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ABSTRACT 14 

Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast 15 

chemical space due to their tunable molecular building blocks with diverse topologies. Given that 16 

an unlimited number of MOFs can, in principle, be synthesized, constructing structure-property 17 

relationships through a machine learning approach allows for efficient exploration of this vast 18 

chemical space, resulting in identifying optimal candidates with desired properties. In this work, 19 

we introduce MOFTransformer, a multi-model Transformer encoder pre-trained with 1 million 20 

hypothetical MOFs. This multi-modal model utilizes integrated atom-based graph and energy-grid 21 

embeddings to capture both local and global features of MOFs, respectively. By fine-tuning the 22 

pre-trained model with small datasets ranging from 5,000 to 20,000 MOFs, our model achieves 23 

state-of-the-art results for predicting across various properties including gas adsorption, diffusion, 24 

electronic properties, and even text-mined data. Beyond its universal transfer learning capabilities, 25 

MOFTransformer generates chemical insights by analyzing feature importance through attention 26 

scores within the self-attention layers. As such, this model can serve as a bedrock platform for 27 

other MOF researchers that seek to develop new machine learning models for their work. 28 

  29 
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Introduction 30 

Metal-organic frameworks (MOFs) are a class of crystalline porous materials used for various 31 

energy and environmental applications1-4 due to their excellent properties such as large surface 32 

area,5 high chemical/thermal stability,6 and tunability.7 Given that MOFs are composed of 33 

thousands of tunable molecular building blocks (i.e., metal nodes and organic linkers), an infinite 34 

number of MOFs can, in principle, be synthesized taking into all the different combinations. To 35 

efficiently explore this vast MOF search space, it is important to identify the structure-property 36 

relationship for a given application. One can then focus on MOFs that contain specific structures 37 

that can lead to user-desired properties. To gain information regarding this relationship, high-38 

throughput computational screening approaches has been primarily used by conducting 39 

simulations on a large dataset of MOF structures and retroactively identifying the 40 

structure/property relationship.8-11 However, this can be a cumbersome process and more 41 

importantly, one would need to conduct independent computational screenings for each of the 42 

applications, which requires a vast quantity of computational resources. 43 

An alternative way to discover the structure-property relationship is through a machine-learning 44 

(ML) approach, and this methodology has gained a lot of traction lately.12,13 In particular, 45 

geometric descriptors of MOF structures (e.g. void fraction and pore volume) have been used to 46 

accurately predict various gas adsorption properties.14-16 Also, Bucior et al.17 developed a machine 47 

learning model using energy grid histograms as descriptors to predict gas uptake properties. For 48 

diffusion properties, Ibrahim et al.18 developed a machine-learning model to predict N2/O2 49 

selectivity and diffusivity using geometric, atom-type, and chemical feature descriptors. For 50 

electronic properties, Rosen et al.19 demonstrated that a graph neural network facilitates capturing 51 

the underlying chemical features leading to accurate predictions in the band gap values for the 52 
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MOFs. Unfortunately, in all these previous studies, the developed machine-learning model cannot 53 

be readily transferred from one application to another. As such, one would need to restart the 54 

training process and develop a new machine-learning model from scratch for every different 55 

application. 56 

To remedy this issue, one can utilize transfer learning, which incorporates knowledge from one 57 

machine learning application to another and, thereby, in principle, saving computational time for 58 

subsequent machine learning works. Although transfer learning has been applied in a few cases 59 

for MOFs, it is still limited to specific properties (e.g. transfer knowledge from gas uptake to gas 60 

diffusivity or between different gas types), limiting their utility.16,20 To make transferability a 61 

feasible solution, a universal transfer learning model that can be applied to all possible properties 62 

needs to be constructed. To achieve this, machine-learning models and descriptors should capture 63 

two disparate types of features for MOFs: (1) local features (e.g., specific bonds and chemistry 64 

makeup of the building blocks) and (2) global features (e.g., geometric and topological descriptors). 65 

Although both the local descriptors (e.g. CGCNN,19,21 chemical descriptors,18 RACs,22,23 and 66 

building-block embedding.11,24,25) and the global features (e.g., geometric features calculated by 67 

ZEO++,26 the histograms of energy-grids.16,17) have been developed previously, as far as we know, 68 

none of these works have effectively captured both the local and global features to achieve 69 

universal transfer learning. 70 

When it comes to multi-modal learning that takes in multiple inputs, the Transformer 71 

architecture27 (initially proposed for sequence data such as language models) has emerged as the 72 

dominant modeling network. Given that the Transformer consists of self-attention layers, which 73 

enables handling sequences of data in parallel, it facilitates efficient training of neural networks 74 

with vast amounts of data. In 2019, Google introduced BERT, a pre-training Transformer encoder 75 
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in the language model,28 and demonstrated remarkable performance in transfer learning. By fine-76 

tuning the pre-trained BERT model, it obtained state-of-the-art performance results for many 77 

Natural Language Process (NLP) tasks such as question-answering and named entity recognition. 78 

Moreover, for computer vision, various vision Transformer architectures have emerged as an 79 

alternative solution to convolution neural networks (CNNs).29 Recently, the pre-trained 80 

Transformers' transfer learning strategy has been expanded to multi-modal learning.30 And finally, 81 

the pre-trained multi-modal Transformers achieved state-of-the-art results in vision-language 82 

models such as image captioning and vision-question answering.31-33 Due to its superior 83 

performance, the Transformer architectures have recently been adopted to predict various 84 

properties of MOFs.34,35 85 

In this work, for the first time in MOF research, we introduce the multi-modal Transformer 86 

architecture (named “MOFTransformer”), which captures both the local and global features. Our 87 

MOFTransformer was pre-trained with 1 million hypothetical MOFs (hMOFs). By fine-tuning the 88 

pre-trained MOFTransformer, it showcases excellent prediction capabilities across multiple 89 

different properties (e.g., gas uptake, gas diffusivity, electronic properties of MOFs, and text-90 

mined data). Besides its superior performance, this architecture allows chemists to capture insights 91 

from attention scores obtained by the attention layers of the MOFTransformer. As such, we believe 92 

that this model can serve as a bedrock architecture/model for future machine learning research for 93 

the MOF community. 94 

95 
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 96 
Figure 1. (a) Overall schematics of MOFTransformer. The model takes both local and global 97 

features as inputs. In a pre-training step, it is trained with three pre-training tasks. In the fine-tuning 98 

step, the model is trained to predict desired properties of MOFs using the weights of the pre-trained 99 

model as initial weights. (b) The architecture of the MOFTransformer. The input embedding takes 100 

atom-based graph embeddings and energy-grid embeddings that serve as local and global features, 101 

respectively.  102 
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Results 103 

MOFTransformer 104 

The overall schematics of our MOFTransformer is shown in Figure 1(a). To build towards 105 

universal transfer learning, both pre-training and fine-tuning strategies are implemented. The 106 

objective of pre-training is to allow the MOFTransformer to learn the essential characteristics of a 107 

MOF. This pre-trained model serves as a starting point for all subsequent applications. Fine-tuning 108 

refers to the process of training the pre-trained models for the specific application at hand (e.g. gas 109 

adsorption uptake prediction). Figure 1(b) shows the schematic of the MOFTransformer 110 

architecture, which is based on a multi-layer bidirectional Transformer encoder developed by 111 

Vaswani et al.27 The MOFTransformer is a multi-modal Transformer that takes two types of 112 

embedding as inputs, each representing the local and global features: (1) atom-based graph 113 

embedding (2) energy-grid embedding. 114 

Previously, Xie et al.21 devised crystal graph convolution neural networks (CGCNN) that 115 

transforms atoms (i.e., nodes), bonds (i.e., edges), and their features (i.e., the distance between 116 

atoms) into a vector space. Although CGCNN consists of convolutional layers and pooling layers 117 

from the original paper, the atom-based graph embedding in the MOFTransformer uses output 118 

vectors of the CGCNN without the pooling layers. It allows our model to deal with the atom-wise 119 

features without losing information. It should be noted that many atoms in the unit-cell of MOFs 120 

have the same embedding from the CGCNN, given that the CGCNN creates the embedding by 121 

taking atom types of nodes, distances, and atom types of the neighbor nodes (see Supplementary 122 

Figure S1). We grouped the topologically identical atoms and defined these sets as unique atoms 123 

(the details of the algorithm are explained in Supplementary Note S1). Removing the information 124 
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from the overlapping atoms enables efficient training and prevents significant memory issues that 125 

frequently appear when training with long sequences of inputs.  126 

When it comes to the energy-grid embedding, the energy grids were calculated using a methane 127 

molecule probe that was selected due to its facility in modeling. Universal Force Field,36 and 128 

TraPPE37 were used to describe adsorbate-adsorbent van der Walls interactions in MOFs and the 129 

methane molecule, respectively. The 3D energy grids can be treated as 3D images, which means 130 

that the grid points and the energy values of the energy grids serve as pixels and 1-channel colors, 131 

respectively. Similar to the Vision Transformer,29 the MOFTransformer takes 1-dimensional (1D) 132 

patches of the flattened 3D energy grids where (H, W, D) are the height, width, and depth of energy 133 

grids and (P, P, P) is the patch resolution, and N = HW D/P3 is the number of patches. Given that 134 

the energy grids were interpolated to 30 × 30 × 30 Å, the height H, weight W, and depth D are 30 135 

Å. The patch size P was set to 5 Å, so the number of patches N is 216. 136 

The MOFTransformer model is derived from the BERT-based model28 (L=12, H=768, A=12), 137 

where L is the number of blocks, H is the hidden size, and A is the number of self-attention heads. 138 

Similar to BERT’s class and separate tokens, the class token [CLS] and the separate token [SEP], 139 

which are learnable embedding layers, are located at the first position and between the two types 140 

of embedding, respectively (see Figure 1(b)). The [CLS] token is a head token of the Transformer 141 

blocks and predicts desired properties by adding a single pooling layer for the pre-training and 142 

fine-tuning tasks. Apart from these, a volume token [VOL], which is the normalized cell volume, 143 

is added at the final position of the input embedding because the interpolation of the energy grids 144 

leads to a loss of information regarding the volume of the original energy grids. Finally, position 145 

embedding and modal-type embedding, which are also learnable embedding layers, are added to 146 

the input embedding by the element-wise summation. The position embedding is a vector that 147 
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encodes the position of the sequence, and the modal-type embedding encodes the two types of 148 

embedding to 0 and 1. 149 

Understanding MOF descriptors 150 

It is important to recognize how MOF descriptors (i.e., local features and global features) 151 

influence the properties of MOFs. As shown in Figure 2, H2 uptake, H2 diffusivity, and band gap 152 

were selected as case-study applications for MOFs that represent adsorption, diffusion, and 153 

electronic properties, respectively. Figure 2(a-c) shows the structure-property maps obtained from 154 

the molecular simulations for each of these applications. For H2 uptake and diffusivity, the data 155 

was taken from our fine-tuning dataset (20,000 structures). The band gap values are obtained from 156 

the QMOF database (version 13) with the PBE functional that includes a total of 20,373 structures. 157 

From Figure 2(a-b), it can be seen that the H2 uptake and diffusivity increase with accessible 158 

volume fraction and are strongly dependent on the MOF topology due to the correlation between 159 

topology and void fraction. Meanwhile, the band gap exhibits no correlation with accessible 160 

volume fraction and topology, which is reasonable given that electronic properties are more 161 

dependent on local chemical features as opposed to global geometric features. 162 

On top of this, Figure 2(d-f) shows the correlation between the MOF properties and the types of 163 

metal atoms. It can be seen that the dependence on metal atoms is lowest for H2 uptake while 164 

highest for the band gap energy. And similar trends can be found for the organic linkers (see 165 

Supplementary Figure S2). Along with the aforementioned geometric analysis, Figure 2(d-f) 166 

confirms that adsorption and diffusion properties rely more on global features, while electronic 167 

properties rely more on local features. Apart from these, some properties like O2 diffusivity (which 168 

is more dependent on electronic effects than H2 diffusivity) and CO2 Henry coefficient have more 169 

complex correlations between features and properties (see Supplementary Figure S3). As such, 170 
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this illustrates the importance of integrating both local and global features within the Transformer 171 

to enable universal transferability across different applications. 172 

  173 
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 174 

Figure 2. (a-c) Scattered plots showing the relationship between accessible volume fraction and 175 

various properties (i.e., gas uptake, diffusivity, and bandgap). Gray dots represent the MOFs from 176 

each database, and colored dots represent MOFs with the top four topologies obtained from 177 

MOFid.38 (d-f) The box plot of properties (adsorption, diffusion, and band gap) for each metal 178 

type. The dark line in the center of the box represents the median.  179 
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Pre-training Results  180 

The pre-training tasks play an essential role in determining the effectiveness of the transfer 181 

learning performance. Three pre-training tasks were designed to capture the essential features of 182 

the MOFs: (1) MOF topology prediction (MTP), (2) void fraction prediction (VFP), and (3) metal 183 

cluster/organic linker classification (MOC). For the MTP task, the model was trained to predict 184 

the 1,079 topologies of MOFs by adding a classification head, which consists of a single dense 185 

layer to the [CLS] token. The list of topologies is summarized in Supplementary Table S1. For the 186 

VFP task, the model is trained to predict accessible void fraction calculated by ZEO++26 by adding 187 

single dense layers to the [CLS] token. Finally, the MOC task was performed as it would enable 188 

the model to learn the features separately stemming from each metal node and organic linker. The 189 

binary classification (determining a given MOF atom as belonging to the metal or the organic 190 

linker) is conducted for the atom-wise features of atom-based embedding. The accuracies of MTP 191 

and MOC were 0.97, 0.98 and the MAE of VFP was 0.01. 192 

Next, we visualized the embedding vector of the pre-training model in a two-dimensional space 193 

using t-SNE, and PCA methods, as shown in Figure 3. Figure 3(a) shows a result of a t-SNE plot 194 

for the embedding vector of class tokens with the top 10 frequently appearing topologies in the 195 

dataset. Figure 3(a) shows that MOFs with different topologies are clustered together and 196 

segregated from other MOFs, indicating that proper learning has occurred.  And the same pattern 197 

of results was seen for all topologies (see Supplementary Figure S4). Furthermore, it is interesting 198 

to note that the PCA plots exhibit the distribution of the embedding vector that gradually increases 199 

according to the void fraction, as shown in Figure 3(b). This indicates that the embedding vectors 200 

are clustered with similar values of void fraction. These results demonstrate that the pre-training 201 

model is successfully trained to capture the critical features of the MOFs. 202 
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203 

Figure 3. (a) For the top 10 frequently appearing topologies, the t-SNE plot embeds the class 204 

tokens of the pre-training model. (b) The class tokens of the pre-trained model are embedded by 205 

the PCA method, and a void fraction determines their colors. (c) Plots of MAE results of the fine-206 

tuning model and three baseline models with datasets of H2 uptake, H2 diffusivity, and band gap 207 

according to dataset size from 5,000 to 20,000. The baseline models are machine learning models 208 

that were respectively used to predict gas uptake, diffusivity, and band gap values. 209 

  210 
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Fine-tuning Results  211 

Figure 3(c) shows the fine-tuning results for predicting H2 uptake (100 bar), H2 diffusivity, and 212 

band gap, which were obtained from GCMC, MD, and DFT simulations, respectively. While 1 213 

million hMOFs were used for the pre-training step, a relatively smaller number of MOFs (i.e., 214 

5,000 to 20,000) were used for training during the fine-tuning stages. The performance of the fine-215 

tuning is compared with the three baseline models (i.e., the energy histogram,17 descriptor-based 216 

ML model,18 and CGCNN19,21) as these have shown high performance in predicting gas uptake, 217 

diffusivity, and band gap, respectively. And from these comparisons, it can be seen that the 218 

MOFTransformer outperforms all of these other models, demonstrating both its superior 219 

performance as well as transferable capabilities. It is worth noting that the MatErials Graph 220 

Network (MEGNET)39 outperforms the CGCNN in predicting the band gaps of MOFs40. The 221 

MEGNET utilizes global state attributes such as system temperature as well as atomic and bond 222 

attributes as inputs. However, graph network models like CGCNN and MEGNET may have 223 

difficulty in effectively predicting properties that rely on global features such as gas uptake and 224 

diffusivity for MOFs. This is due to the larger crystal system of MOFs, which is characterized by 225 

a larger number of atoms and defined by metal clusters and organic linkers as nodes and edges, 226 

respectively. As a result, the MOFTransformer exhibits strong performance in universal transfer 227 

learning for MOFs compared to graph network models. The ablation studies of the fine-tuning to 228 

demonstrate the effect of the data size on the pre-training tasks are explained in the Supplementary 229 

Note S2.  230 

To demonstrate further transferability across different applications, the MOFTransformer was 231 

fine-tuned for various properties summarized in Table 1. Table 1 shows a performance comparison 232 

between our fine-tuned model and the machine-learning models used in other works. And it can 233 
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be seen that the MOFTransformer model has either similar or higher performance (i.e., higher R2 234 

score or lower MAE) across all properties. In particular, it is worth noting the robustness of our 235 

model across different gas types, even though the probe molecule used to generate energy grids 236 

was CH4. The reason is that overall shape of energy grids is relatively insensitive to the type of 237 

probe molecule which has little effect on our model to learn global features from energy-grid 238 

embeddings. In addition, the MOFTransformer can accurately predict properties at ambient 239 

condition, given that N2, O2 uptake and diffusivity were calculated at 1 bar and 298 K. Moreover, 240 

our model extends well to showcase lower MAE than the machine learning model using revised 241 

autocorrelations (RAC)41 with geometric features as descriptors to predict solvent removal stability 242 

and thermal stability collected by text-mining. It is worth highlighting that our model showcases 243 

high performance in predicting the experimental data like text-minded data as well as the 244 

calculated properties. This result suggests that one can easily obtain high-performance structure-245 

properties relationships by using our pre-trained model and fine-tuning it without needing to 246 

develop a new model from scratch. 247 

 248 
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 249 
Figure 4. The schematics for attention score of atom-based embedding and energy-grid embedding 250 

in IRMOF-1. (left) Repeating building blocks models in IRMOF-1 with atomic size proportional 251 

to attention score. (right) Energy-grids that represent attention scores by color. The original form 252 

of the IRMOF-1 is shown in the “base.” 253 

  254 
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Discussion 255 

Apart from the universal transfer learning, feature importance and its interpretation can lead to 256 

a better understanding of the relationship between the MOF structures and their properties. Given 257 

that attention scores measure how much the model should pay attention to inputs when predicting 258 

desired properties, attention layers of the Transformer were assigned high attention scores to input 259 

features according to their importance. From the fine-tuning models that predict H2 uptake, H2 260 

diffusivity, and band gap, feature importance analysis was implemented for IRMOF-1, which is 261 

one of the representative isoreticular MOFs. Figure 4 shows both the repeating building blocks 262 

models, which represent the metal cluster and organic linker, of IRMOF-1 (representing local 263 

features) and the 6×6×6 patches of energy-grids (representing global features). The sizes of atoms 264 

in the repeating building block models are scaled according to the attention scores obtained by the 265 

atom-based embeddings. And the colors of the patches are proportional to the attention scores 266 

obtained from the energy-grid embeddings. As can be seen from Figure 4, the atom-based 267 

embeddings are assigned with low attention scores (e.g. visualized by small atom sizes) when 268 

predicting H2 uptake and diffusivity. On the other hand, the energy-grid embeddings are assigned 269 

with high attention scores, which is in accordance with the fact that H2 uptake and diffusivity rely 270 

more on the global features. Meanwhile, for the band gap prediction, there is a reversal in trend as 271 

the atom-based graph embeddings have higher attention scores compared to energy-grid 272 

embeddings as the band gap is more dependent on the local features. The additional feature 273 

importance analysis for other properties (e.g. O2 diffusivity and CO2 Henry coefficient) were also 274 

conducted (see Supplementary Figure S8). Note that the feature importance analysis via attention 275 

scores is in line with previous findings and a chemist’s intuition. 276 
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Beyond the case study of IRMOF-1, we implemented an in-depth analysis of feature importance 277 

for the atom-based graph and the energy-grid embeddings for band gap and H2 uptake, respectively. 278 

Given that the band gap is defined by the difference between the conduction-band minimum (CBM) 279 

and the valance-band maximum (VBM), one might think that the atoms that exhibit strong peaks 280 

at the CBM and VBM play a critical role in determining its value. Interestingly, we identified that 281 

the atoms with peaks at the CBM and VBM strongly correlate with the atoms having high attention 282 

scores. Figure 5(a) shows the repeating building blocks models of IRMOF-1, 2, 3, and Ni-IRMOF-283 

1 and their density of state (DOS) plots. IRMOF-2 and IRMOF-3 are variants of the IRMOF-1 284 

structure with the BDC linker functionalized by −Br and −NH2. For IRMOF-2 and IMROF-3, the 285 

atoms that are part of the organic linkers (i.e., C, H, N, Br) have higher attention scores than those 286 

from the metal clusters (i.e., Zn, O). Consistent with these results, the atoms of the organic linker 287 

have peaks at the CBM and VBM compared to those of the metal clusters. Meanwhile, for the Ni-288 

IRMOF-1 (which has Ni instead of Zn compared to the IRMOF-1), the atoms that belong to the 289 

metal cluster have higher attention scores and stronger peaks at the CBM and VBM compared to 290 

the organic linkers. These tendencies are consistent with other examples that were randomly 291 

selected in the QMOF database (see Supplementary Figure S9). Apart from these, we confirmed 292 

that the feature importance analysis could capture the underestimation of the band gap calculated 293 

by the PBE functional (see Supplementary Note S3). Hence, these results demonstrate that the 294 

fine-tuned model successfully learns the chemical features that are the more important when it 295 

comes to the band gap predictions. 296 

When it comes to the energy-grid embeddings, one could argue that  the patches located near 297 

the metal atoms have an important role on determining the gas uptake 42 Indeed, from the fine-298 

tuned model to predict H2 uptake, the 8 highest attention scores from the 6x6x6 energy-grid patches 299 
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of IRMOF-1 are located near the metal atoms as shown in Figure 5(b). The metal atoms can make 300 

stronger bonding with adsorbates than other atoms such C, H, O, resulting in lower energy values 301 

for energy-grid patches near the metal atoms. Based on these observations, one can infer that the 302 

energy values of energy-grid patches can have an impact on determining attention score. Therefore, 303 

we plotted the relationship between the energy values of energy-grid points and the attention scores 304 

for each patch to further illustrate this relationship. The minimum energy values are normalized 305 

by their corresponding structure (or unit cell), which is represented on the y-axis of Figure 5(c). 306 

Figure 5(c) suggests that the energy-grid points with high attention scores tend to have relatively 307 

low energy values, as seen in the patches near the metal atoms. It is essential to highlight the fact 308 

that the scatter points within the high attention region (attention score > 0.008) exhibit a lower 309 

difference of energy than 20 kJ/mol. 310 
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 311 

Figure 5. (a) Schematics of attention score for atom-based embedding, and density of state (DOS) 312 

plots for IRMOF-1, 2, 3, and Ni-IRMOF-1. The atomic sizes of repeating building blocks model 313 
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are proportional to the attention score. E means the energy, and Ef indicates the Fermi level. 314 

Positive and negative values of DOS indicate spin-up and spin-down channels, respectively. (b) 315 

Schematic of high attention score patches of energy-grid embedding for IRMOF-1. (c) Scattered 316 

plot for the difference of minimum energy between patch and unit cell according to energy-grid 317 

embedding. Ep,min refers the minimum energy of the patch, and Eu,min refers to the minimum energy 318 

of the unit cell. The red line (x = 0.008) distinguishes between high and low attention regions. 319 

  320 



 22

Conclusions 321 

For the first time, we introduced a multi-modal pre-trained Transformer to capture both local 322 

and global features of MOFs. The model facilitates capturing the chemistry of metal nodes and 323 

organic linkers from the CGCNN and the information on geometric and topological features such 324 

as pore volume and topology from the energy grids. By fine-tuning the MOFTransformer model, 325 

our model outperforms all of the other state-of-the-art machine learning model across various 326 

different properties, showing its universal transferability as well as superior performance.  327 

Moreover, the model can provide insights by analyzing the feature importance from attention 328 

scores obtained from attention layers of the fine-tuned model. We believe that this model can be 329 

used as a bedrock model for other MOF researchers who wish to start their machine learning work 330 

and, as such, can help accelerate materials discovery and research within the field of porous 331 

materials. 332 

  333 
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Methods 334 

Construction of hMOFs 335 

The hMOFs used to train our MOFTransformer were constructed using PORMAKE,11 a Python 336 

library that can generate MOFs by combining building blocks with different topologies. These 337 

building blocks and the topologies were obtained from ToBaCCo,43 CoREMOF (with all of the 338 

solvents removed),44 and RCSR database.45 Altogether, 1 million and 20,000 hMOFs were 339 

generated for the pre-training, and fine-tuning dataset, respectively, and the details of building 340 

hMOFs are explained in Supplementary Note S4. All of the generated structures were 341 

geometrically optimized using the LAMMPS46 package with the UFF force field.36 342 

Computational details for molecular simulation  343 

For the fine-tuning dataset, H2 uptake and diffusivity (or diffusion coefficient) were selected to 344 

represent adsorption and diffusive properties. H2 was selected to enable facile calculation while 345 

being different from the guest molecule (i.e., methane) used for the energy grid construction. The 346 

calculations were conducted using the RASPA package.47 For the H2 molecule, a united atom 347 

model was adopted. Also, the pseudo-Feynmna-Hibbs model was used to express the H2 behavior 348 

at low temperature, which leads to fitting the Lenard-Jones (LJ) potentials to Feynman-Hibbs 349 

potential at T = 77 K.48,49 Except for the H2 molecules, the UFF force field was used with the 350 

Lorentz-Berthelot mixing rule and a cutoff distance of 12.8 Å.  351 

For H2 uptake calculation, the GCMC calculation was performed at 100 bar and 77 K for 10k 352 

production cycles with 5k cycles used for the initialization. Diffusivity (or diffusion coefficient) 353 

was calculated at infinite dilution at 77 K using the MD simulation. Given that the intermolecular 354 

interactions of the H2 atoms are ignored for the infinite dilution simulation, it may sometimes lead 355 

to the initial configurations of the H2 atoms captured within the small pores of MOFs. The initial 356 
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configurations were obtained from the MC simulation without infinite dilution for 5k cycles to 357 

prevent this from happening. Then, the MD simulations were conducted by NVT ensemble with 1 358 

fs time step.18,50 The simulations were run for 3 million cycles, with 1k cycles used for the 359 

initialization and 10k cycles for equilibration. The guest molecules' mean-squared displacement 360 

(MSD) was computed every 10k cycles, and the diffusion coefficient was obtained using the slope 361 

of the MSD through Einstein’s relation.51 362 

Pre-training and Fine-tuning 363 

In the pre-training step, AdamW52 optimizer with a learning rate of 10−4 and weight decay of 364 

10−2 was used in all three tasks. The model was trained with a batch size of 1,024 during 100 365 

epochs. The pre-training dataset was randomly split into training, validation, test sets with the 366 

number of 800,000, 126,611, 100,000, respectively. The learning rate was warmed up during the 367 

first 5 % of the total epoch and then was linearly decayed to zero for the remaining epochs.  368 

 For fine-tuning, the MOFTransformer is trained to predict the desired properties with the model 369 

initialized by the converged weights from the pre-trained model. By adding a single dense layer to 370 

the class token, all model weights are fine-tuned to predict desired properties of MOFs. Given that 371 

the relatively small datasets are used during the fine-tuning step, the model was trained with a 372 

batch size of 32 during 20 epochs whose optimizer and learning rates are the same as those of the 373 

pre-training step. The fine-tuning dataset was randomly split into training, validation, test sets in a 374 

ratio of 0.8:0.1:0.1. For scaling the target properties, the standardization method was adopted. 375 

Training details of the three baseline models for comparison of the fine-tuning models are 376 

explained in Supplementary Note S5. 377 

  378 
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Table 1. A table of fine-tuning results with the publicly accessible databases of MOFs that include 538 

the properties calculated by GCMC, MD, and even text-mining data. The results of the machine 539 

learning models used in the paper on the databases are summarized to compare the performance. 540 

Property MOFTransformer Original paper 
Number 

of data 
Remarks Ref 

N2 uptake R2 : 0.78 R2 : 0.71 5,286 CoREMOF 18 

O2 uptake R2 : 0.83 R2 : 0.74 5,286 CoREMOF 18 

N2 diffusivity R2 : 0.77 R2 : 0.76 5,286 CoREMOF 18 

O2 diffusivity R2 : 0.78 R2 : 0.74 5,286 CoREMOF 18 

CO2 henry coefficient MAE : 0.30 MAE : 0.42 8,183 CoREMOF 22 

Solvent removal  

stability classification 
ACC : 0.76 ACC : 0.76 2,148 

Text-mining 
data 

40 

Thermal  

stability regression 

R2 : 0.44 

(MAE : 45°C) 

R2 : 0.46 

(MAE : 44°C) 
3,098 

Text-mining 
data 

40 
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