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Abstract 

Targeting protein-protein interactions (PPIs) between the receptor binding domain (RBD) of SARS-CoV-2 and human 

angiotensin converting enzyme (ACE2) has been an attractive therapeutic target for peptide or protein drug discovery to inhibit 

the entry of SARS-CoV-2 into the host cells. Developing inhibitors for such extensive (RBD and human ACE2 interaction) 

contact surfaces involves multiple challenges. We sought to start in silico investigation with well-known knottins peptides from 

its databank for the first time and host defense peptides, defensins, due to their multifaceted antimicrobial activity. The 

molecular-level examination resulted in a handful of peptides binding selectively with the spike glycoprotein at low nanomolar 

potency. They exhibited a high thermodynamic binding stability in an MD simulation study. Noteworthy, Kalata B1 and human 

β-defensin 4 (HBD4) showed excellent interaction parameters calculated through an alanine scan of hot spot residues. These 

natural source peptide inhibitors could be a promising lead for developing SARS-CoV-2 prophylactic after an ongoing 

experimental assay test.  

Keywords: COVID19, SARS-CoV-2, Human Angiotensin-Converting Enzyme 2 (hACE2), Cyclotides, peptide inhibitors, 

protein-protein interactions, Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA). 

 

Introduction 

The emergence of a novel severe acute respiratory 

syndrome (SARS)-like coronavirus (SARS-CoV-2) caused 

~ 6.7 million deaths around the globe due to the 

coronavirus disease 2019 (COVID-19) pandemic1. SARS 

CoV-2 is a β-coronavirus that consists of four structural 

proteins, including spike (S), envelope (E), membrane (M), 

and nucleocapsid (N). Among them, spike proteins on the 

virus envelope play the most critical roles in viral 

attachment, fusion, and entry to the host cell through the 

receptor angiotensin-converting enzyme 2 (ACE2)2. The 

spike protein's receptor-binding domain (RBD) selectively 

recognizes ACE2 as its receptor with an affinity in the low 

nanomolar range3-4. Therefore, immense interest in 

inhibiting RBD-ACE2, virus-host protein-protein 

interaction (PPI), has been a central focus in controlling 

SARS-CoV-2 entry during the outbreak (Figure 1A). Since 

inhibiting a large PPI interface is tedious with conventional  

 

small molecules, an immense interest has inclined in 

engineering peptide- and protein-based molecules to inhibit 

RBD-ACE2 interaction. There are numerous reports of 

SARS CoV-2 spike’s RBD domain peptide inhibitors, 

including human native ACE2 α-helix and its decoys5-6 , 

de-novo designed high affinity binders7-8, D-peptide 

mimicking ACE2 helix9, helical bundle10,11, 

computationally modeled peptides12,13,, in silico screening 

of peptides possessing antimicrobial properties such as 

antiviral14,15, cyclic16,17, & stapled peptides18,19 as well as 

covalently engineered minibinders20. Also, there are 

multiple earlier reports of in silico investigations and in 

vitro studies of human defensins21–23, and an engineered 

defensin α-helix24 provided a straightforward way to 

identify potential peptide-based therapeutics. 

At the beginning of the COVID-19 outbreak, we 

hypothesized that disulphide-rich antimicrobial peptides 

might play a significant role in viral inhibition. Cyclic 



knottin peptides (cyclotides) struck our mind and could 

show high binding affinity and selectivity to spike protein. 

Cyclotides are head-to-tail cyclized peptides, and their 

backbone are stabilized by disulphide cystine knots, which 

provide a unique structural scaffold and are exceptionally 

resistant to enzymes25. These macrocyclic knottin peptides 

were discovered in major families of Rubiaceae, Violaceae 

and Cucurbitaceae, which comprise ~30 amino acids and 

are considered the most prominent family of circular mini-

proteins. We also piqued interest in human host defense 

disulphide-rich peptides and defensins to design RBD-

ACE2 inhibitors. Because α- and β-defensins, two 

subfamilies, have been long recognized as natural 

antimicrobial peptides and are primarily involved in the 

host's innate immunity26,27.  

We started our investigation by considering deposited 

cyclotide and defensin PDB structures with a virtual 

screening of cyclotide databases and defensins. Its 

workflow and steps are shown in Figure 1B-C. 

Interestingly, a few knottin from the Kalata family (B1, B2 

and B7) and β-defensin 1 and 4 exhibited potential binding 

affinity with the RBD domain of SARS CoV-2. In parallel, 

a few knottin and defensin enriched as selective human 

ACE2 (hACE2) binders. MD simulation has manifested 

thermodynamic parameters of RBD-peptide and hACE2-

peptide complexes along with molecular interactions. In 

MD simulation, potential binder confidence was further 

expanded through an alanine scan of hot spot residues in 

peptide hits.  

Results & Discussion 

Virtual screening and MD simulation study of 

cyclotides and defensins  

In order to find the potential peptide binders against RBD-

hACE2 interaction, cyclotides and human defensins (from 

the online database, see material and methods ESI) were 

employed in HADDOCK 2.4 for docking studies, distinctly 

with RBD and hACE2 protein target of interest. 

Subsequently, the HADDOCK webserver generates 200 

complexes thus larger clusters contains refined models 

within a cluster and can differ more in other sets of 

parameters such RMSD from the overall lowest structure 

(Angstrom, Å), HADDOCK score, Z-score, and various 

energy terms. The best cluster shows a more negative Z-

score, which determines the number of standard deviations 

from the mean cluster for a specific model cluster. The 

most reliable cluster was chosen based on the lowest 

HADDOCK score and Z-score (Table S1-S4).  

Additionally, we used a systematic approach towards 

peptide discovery based on MD simulations (MDS) study. 

The system stability was evaluated using the RMSD of the 

Cα- atoms with respect to the structures obtained from the 

200 ns MDS trajectories. Based on the structural 

investigations and chosen parameters to shortlist the best 

peptide binders among the complexes, Kalata B1, B2, B7, 

β-defensin 1 (β-HD1) and β-defensin 4 (β-HD4) peptide 

found to be interacted the binding pocket of RBD domain. 

Therefore, we considered this could be potential peptide 

candidates blocking the RBD-hACE2 interaction (Table 1 

and S1-S4). The binding affinity (Kd) and binding free 

energy (∆G) were also calculated before MDS and after 

molecular docking in order to estimate the best peptide 

binder, to further perform the post MD simulation studies. 

Among five peptide candidates, we obtained β-defensin 4 

(β-HD4) as “best peptide binder” in the terms of binding 

affinity (Kd) and binding free energy (∆G) predicted by 

PRODIGY webserver28,29.  

 



 

Figure 1: A) Molecular interaction of SARS CoV-2’s Spike protein and human ACE2 receptor; Cartoon representation of SARS 
CoV-2 RBD domain (Pale blue) and human ACE2 (hACE2) receptor (Yellow); Key residues at the interface between the SARS-
CoV-2 RBD domain and ACE2 receptor. Schematic representation of virtual screening of knottins and disulphide-rich peptides; 
B) Step-by-step flow chart demonstrating an in silico study performed here; C) Schematic workflow of peptide screening. 

MD Simulation analysis 

Root-mean-square deviation analysis (RMSD): 

An investigation based on structural characteristics of the 

potential knottins and disulfide-rich peptides were 

subjected to 200 ns MDS to adequately sample the stable 

complex conformational space. The root-mean-square 

deviation (RMSD) of the atomic position, relative to the 

initial structure was evaluated by least-squares fitting for 

the Cα-atoms to investigate the overall conformational 

stability of the protein−ligand complex in the MD 

simulation. Generally, when the system obtains a stable 

RMSD curve, which means that it reaches an equilibrated 

state; the other side, the sharp fluctuations of RMSD curve 

of the Cα atoms indicate low structural stability. Figure 1 

and Figure S2-S5 depicts the time-dependent RMSD curves 

of the reference (ACE/RBD and ACE2/Cathelicidin) and 

potential knottins and disulfide-rich peptide inhibitors. 



RBD-bound peptide complexes depict the smoothed 

fluctuation curves of the average RMSD in a stable state 

throughout the simulation process with an average RMSD 

value of < 0.4 nm. For the control ACE2/RBD complex, 

the RMSD value varies in between 168 to 187 ns from 0.4 

to 1.5 nm but later falls to 1 nm after 185 ns (Figure S1). 

Whereas, the other ACE2/Cathelicidin showed slight 

fluctuation curves of the average RMSD value < 0.5 nm 

(Figure S2). 

 

Table 1: HADDOCK Molecular Docking results of Cyclotides and defensins against RBD domain and hACE2 receptor. 

Complex 
Interface 
Binding 

HADDOCK 
(Before Simulation) 

Interface 
Binding 

After MD Simulation 
(Upto 200ns) 

ACE2-Cyclotides complex  ΔG (kcal/mol) Kd (nM)  ΔG (kcal/mol) Kd (nM) 

ACE2_RBD + -12.7 0.49 + -8.6 480 

ACE2_Cathelicidin + -10.1 36 + -8.8 340 

ACE2_1nb1 + -10.2 34 - NB NB 

ACE2_1pt4 + -10.4 23 - NB NB 

ACE2_1znu + -10.1 36 + -8.9 270 

ACE2_2lur + -10.6 17 - NB NB 

ACE2_1kal + -8.8 340 - NB NB 

ACE2_1vb8 + -10.9 10 - NB NB 

ACE2_2kuk + -10.5 20 - NB NB 

ACE2_2f2i + -10.9 9.6 - NB NB 

RBD-Cyclotides complex  ΔG (Kcal/mol) Kd (nM)  ΔG (Kcal/mol) Kd (nM) 

RBD_ Cathelicidin + -10.3 13 - NB NB 

RBD_1nb1 + -10.8 11 - NB NB 

RBD_1znu + -11.2 5.6 - NB NB 

RBD_1pt4 + -10.9 11 + -10.1 39 

RBD_2lur + -12.2 1.1 - NB NB 

RBD_2m9o + -10.5 20 + -9.8 70 

RBD_2lam + -8.7 440 + -7.4 4000 

RBD_1df6 + -7.3 4600 + -8.5 550 

RBD_1k48 + -10.9 11 + -10.1 42 

ACE2-Defensins complex  ΔG (Kcal/mol) Kd (nM)  ΔG (Kcal/mol) Kd (nM) 

ACE2_α-HD1 + -10.2 34 - NB NB 

ACE2_ α-HD5 + -10.4 23 + -8.5 630 

ACE2_β-HD2 + -10.5 19 - NB NB 

ACE2_ β-HD3 + -11.7 28 - NB NB 

ACE2_ β-HD4 + -12.2 11 - NB NB 

RBD-Defensins complex  ΔG (Kcal/mol) Kd (nM)  ΔG (Kcal/mol) Kd (nM) 

RBD_ α-HD1 + -10.8 11 + -9.4 120 

RBD_ α-HD2 + -11.2 5.6 + -9.9 57 

RBD_ α-HD3 + -10.9 11 - NB NB 

RBD_ α-HD4 + -12.2 1.1 - NB NB 

RBD_ β-HD1 + -10.9 11 + -10.4 28 

RBD_ β-HD4 + -11.3 5.3 + -10.9 11 

(*NB = No Binding was observed at the active site of human ACE2 & RBD domain of SARS CoV-2 spike protein) 



 

Figure 2: RMSD plot showing the average value of the RBD/peptide complexes. RMSD curve depicts the system stability, 
which means that it has reached an equilibrated state; the other side, the sharp fluctuations of RMSD curve indicate low structural 
stability. 

 

Further for ACE2- and RBD-bound peptide complexes, we 

observed RBD/Kalata B1 show slight fluctuation in the 

RMSD value during the simulation process after 110 to 180 

ns of 1 to 2.5 nm but later RMSD falls within range 0.3-0.5 

nm which occurs due to slight shifting of the peptide from 

its original binding site of RBD domain that caused 

increase in RMSD value from 0.5 to 2.3 nm (Figure 2). 

Similarly, in the case RBD/β-defensin-1 peptide inhibitor 

was observed with variation in RMSD value of 0.25 to 0.5 

nm for short period of time (i.e., in-between 60 to 90 ns). 

ACE2/KALATA B1 shows the average RMSD value <0.4 

nm, ACE2/α-defensin 5 (α-HD5) shows a slight fluctuation 

for short period of 0.4-0.5 nm in 145-160 ns trajectory 

other than that average RMSD value < 0.4 nm (Figure 1, S2 

and S3). RBD/α-defensin 1 (α-HD1) shows a fluctuation of 

0.2-0.4 from 70-145 ns and at the end of the simulation 

value rises to 0.3 nm (Figure S4). For RBD/ α-defensin 2 

(α-HD2) shows a slight fluctuation in the beginning of 

simulation 0.2-0.3 nm and after 15 ns it becomes stable and 

average RMSD value lies within 0.35 nm (Figure S5). 

Other than control ACE2/RBD and RBD/Kalata B1 (1K48) 

complex, other peptide inhibitors remain in equilibrium and 

maintains the RMSD value within <0.4 nm until the end of 

the MD simulation. In this case, it has been provided that 

the conformation of the system is in a dynamic equilibrium 

state under the simulation conditions. Therefore, with this 

MD simulation trajectories was found to be suitable for 

further energy analysis. 

Root-mean square fluctuation (RMSF) study: 

To investigate the structural flexibility in the entire 

simulation, the root-mean square fluctuation (RMSF) of the 

main chain Cα atoms, reflecting the fluctuation of the 

atoms from their average position, was calculated on a 

stable trajectory. Generally, the higher value of the RMSF 

implies that the residue has larger flexibility. Similarly, the 

lower value of the RMSF means the restriction of residue 

movement, thereby reducing their flexibility. As shown in 

Figure 3B, for the different RBD-bound peptide complexes 

the major fluctuations can be observed within a residue 48-

61, 71-79 in the helix region and residues 106-115, 123-

157, 166-173, and 183-188 in the loop region of RBD show 

large fluctuations with RMSF values larger than 1.5 nm, 

indicating that these regions are flexible. In the case of 

peptides, there is no such fluctuations can be observed 

during the MDS except the loop region in the knottins and 

the terminal residue of defensin peptides which are termini 

atoms shows the perturbation in the RMSF curve as shown 

in Figure 3Aiv-v.    



 

Figure 3: RMSF Plots of the Cα-atoms of the RBD/knottins and disulfide-rich peptide complexes. A) Ligand RMSF plot of the 
RBD-bound peptide complexes; B) Cartoon representation of loop region within RBD protein; C) Protein RMSF plot of the 
RBD-bound peptide complexes. 

Due to rigid conformation and three disulfide linkage in the 

knottins and defensins peptide, the Ligand RMSF values of 

all residues of all inhibitors show small fluctuations, and 

their values are all <2.0 nm, which is consistent with the 

RMSD analysis, indicating that the peptide inhibitor are in 

a stable state and therefore exhibiting a lower RMSF 

values. 

Radius of gyration (Rg) and solvent accessible surface 

Area (SASA) analysis 

To understand the structural stability of the RBD-bound 

peptide complexes, we further determined the compactness 

of the protein structure by computing the radius of gyration 

(Rg). The Rg plots represented in Figure 4A as well as 

Figure S2-S5 in the Supporting Information show that the 

structural dynamics of the controls and RBD-bound peptide 

complexes remain quite stable throughout the 200 ns 

simulation time. The average Rg value for controls 

ACE2/RBD, ACE2/Cathelicidin and RBD apo protein was 

3.35 ± 0.15 nm, 2.65 ± 0.10 nm, 1.82 ± 0.05 nm 

respectively. A slight deviation for controls ACE2/RBD 

can be seen during 163-177 ns with average Rg value of 

3.60 ± 0.10 nm and ACE2/Cathelicidin during duration 

131-163 ns with average Rg value of 2.65 ± 0.08 nm. The 

structural integrity of RBD/Kalata B2, B7 and RBD/β-

defensin-1 peptide complex was observed to be intact with 

an average Rg value of 1.95 ± 0.05 nm, 2.00 ± 0.08 nm, 

2.10 ± 0.06 nm, respectively. Whereas a slight deviation 

was observed for RBD/Kalata B1 can be seen during 165-

183 ns with rise in Rg value, other than this deviation the 

average Rg value remains around 1.93 ± 0.08 nm. A steady 

equilibrium is noted till the end of simulation at 200 ns, 



which signifies the stable structural dynamics for RBD/β-

defensin-4 peptide complex with an average Rg value 2.05 

± 0.05 nm. The perturbation in between the simulation 

trajectories for RBD/Kalata B1 and controls (ACE2/RBD 

and ACE2/Cathelicidin) may imply the spatial adjustment 

of the peptide ligand in the binding site of RBD domain.  

 

Figure 4: Rg and SASA Plots of the controls (ACE2/RBD, ACE2/Cathelicidin and RBD apo protein) and RBD-bound peptide 
complexes. A.) Radius of gyration (Rg) analysis plot of the controls and RBD-bound peptide complexes; B.) SASA analysis plot 
of the controls and RBD-bound peptide complexes. 

Further investigation of another important parameter i.e., 

SASA (solvent accessible surface area) values was 

measured to understand the conformational stability of the 

RBD-bound peptide complexes. The stability, orientation, 

and processes governing protein-ligand interaction are 

mostly mediated by the solvent environment surrounding 

the protein. Figure 4B as well as Figure S2-S5 in the 

Supporting Information shows investigation of the 

peptide’s solvation impact on the RBD-bound peptide 

complexes solvation behaviour. The SASA trajectories of 

the controls (ACE2/RBD and ACE2/Cathelicidin), RBD 

apo protein and RBD-bound peptide complexes were 

monitored, a lower average SASA values for the controls 

(ACE2/RBD and ACE2/Cathelicidin), RBD apo protein 

and RBD-bound peptide complexes was observed 382 ± 

2.0 nm2, 314 ± 1.5 nm2, 119 ± 1.0 nm2 and 120 ± 1.3 nm2, 

particularly within the first 98 ns MDS. A peptide may be 

preferentially confined within the protein pocket, according 

to its dynamic behaviour. An elevated SASA trajectories 

might confer the migration of peptides towards the solvent 

side within the simulation time frames 100-200 ns where 

the RBD domain pocket became highly solvated and 

minimally compacted. With the equilibrated and stable 

conformational dynamics of RBD/β-defensin-4 peptide 

(136 ± 0.2 nm2) and the other RBD-bound peptide 

complexes showed 124 ± 1.0 nm2. Since the latter is a 

solvent-substitution process, it suggests stronger interaction 

peptides at the binding site of RBD domain. 

H-bond interaction analysis 

Hydrogen bond (H-bond) interaction analysis was 

performed to determine the RBD-bound peptide interaction 

types, specificity, and the binding strength of the peptide 

inhibitors. H-bonding is essential for determining stable 

contacts that support functional roles and prolong 

intermolecular contact between the complexes. On an 



average five to eight H-bonds formed during the 200 ns 

simulations for each complex including the controls. These 

hydrogen bonding interactions were stable and the residues 

(Gly9, Tyr10, Ile26, Arg28, Pro30 and Thr32) involved in 

the bonding played an important role in β-defensin-4 

peptide binding interface as shown in Figure 5B.  

 

 

Figure 5: Detailed interactions between the RBD domain and the β-defensin-4 peptide inhibitor. A) Molecular interaction of 
RBD- β-defensin-4 peptide complex; B) A zoomed view of molecular interaction of RBD domain and the β-defensin-4 peptide 
complex; C) Average number of H-bonds formed during 200 ns MD simulation trajectory. (RBD domain showed in white 
surface, Binding site on RBD is highlighted by red (Oxygen atom) and blue (Nitrogen atom) color. β-defensin-4 peptide is shown 
in turquoise color, key residues blocking the binding site of RBD domain are shown in sticks). 

 

The key interface residues from RBD domain such as 

Tyr117, Glu152, Asn155, Gln161, and Ser162 forms an 

important H-bond as well as salt bridges with Gly9, Tyr10, 

Arg28, Thr32 of β-defensin-4 peptide inhibitor are shown 

in Table 2, as well as Figure S1 in the Supporting 

Information. Further, using a Python script 

readHBmap.py30 and gmx hbond program in the 

GROMACS 2020.4 analyzed and calculated the 

percentages of hydrogen bond occupancy between the 

RBD-bound complexes during the 200 ns simulation 

trajectory. Based on acceptor-donor atom lengths of less 

than 3.5 Å and acceptor H-donor angles of more than 120˚, 

the hydrogen bonds were determined. Table 2 as well as 

Figure S5-S8 in the Supporting Information shows the 

percentages of the occupancy of H-bonds between RBD-

bound peptide complexes and key interface residues 

interacting in the all RBD-bound peptide complexes. The 

key residues noted in the H-bond formation in the β-

defensin-4 peptide complex involved Ile26, Tyr10 with 

more than 50% occupancy. Whereas, hydrogen bond 

formation with less than 50% occupancy was observed with 

Arg28, Trp40, Thr32 and Glu42. Whereas several other 

interface residues assist in H-bonding during 200 ns 

simulation, by repositioning the flexible sidechains with the 

surrounding interface residues with the 1-15% occupancy 

range. Investigating the differential dynamic’s behaviour 

has been depicted for each investigated peptides across the 

designated MD simulation trajectories and the time 

evolution of the binding interactions between peptides 

bound to RBD domain provided the necessary frameworks 

for understanding the stability of RBD-bound peptide 

complexes. 



Table 2: H-bond Occupancy (%) of RBD/ β-defensin-4 during 200 ns MD simulation trajectory. 

Donor Acceptor Occupancy (%) 

162SER(HN) 26 ILE(O) 96.4 

173TYR(HH) 10TYR(O) 60.1 

28ARG(HE) 152GLU(OE2) 46.5 

28ARG(H21) 152GLU(OE1) 44.5 

28ARG(HE) 152GLU(OE1) 29.4 

169ASN(D21) 40TRP(O) 26.8 

155ASN(HN) 32THR(OG1) 25.1 

28ARG(H21) 152GLU(OE2) 21.6 

170GLY(HN) 42GLU(OE2) 15.3 

170GLY(HN) 42GLU(OE1) 13.4 

168THR(HG1)  40TRP(NE1) 8.2 

157TYR(HH) 32THR(N) 7.7 

169ASN(D21) 42GLU(OE1) 6.5 

169ASN(D21) 42GLU(OE2) 6.2 

10TYR(HH) 74GLU(OE2) 5.8 

71ARG(H11) 10TYR(O) 5.8 

173TYR(HH) 42GLU(OE2) 5 

166GLN(E21) 40TRP(O) 4.9 

157TYR(HH) 30PRO(O) 4.6 

157TYR(HH) 32THR(OG1) 4.4 

10TYR(HH) 74GLU(OE1) 3.6 

173TYR(HH) 42GLU(OE1) 3.2 

28ARG(H21) 152GLU(OE1) 1.7 

28ARG(H11) 152GLU(OE2) 1.4 

166GLN(E21) 40 TRP(NE1) 1.3 

 

In silico alanine mutation  

We implemented an in silico alanine scanning to discover 

the "HOTSPOT" residues that are crucial for interface 

binding and to analyze the contributions of each individual 

residue to the binding interface. We mainly focused on 

enhancing the binding affinity of these disulfide-rich 

peptides by the substitution with alanine residue. The 

alanine substitution replaces the side-chain without 

significantly changing the shape of the molecule to alter the 

mode of interaction. Table 3 shows the key interface 

binding residues (Cys8, Gly9, Tyr10, Thr12, Tyr24, Ile26, 

Gly27, Arg28, Cys29, Pro30, Asn31, Thr32, Tyr33, Cys35 



and Leu37) of β-HD4 interacting with RBD domain. 

Likewise, the key interface residues for the Kalata B1 

(Thr16, Val18, Thr21, Thr24, Thr28, Cys29, Ser30 and 

Trp31), Kalata B2 (Glu3, Thr4, Phe6, Ile21, Arg24 and 

Leu27), Kalata B7 (Gly1, Thr20, Ser22, Trp23, Lys27, 

Arg28 and Asn29) and β-HD1 includes Val6, Gln11, 

Leu13, Trp14, Thr21 and Lys36 has been tabulated in 

Table S9-S12, respectively. 

 

 

Table 3: in silico alanine scanning of β-defensin 4 binding site for HOTSPOT residue prediction. 

Wild-
type mutant 

KFC2-A 

Class 
KFC2-A 

Conf 
mCSM-PPI2 

prediction  
(affinity) 

DrugScore-
PPI 

CYS8 
ALA - -1.41 

- 0.42 

GLY9 
ALA - -0.8 

- - 

TYR10 
ALA HOTSPOT 0.66 -1.127 

(decreasing) 
2.92 

THR12 
ALA - -1.89 -0.115 

(decreasing) 
0.11 

TYR24 
ALA - -2.13 -0.83 

(decreasing) 
1.6 

ILE26 
ALA HOTSPOT 0.34 -1.357 

(decreasing) 
0.8 

GLY27 
ALA - -1.13 

- - 

ARG28 
ALA HOTSPOT 0.39 -1.409  

(decreasing) 
1.37 

CYS29 
ALA - -0.29 

- 0.39 

PRO30 
ALA - -1.23 

- - 

ASN31 
ALA - -2.26 

- 0.34 

THR32 
ALA - -0.12 -0.719 

(decreasing) 
0.69 

TYR33 
ALA - -2.37 -0.608 

(decreasing) 
0.14 

CYS35 
ALA HOTSPOT 0.53 

- 0.34 

LEU37 
ALA - -1.08 -0.688 

(decreasing) 
0.39 

(‘-’ means webserver could not predict the value for that residue) 



 

KFC2 and DrugScore-PPI webserver predicted TYR10, 

ILE26, ARG28 and CYS35 residues for β-HD4 peptide 

complex as “HOTSPOT” residues with confidence value 

(KFC2-A Conf > 0) within the peptide inhibitor. mCSM-

PPI2 webserver predict the effects of alanine substitution 

on protein-protein interaction relative binding either by 

increasing or decreasing the affinity, and the value lies 

within the range −1.5 ≤ ΔΔG ≤2.0 kcal/mol for β-defensin 

4 peptide inhibitor. In the case of HOTSPOT residues 

predicted the ΔΔG < −1.0 kcal/mol which means 

interaction is lost due to mutation of that residue with 

alanine. From an in silico alanine scanning, it was 

established that these key residues are those that 

significantly lower the binding free energy by at least 2.0 

kcal/mol. The strong binding residues should atleast lower 

the binding free energy to 4 kcal/mol or less31,32. 

MM-PBSA analysis  

Binding Free-Energy Calculation 

Further, in order to determine the binding free energy of 

ligand molecules to biological macromolecules, the 

Molecular Mechanics/Poisson-Boltzmann Surface Area 

(MM/PBSA) method is frequently employed33. In this 

study, gmx_MMPBSA tool was implemented to calculate 

the total binding free energy of RBD-bound peptide 

complexes by extracting the MD trajectories from the last 

10 ns of the simulation systems. Primarily, the lower 

binding energy is the more stable complex, also a negative 

value signifies a favorable interaction, whereas a positive 

value signifies an unfavorable interaction. The 

gmx_MMPBSA calculation results show the binding free 

energies of Kalata B1, B2 and B7 and β-defensin 1, 4 are, 

−5.55, −40.44, −31.00, -29.28 and -34.87 kJ/mol, 

respectively. The results of predicted binding free energy 

and each energy term are shown in Table 4, and Table S13. 

Through MM-PBSA method, binding free energy analysis 

revealed that electrostatic interactions and van der Waals 

interactions provided the substantial driving force for the 

binding process along with the calculation the absolute 

binding free energies and per-residue decomposition 

analysis.  

 

Table 4: Binding free energy (BFEs) calculation of RBD-bound peptide complexes using MM/PBSA method. All the energy 

components are reported in kcal/mol. 

Peptide  
Complex 

Energy Components 

Van der Waals  
Energy 

(ΔEvdw, kcal/mol) 

Electrostatic  
Energy 

(ΔEele, kcal/mol) 

Polar Solvation 
 Energy 

(ΔEpolar, kcal/mol) 

Non-polar 
Solvation 
Energy 

(ΔEnonpolar, kcal/mol) 

Binding free  
energy  

(ΔGbind, kcal/mol) 

ACE2_RBD -29.04 -400.88 412.62 -3.33 -20.63 

ACE2_Cathelicidn -63.81 114.21 -80.32 -8.14 -38.06 

RBD_1K48 -13.58 -9.59 19.43 -1.81 -5.55 

RBD_1PT4 -49.39 -74.83 89.84 -6.06 -40.44 

RBD_2M9O -55.27 -97.19 127.59 -6.13 -31.00 

RBD_βHD1 -51.24 42.30 -13.40 -6.92 -29.28 

RBD_βHD4 -74.46 -71.31 119.44 -8.55 -34.87 

 



In order to clarify the various contribution of energies on 

the binding affinity of RBD, a total of 1000 structures from 

the MD trajectory with stable conformations were selected 

to calculate the contribution of individual components such 

as ΔEvdw, ΔEele, ΔEpolar, and ΔEnonpolar, to obtain the total 

binding free energy ΔGbind. The binding free energy of 

Kalata B2 and β-HD4 peptides is showing significantly 

lower than control ACE2/RBD complex, indicating the 

binding interaction between selected peptides with RBD is 

stronger than human ACE2 with RBD domain of SARS 

CoV-2's spike protein. 

Per-residue Energy Decomposition Analysis 

The residue-based energy decomposition of ΔGbind is 

another effective approach to evaluate the energy 

contribution of key or active site residues. The energy 

contributions of these residues to the total binding energy 

are shown in Figure 6B. The key residues with favorable 

energy contribution mainly include the acidic amino acids 

of peptide inhibitors, such as aspartic acid and glutamic 

acid, and the basic amino acids of knottin and defensin 

peptides, such as arginine and lysine. These residues are 

generally involved in the electrostatic interaction during the 

MD simulation process, which means that the electrostatic 

interaction drives the binding. The line plot of free energy 

decomposition analysis shows the active site residues G9, 

T11, G10, T12, Y24, G27, P30, T32, L37 and W40 

energetically favor the binding stability of β-defensin 4 to 

RBD domain of SARS CoV-2 spike protein as shown in 

Figure 6A. 

The RBD/Kalata B2, B7 and β-defensin 1 complexes with 

binding affinities -40.44 Kcal/mol, -31.00 Kcal/mol and -

29.28 Kcal/mol, respectively had higher binding affinity 

than RBD/Kalata B2 (-5.55 Kcal/mol) that agreed with the 

molecular docking and MD simulation results. Binding free 

energies and per-residue energy contribution of these 

peptide complexes have also been calculated in Figure S7-

S9 in Supporting information. According to the per-residue 

energy contributions of RBD/Kalata B1 complex only E15 

with interaction energy –0.12 kcal/mol interacted with 

RBD binding site. Whereas Kalata B2 (E3, T4, F6 and I21), 

Kalata B7 (L11, S22, W23, P24 and K27) and β-defensin 1 

(V6, S7, Q11, L13 and P18) have strongly interacted and 

contributed more in peptide’s binding site of RBD domain. 

Based on the present study, β-defensin 4 is the “best” 

peptide as well as potent inhibitor among the other 

complexes, with the highest inhibitory can be a potential 

peptide candidate against SARS CoV-2 infection. 

PCA and FEL analysis 

The overall motion of the RBD apo protein and RBD-

bound peptide complexes was analyzed by principal 

component analysis (PCA) using construction of the 

eigenvectors. PCA was performed to the coordinates of the 

Cα-atoms on RBD-bound peptide inhibitors and RBD apo 

protein. Figure 7 as well as Figure S10 in Supporting 

information shows the comparison of PCA for RBD apo 

protein and RBD-bound knottins & defensins peptide 

complexes has shown that the motion properties described 

by the first two eigenvectors are different obtained by 

diagonalization of the atomic fluctuation’s covariance 

matrix for RBD-bound peptide complexes. They have 

exhibited more structural motions than the RBD apo 

protein and is occupying a larger space. According to 

Figure 7A and B, the energy minima basins were shown 

from red to blue, and the blue zone denotes more stable 

conformation with minimal energy.  



 

Figure 6: Per-residue decomposition projecting the minimum energy complexes structures; A) Binding free energy contribution 
of each residue in RBD- β-HD4 peptide complex; B) Per-residue binding of β-HD4 peptide into binding pocket of RBD domain 
drawn from MD snapshots (RBD protein shown in surface; Orange color denotes   β-HD4 (peptide shown as turquoise color) 
interface residues at binding site).  

 



 

 

Figure 7: PCA scatter plot generated along the first two principal components from MD simulation trajectories.; A) RBD apo 
protein; B) RBD- β-HD4 peptide complex.  

 

The 3D free energy landscapes (FELs) of the RBD apo and 

RBD-bound peptide inhibitor for the first two principal 

component (PCs) is represented in Figure 8. It is obvious 

from Figure 8 as well as Figure S11 in Supporting 

Information, suggests that the patterns of a basin on the 

FEL vary depending on the complexes. Figure S11 shows 

that while the RBD apo and other RBD-bound complexes 

explore broader conformational spaces, in case of 

RBD/betaHD4 examines a rather more constrained 

conformational space. These results indicate that the 

flexibility of RBD apo and other RBD-bound complexes is 

increasing, which is consistent with the RMS fluctuation 

data. The analysis of free energy landscape (FEL) has been 

used to identify lower-energy basins (minima) in RBD apo 

protein and RBD-bound knottins & defensins peptide 

complexes during the MD simulation trajectory. The 

purple-blue region in all the figures represents the lowest 

Gibbs free energy. The size and shape of FEL varies among 

the different RBD-bound peptide complexes, which 

indicates the stability differences of each complex. The 

more centralized, deeper, and smaller the purple-blue areas 

of the “valley,” the more stable is the complex. As shown 

in Figure 9B, the RBD-β-HD4 peptide complex exhibits 

only one narrow and deep energy minimum, which 

indicates that this complex is stabilized in a minimum 

energy conformational region. Whereas the other 

complexes (knottins and β-HD1) and RBD apo protein 

principally exhibited two energy minima, which 

demonstrates that these two complexes cross two subspaces 

and transform between distinct conformational states.  

For the knottins and β-HD1 peptide complexes, one energy 

minimum spread out over a large portion of the free energy 

space was detected, which indicates that these complexes 

have large conformational changes in the surrounding 

regions. Even though the depth of the “valley” of each 

system was like each other, the energy minimum value was 

positively correlated with its stability. The RBD/Kalata B1, 

B2 and β-HD1 complexes has a slightly deeper energy 

minimum compared to Kalata B7 peptide complex. 

Therefore, these analyses illustrated that the binding of the 

β-HD4 peptide complex results in a higher stability, which 

is in accord with our docking and molecular dynamics 

study. 

 



 

Figure 8: Free energy landscapes (FELs) projecting the minimum energy complexes structures; A) RBD apo protein; B) RBD- 
β-HD4 peptide complex. 

 

Conclusion 

To summarize, a virtual screening of a potential knottins 

and defensin peptides was performed, which resulted 

Kalata B1, B2 and B7 and β-defensin 1 and 4 as potential 

binders. These peptide binders are competitively binding to 

RBD domain and thus could be considered as potential 

peptide inhibitors of SARS-CoV-2 infections from our in 

silico study. We started preliminary verification of the 

molecular interaction and binding stability by molecular 

dynamics study, which was later subjected to in silico 

alanine screening to identify crucial residue at the peptide 

binding interface. Further, MM/PBSA binding free energy 

(BFEs) and per-residue energy contributions identified the 

binding mode and key residues as well as PCAs and FELs 

analysis from the MD simulation trajectories reveals the 

complex stability and difference in binding affinity 

between the five peptide inhibitors and RBD domain. β-

defensin 4 (β-HD4) emerged out to be a better peptide 

binder compared to other defensins and control, based the 

on the in silico studies of thermodynamic parameters of 

bound complex. Subsequently, we are in process to validate 

the binding affinity of the acquired in silico screening of 

peptide candidates against the RBD domain of SARS-CoV-

2 by an in vitro assay. 
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