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Abstract

Feature selection is an important topic that has been widely studied in data science.

Recently, graph neural networks (GNNs) and graph convolutional networks (GCNs)

have also been employed in chemistry. To enhance the performance characteristics of the

GNN and GCN in the field of chemistry, the feature selection should also be discussed

in detail from the chemistry viewpoint. Thus, this study proposes a new feature in

molecular GNNs based on the quantum chemical approaches and discusses the accuracy,

overcorrelation between features, and interpretability. From the overcorrelation and

accuracy, the important graph convolution (IGC) with molecular-atomic properties

(MAP) proposed herein showed good performance. Moreover, the integrated gradients

analysis showed that the machine learning model with the IGC(MAP) explained the

prediction outputs reasonably.
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Introduction

What is required for good features in molecular graph neural networks (GNNs)? Several

studies have been conducted concerning feature selection in data science, and it has been

mentioned that good features should improve accuracy, overcorrelation, and interpretabil-

ity.1–3 Recently, GNNs and graph convolutional networks (GCNs) have been widely applied

in chemistry.4–7 The feature selection should also be discussed in detail from the chemistry

viewpoint in order to enhance the performance of the GNN and GCN in the field of chemistry.
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Scheme 1: Chemical structures of hydroxybenzoic acid (HB).

Accuracy is one of the most important points in feature selection. In chemistry, a small

structural difference affects the molecular properties. For example, the acid dissociation

constant is greatly affected by the positions of the functional groups. Scheme 1 shows three

hydroxybenzoic acid (HB) structures. The difference is only the relative positions of the

OH and COOH groups, and the orientation of the OH group. Despite the small difference,

these conformations give different pKa values (= − logKa), where Ka is the acid dissociation

constant. Good features should have the ability to distinguish the difference.

Overcorrelation is another critical point in GNN and GCN studies. The overcorrelation in

features indicates that they have irrelevant or redundant information.2,3 Jin et al. discussed

the GNN performance based on the feature overcorrelation. Their model (DeCorr) reduced

the feature correlation and performed better than the standard GNN approaches.3 The

feature correlation in the convolution step was also focused on the GCN. It was shown that

the GCN shows the degradation of the performance when the correlation of the features
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between the layers becomes large.8,9 Thus, the overcorrelation in the features should be

removed in molecular GNNs.

The accuracy and the overcorrelation are important points in the feature selection. How-

ever, in chemistry, interpretability is considered more seriously. Recently, due to the develop-

ment of theoretical methods and computers, various molecular properties can be computed

accurately. However, to understand the chemistry, the reasons behind such physical proper-

ties must be investigated. In the quantum chemical field, to discuss such reasons, population

analysis is applied. If the atomic charges are assigned on each atomic site, the chemists can

image the charge flow in a molecule, which leads to the design of new molecules. Therefore,

when the molecular GNNs and GCNs are applied to chemistry, the obtained results should

be explained with the employed features.

Feature selection has been widely studied in data science. However, to the best of our

knowledge, detailed analysis in chemistry is limited. Hence, this study proposes a new feature

in molecular GNNs based on quantum chemical approaches and discusses the accuracy,

overcorrelation between features, and interpretability in detail.

Method

In this study, we proposed a new feature preparation process and constructed a machine

learning (ML) process using the prepared features. Scheme 2 summarizes the flowchart of

the present model. The feature preparation process comprises the preparation of atomic

properties and concatenation. This section explains each step in detail.

Preparation of atom properties

Various atom features have been applied in GCN studies.10,11 For example, Choudhary and

DeCost employed the following nine atomic features in their GNN study: electronegativity,

group number, covalent radius, valence electrons, first ionization energy, electron affinity,
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Scheme 2: Schematic of the workflow in this study.

block, and atomic volume.11 They are isolated atomic properties (IAP) and can be prepared

without molecular information. In the quantum mechanical (QM) field, molecular-atomic

properties (MAPs) are also employed for the analysis. After the QM calculations, various

atomic properties are assigned on each atomic site using decomposition approaches.12–15

In this study, we used the IAPs and the MAPs in the feature preparation. In IAP, the

following six atomic properties were applied: effective nuclear charge, atomic polarizability,

atomic radius, ionization energy, electron affinity, and atomic mass. Concerning the MAPs,

the following nine properties were used: the positive and negative values of the constrained

spatial electron density distribution (cSED) charge (Q+ and Q−),15 the positive and neg-

ative values of the isotropic magnetic shielding constant (σ+ and σ−), the positive and

negative values of the molecular electrostatic potential (MEP)16–18 change at the nucleus

(M+ and M−), the positive value of the partial Fukui function (F+), volume (V ), and

atomic dispersion coefficient (C6).14 Although the partial Fukui function also takes positive

and negative values, only the positive value is important. In MEP, the potential negatively

increases as the atomic number increases. In order to remove the atomic number depen-

dency in MEP, the M+ and M− were computed by subtracting the MEP value computed

in isolated atom from the MEP value computed in molecule.
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Concatenation of atomic properties

To construct the ML features from the atom properties, the GNN was considered. The

hidden feature of node v in the l-th layer is denoted by h
(l)
v and h

(0)
v = xv, where x are the

node features (MAPs or IAPs). Moreover, h(l) is formally given along the update step, as

follows:

h(l) = U (l)(h(l−1)), (1)

where U (l) is the update function at the l-th layer.19 By concatenating the obtained h(l)

(l = 0, 1, · · · , L), we prepared the following vector:

H(L) ≡ h(0) ⊕ h(1) ⊕ · · · ⊕ h(L) (2)

where ⊕ is the concatenation of two vectors. This step is a simple version of Jumping Knowl-

edge Networks.20 The concatenated vector H(L) is the feature vector for the ML process.

Many processes in the update step are given in eq 1. Concerning the simple graph

convolution (SGC),21 the update step is given as follows:

h(l) = Sh(l−1) = Slx (3)

where S = D̃−1/2ÃD̃−1/2, Ã = A+I, A is the adjacency matrix, and D̃ is the degree matrix

of Ã. Although the update step with S is well employed, it is known that the elements of Sl

converge to a fixed value when l is large.22 To overcome the problem, the following update

step was proposed as follows:

h(l) = a(l)x (4)

5



where a(l) is the Hollow matrix, and the off-diagonal elements are defined as follows:

a
(l)
ij =

 b̄ij (l = 1)√
ā
(l)
ij ā

(l)
ji (l > 1)

(5)

where

ā
(l)
ij = δH

(∑
k

b̄ika
(l−1)
kj ; max

m=1,···l−1
a
(m)
ij

)
(6)

and δH(x;λ) is the hard shrinkage function; b̄ is defined as follows:

b̄ = D−1/2bD−1/2 (7)

where {bij} is the Wiberg bond index.23 When a
(l)
ij has a nonzero value, the path i ↔ j at

the l-th step is either the shortest, or not, but comprises strong bonds, such as double and

triple bonds. Because the shortest path and the path through strong chemical bonds are

important to transfer the information to each node, the new convolution process is termed

an important graph convolution (IGC).

The employed atomic properties are defined with different units, and the maximum values

in the properties differ. To remove the bias, we employed min-max normalization to H(L).

The element h(l)
i (0 ≤ l ≤ L) in the H(L) was normalized with

h̃
(l)
i =

h
(l)
i

hmax
i

, (8)

where hmax
i is the maximum value of the i-th property determined from the training and

validation datasets.
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ML process

To discuss the performance of the prepared features, the supervised learning algorithm for

pKa recognition was employed. The feature vector H(L) of the dissociated proton is chosen

as an input vector X(0) in the multilayer perceptron (Scheme 2). The output Y (pKa in this

study) is obtained as follows:

X(m) = σ
(
X(m−1)Θ(m) + β(m)

)
, (9)

Y = X(M−1)Θ(M) + β(M), (10)

where Θ(m) and β(m) are the weight matrix and the bias vector of the layer m, respectively,

and σ is a nonlinear activation function, e.g., a ReLU. The number of layer M is set to 4.

Y depends on the weight and the hyperparameters, such as the number of nodes in the

hidden layers and the dropout ratio. If the weight is optimized with different hyperparame-

ters, the different trained networks are produced. A linear combination of the corresponding

outputs was taken as follows:24,25

Ȳ =

p∑
j

αjYj, (11)

where Yj is the output obtained with the j-th trained network, p is the number of trained

networks, and αj is the associated combination weight; p = 5, and an equal combination-

weight was employed. The hyperparameters were chosen from the top five best in the

hyperparameter fitting process.
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Computational details

Datasets

The pKa values and molecular information were obtained from the training and test sets

prepared in the previous study.26 The pKa values were carefully cleaned and curated for

this study, and uncertain values were removed (e.g., the pKa values are far from those of

analog or the dissociated proton site is unclear). Moreover, the calculation was restricted to

molecules with no iodide atom because of the current program limitation. Finally, 811, 203,

and 316 pKa values were obtained for the training, validation, and test sets, respectively.

Hyperparameters

There are three layers, and the hidden size of the layers are n0, n1, and n0, respectively,

which are summarized in Figure S1 (Supporting information). A hyperparameter search for

the optimal hidden size (n0 and n1) and the dropout rate was computed using Optuna,27

where the Bayesian hyperparameter optimization was employed. The number of trial steps

and epochs were 50 and 3000 epochs, respectively. The weight was further trained to 8000

epochs to improve its final accuracy.

Calculations of molecules

The molecular geometries were computed at the CAM-B3LYP/aug-cc-pVDZ level of the-

ory.28,29 The cSED charge, partial Fukui function, volume, atomic C6 dispersion coefficient,

and MEP were computed using the GAMESS program package,30 and isotropic magnetic

shielding constants on atom was computed using the Gaussian program package.31

The MAPs were also computed at the Hartree-Fock (HF)/6-31G** level of theory. Al-

though a large difference in computational cost exists between HF/6-31G** and CAM-

B3LYP/aug-cc-pVDZ, the difference in the predicted pKa was small, as shown in Figure

S2 (Supporting information).
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Results and discussion
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Figure 1: Heatmap of the Pearson’s correlation coefficient between h(x) and h(y); h(x) is
prepared with (a) and (b) SGC and (c) and (d) IGC. MAPs were employed for (a) and (c),
and IAPs were employed for (b) and (d). The pairs with undefined correlation coefficients
are shown in black.

The correlation between features was evaluated using Pearson’s correlation coefficient,

ρx,y =

∑
i
t(h

(x)
i − h̄(x)) · (h(y)

i − h̄(y))√∑
i |h

(x)
i − h̄(x)|2

√∑
i |h

(y)
i − h̄(y)|2

, (12)

where h
(x)
i is the feature vector in the x-th layer of the molecular i, and h̄(x) is the mean

value of h
(x)
i . The input feature of molecule i was prepared by taking the concatenation

of {h(x)
i } (eq 2 and Scheme 2). Therefore, if ρx,y is large, the information that h

(x)
i and

h
(y)
i are similar, and the feature vector X contains the redundant data. In Figure 1, the

heat maps of ρx,y computed with IGC and SGC are shown. In the correlation calculations,

IAPs and MAPs were employed as the atomic properties. Because h
(0)
i computed with IAPs

have the same values among the molecules, the correlation coefficients (ρ0,x and ρx,0) cannot

be defined, which was colored black in Figure 1. As shown in Figure 1(a), the correlation
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between h(0) and h(x) (x ≥ 1) was small in the case of SGC(MAP), whereas the correlations

between h(x) and h(y) (x, y ≥ 1) were large in both cases of MAP and IAP (Figures 1(a)

and 1(b)). Therefore, the redundancy in the features of constructed X should be large when

SGC(IAP) is employed. By contrast, the correlation between x-th and y-th layer vectors is

small when IGC is chosen (Figures 1(c) and 1(d)). From the results, we concluded that the

X constructed with IGC should have relevant features.

It is useful to consider the meaning of the small correlation between h(x) and h(y) (x ̸= y)

in IGC(MAP) based on spectral filtering. When vi and λi are the i-th eigenvector and

eigenvalue of Laplacian, respectively, the spectral filtering on graph signal x can be written

as follows:

y =
∑
k

y(k), (13)

y(k) ≡ f(λk)vkv
T
k x (14)

where y is the filtered signal and f(λk) is the filter kernel. From the definition, y(k) and

y(l) (k ̸= l) are perpendicular to each other. From the similarity of eqs 4 and 14 and the no

correlation between y(k) and y(l) (k ̸= l), h(x) can be considered to be a filtered vector, as in

the case of graph spectral filtering.32

The redundancy in the feature vector X probably affects the accuracy of the predicted

pKa values. To discuss the relationship between the accuracy and the redundancy in X,

the root mean square errors (RMSEs) of the pKa values were calculated. Because X is the

concatenated vector H(L) of the dissociated proton, the size of X is controlled by the convo-

lution layers (L). In Figure 2, the RMSE computed with L=1, 2, 3, 5, 7, and 10 are shown.

For comparison, the RMSEs were also computed with a freely available pKa prediction tool

called OPERA26 and MolGpKa.33 In the case of MolGpKa, the model was optimized using

the dataset employed in this study. When IAP was employed, there was a large difference

in the accuracy between the convolution approaches, SGC and IGC. Although the error in
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Figure 2: Root mean square errors (RMSEs) of pKa values obtained by two types of atomic
features (IAP and MAP) and convolution processes (IGC and SGC) with different number
of convolution layers (1, 2, 3, 5, 7, and 10). For comparison, the RMSEs computed with
MolGpka and OPERA are also shown with black dashed and dotted lines, respectively.

IGC(IAP) and SGC(IAP) decreases as L increases, the error in IGC(IAP) is largely im-

proved as L increases when compared with SGC(IAP). This is because the redundancy in X

of IGC(IAP) is smaller than of SGC(IAP) (Figure 1). When MAP was employed, the RMSE

is small in both cases of IGC and SGC because X has relevant information even with the

small L value (Figures 1(a) and 1(c)). Figure 2 shows that the convolution vectors prepared

with IGC or SGC(MAP) give a reasonable data.

Although the RMSE in Figure 2 is one of the good properties to discuss the accuracy, it

is also important to check whether the prepared features can reproduce the pKa difference

stemming from the structural difference (Scheme 1). In Table 1, the pKa values of hydrox-

ybenzoic acids predicted with IGC(MAP), IGC(IAP), SGC(MAP), SGC(IAP), MolGpKa,

and OPERA are shown. As a reference, the pKa values computed with QM approaches are

also shown.34 The obtained pKa values reproduced the pKa values computed with the QM,

except for MolGpKa. Moreover, IGC(MAP), SGC(IAP), and OPERA can reproduce the

QM result that the pKa of 4HB is larger than that of 2HB, suggesting that SGC and IGC

can include the structural isomerism through convolution. However, the pKa difference be-

tween 2HBa and 2HBb was reproduced only with IGC(MAP), IGC(IAP), and SGC(MAP).
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The results show that the IGC(MAP) gave a good feature to reproduce the pKa difference

stemming from the structural difference.

Table 1: pKa of 4HB, 2HBa, and 2HBb computed with IGC, SGC, MolGpKa, and OPERA.
For comparison, the QM data computed in a previous study were also shown.34 In IGC and
SGC, IAP and MAP were employed as atomic properties and the number of layers is 10.

IGC(MAP) IGC(IAP) SGC(MAP) SGC(IAP) MolGpKa OPERA QM
4HB 3.58 4.00 3.46 3.93 7.61 4.47 4.40
2HBa 3.23 4.10 3.47 3.42 7.88 3.53 4.10
2HBb 1.71 3.97 2.49 3.42 7.88 3.53 2.69

From the viewpoint of accuracy and the correlation between features, IGC with MAP

is superior to others. However, with accuracy, it is difficult to say that the concatenated

vector computed with IGC(MAP) is a good feature. To discuss the interpretability of the

IGC(MAP), the integrated gradients (IGs) were computed.

IGi(X) = (Xi − X̄i)

∫ 1

α=0

∂F (X̄+ α(X− X̄))

∂Xi

dα, (15)

where X is the concatenated vector of a dissociated proton and X̄ is the baseline. Although

it is well known that the baseline is important in calculating IGs, there is no universal rule

to define the baseline. It is also difficult to determine the baseline of pKa. As shown in a

previous study,26 most of the DataWarrior acidic pKa values, which are freely available pKa

dataset,35 are whithin the range (0 < pKa < 14). Therefore, the middle of the pKa range

(pKa = 7) is a candidate for the baseline. The H-value of 4-nitrophenol was chosen as the

baseline because the pKa value is close to 7.

Figure 3 (a) summarizes the IGs of 4HB, 2HBa, and 2HBb computed with the baseline.

Because the pKa values of 4HB, 2HBa, and 2HBb are < 7, the negative IGs are important.

Figure 3 (a) shows that the difference among the molecules mainly comes from the properties,

M+(k = 0) and M+(k = 2), where M+ is the positive MEP value. Previous studies17,18

have shown that the MEP had a strong negative correlation with the sum of valence natural

atomic orbital energies. Therefore, the IGs in Figure 3 (a) show that the pKa value decreases
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Figure 3: (a) Integrated gradients on carboxylic acid hydrogen site of hydroxybenzoic acids
(4HB, 2HBa, and 2HBb) for k = 10 and (b) integrated gradients for k = 10 averaged in
three pKa ranges (pKa < 4, 4 ≤ pKa < 10, and 10 ≤ pKa). Moreover, 4-nitrophenol was
employed for the baseline molecules.
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as the atomic orbital energy becomes negatively large. Because the electron-withdrawing

atom makes the atomic orbital energy of the next atom more negative, the IGs in Figure 3

(a) also indicate that the pKa value decreases when the sites of k = 0 and 2 are surrounded

by the more electron-withdrawing atoms. As shown in Scheme 3(a), in the case of 2HBa,

O

H

O O

H

O

O O

H

H

2HB
a

2HB
b

(a)

H (k=0)

1s

X (k=1)

2s, 2p

H − X

(b)

Scheme 3: (a) Interpretation of pKa difference between 2HBa, and 2HBb derived from IGs.
The deprotonated site is colored red, and the arrow size shows the electron-withdrawing
strength schematically. (b) Interpretation of large pKa value in the range (10 ≤ pKa) based
on the chemical bonding between the H and X atoms. The chemical bond (H-X) comprises
1s orbital on the H site and 2s, and 2p orbitals on the X site. The red arrows indicate orbital
energy changes induced by increased M+ and M− values.

and 2HBb, the sites of k = 0 and 2 are the proton H and carbonyl C sites, respectively.

When the chemical structure is considered, the carbonyl O atom of 2HBb can withdraw the

electron on the carbonyl C atom more strongly than that of 2HBa. From the pKa difference

between 2HBa and 2HBb, and Scheme 3(a), the explanation by IGs is reasonable.

Although the interpretation in Scheme 3 (a) is reasonable for an acidic compound (2HB),

checking the interpretation along the pKa value is also important. To discuss the interpre-

tation change, the average of IGs in the three pKa ranges (pKa < 4, 4 ≤ pKa < 10, and 10

14



≤ pKa) were obtained. In Figure 3(b), the averaged IGs are shown. Although the averaged

IGs in the range (pKa < 4) are similar to Figure 3(a), the averaged IGs in the range (10

≤ pKa) differ totally from Figure 3(a). In the weak acid condition (10 ≤ pKa), the IGs of

M+(k = 0) and M−(k = 1) are positively large. The obtained IG is reasonable because of

the following reasons. When the M+ and M− values increase, the orbital energy difference

decreases (Scheme 3(b)), and the polarity of the bond decreases. The large positive IG sug-

gests that the low polarity in the chemical bond makes the pKa value positive (less acidic),

which is reasonable from the chemical viewpoint if the size effect is omitted. Scheme 3 shows

that the ML model obtained with IGC(MAP) gives a reasonable interpretation for chemists.

Conclusions

In this study, a new feature in molecular GNNs was proposed, and the accuracy, overcor-

relation between features, and interpretability were discussed in detail. The overcorrelation

and accuracy indicate that the IGC with MAP is superior to others. The prediction output

with the IGC(MAP) was analyzed using the IGs method. From the analysis, positive values

of MEP (k = 0and2) is important in acidic conditions, whereas the positive value of MEP

(k = 0) and the negative value of MEP (k = 1) are important in basic conditions, which

leads to reasonable interpretation from the chemistry viewpoint.

In this study, a part of the concatenated vectors {H(L)} was employed in the ML model.

In the future study, we will employ all {H(L)} in a molecule to construct the ML model for

predicting molecular properties, such as solvation free energy and octanol/water partition

coefficient.
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