∑
∞
k cak exp(−νakt), where νak = 2πk/βℏ are Matsubara frequencies.163

Further, each exponential term leads to a set of auxiliary density matrices which take into account the non-Markovian evolution164

of the system’s RDM under the influence of bath. In practice, the summation must be truncated at a finite level, K, which165

is called Matsubara cut-off and the set of auxiliary density matrices needs to be truncated at a finite number M. In the166

truncated set of auxiliary matrices are indexed by n = (n10, . . . ,n1K ,nM0, . . . ,nMK). The hierarchy truncation level is given by167

L = ∑
M
a=1 ∑

K
k=0 nak, where nak is the index of an auxiliary density matrix. The computational cost of the HEOM method rises168

steeply with the hierarchy level L.90
169

The hierarchy truncation level L depends on how non-Markovian the system is. Although, there is some guidance on how170

to choose the Matsubara cut-off and hierarchy truncation level based on bath and spectral density parameters,5, 50 in practice,171

the values of M and K have to be chosen by requiring the convergence of the RDM to acceptable accuracy level. In this work172

HEOM calculations for the SB model were performed by setting L = 30 for all temperatures. The Matsubara cut-off was173

chosen depending on the temperature as follows: for β = 0.1 K was set to 2; for β = 0.25,K = 3, for β = 0.5,K = 3, for174

β = 0.75,K = 4, and for β = 1.0,K = 5. These values are chosen sufficiently high to ensure the convergence of the populations175

with respect to K and L. Choosing high truncation levels in the HEOM calculations of a TLS does not present a problem given176

the presently available computational resources.177

Similar approach of taking excessively large values of K and L, however, is infeasible in the FMO calculations because
the computational cost of HEOM grows steeply with the size of the quantum system. Therefore, the following approach was
adopted for the HEOM calculations of the 8-site FMO model (FMO-VI data set). Starting from K = 0 and L = 1, K was
increased until the maximum difference in the populations between calculations with K and K +1 falls below a threshold ∆,
i.e.,

δ = max
n=1,...,Nel
t=0,...,tmax

∣∣∣∣ρK,L
n,n (t)−ρ

K+1,L
n,n (t)

∣∣∣∣< ∆. (17)

When Eq.17 is satisfied for a given ∆ the convergence with respect to Matsubara cut-off is deemed to have been achieved.178

Then, for a fixed K a series of calculations were performed with increasing values of L until the maximum difference in179

populations between two consecutive calculations becomes less than the same threshold value ∆. When this condition is satisfied180

the convergence with respect to hierarchy truncation level as well as the overall convergence is declared. These steps were181
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performed in the HEOM calculations for each parameter set for an 8-site FMO model until either the overall convergence is182

achieved or K and/or L become large enough so the calculation becomes intractable exceeding RAM available on our machines183

(1 TB).184

In this work we set the threshold ∆ = 0.01. This threshold was chosen such that the population errors would be almost185

imperceptible which is illustrated in Figure 1. This data set is converged enough to be helpful in benchmarks of approximate186

methods describing quantum dynamics because the errors of these methods often exceed the threshold used in this work.187

Additionally, Figures 2 and 3 show the number of Matsubara terms and the hierarchy truncation level required for achieving188

the overall convergence depending on spectral density parameters and temperature.189

Usage Notes190

A Python package for extracting data is provided together with the data set and can be accessed at https://github.com/Arif-191

PhyChem/QD3SET.192

Code availability193

PHI code (version 1.0) used in HEOM calculations was downloaded from http://www.ks.uiuc.edu/Research/phi/. QUTIP194

software package (version 4.6) used in HEOM calculations of the spin-boson model and was downloaded from https://qutip.org/.195

LTLME calculations of FMO models were performed with the basic QUANTUM_HEOM package https://github.com/jwa7/quantum_HEOM196

and was modified to enable compatibility with the Hamiltonian of larger than the default dimension.197
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Figure 1. Example of the technical validation of the convergence of HEOM calculations for the following parameters T = 30
K, λ = 70 cm−1, γ = 500 cm−1. The convergence within ∆ = 0.01 threshold was achieved for K = 7 and L = 4. Left plot
shows the populations obtained with K = 7 and L = 4 (solid lines) compared to populations obtained with K = 7 and L = 5
(dashed lines) for all 8 sites. The largest population difference is δ = 3.14 ·10−4. The right plot shows the populations obtained
with K = 7 and L = 4 (solid lines) compared to the populations obtained with K = 8 and L = 4. The largest population
difference is δ = 4.62 ·10−3. In both cases the difference is very small illustrating the validity of the chosen threshold.

Data set System Hamiltonian(s) Method
Data set

size Cases
Propagation

time
(time-step)

Package Parameter space References

SB SB SB HEOM

1000

Symmetric
and

Asymmetric
20/∆ (0.05/∆) QUTIP86 E b Regenerated

based on Ref. 33

FMO-Ia
7-site FMO

Adolphs and
Renger49

LTLME

Sites 1 and 6
1 ns (5 fs) QUANTUM_HEOM83, 88 F c Regenerated

based on Ref. 32
FMO-Ib

50 ps (5 fs)
MODIFIED-

QUANTUM_HEOM
a G d

This work

FMO-II Cho76

FMO-III 8-site FMO Jia70

FMO-IV Busch64

and
Olbrich67

1500
Sites 1, 6

and 8
FMO-V FMO trimer
FMO-VI 8-site FMO HEOM 879 Site 1 2 ps (0.1 fs) PHI90 H e

Table 1. Summary of all data sets. See more details in the main text. Here “SB" stands for spin-boson model.
aMODIFIED-QUANTUM_HEOM is the QUANTUM_HEOM package with some local modifications to make it compatible for
larger Hamiltonians. bIn parameter space E , we define ε̃ = ε/∆ = {0,1}, λ̃ = λ/∆ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0}, γ̃ = γ/∆ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and β̃ = β∆ = {0.1, 0.25, 0.5, 0.75, 1}, where the tunneling matrix element ∆ is
set as an energy unit. For all combinations of these parameters the system’s RDM was propagated. cIn parameter space F , we
choose the top 500 (most distant) combinations of (λ , γ , T ) based on farthest-point sampling. Parameter range for each
dimension is λ = {10, 40, 70, . . . , 310} cm−1, γ = {25, 50, 75, . . . , 300} fs rad−1, and T = {30, 50, 70, . . . , 310} K. dIn
parameter space G , we adopt the same procedure as in parameter space F and choose the most distant 500 points (based on
farthest-point sampling) from 3D space (λ , γ , T ) where λ = {10, 40, 70, . . . , 520} cm−1, γ = {25, 50, 75, . . . , 500} cm−1, and
T = {30, 50, 70, . . . , 510} K. eIn parameter space H , parameters range remains the same as in G . In addition, the same
farthest point sampling was adopted but with the only difference being that instead of 500, 1100 most distant set of parameters
were chosen. Approximately 20% of the initial data set was removed because of the prohibitive memory requirements. For the
remaining 80% of the data set, HEOM calculations were performed for 2.0 ps using 0.1 fs as a time step.
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Figure 2. Number of Matsubara terms (Matsubara cut-off, M) required for converging populations of an 8-site FMO model
with the system Hamiltonian given by Eq. 14 for three selected temperatures (T ), reorganization energies (λ ), and bath cut-off
frequencies (γ).
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Figure 3. Hierarchy truncation level L required for converging populations of an 8-site FMO model with the system
Hamiltonian given by Eq. 14 for three selected temperatures (T ), reorganization energies (λ ), and bath cut-off frequencies (γ).
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