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Abstract: CHARMM is rich in methodology and functionality as one of the first programs 
addressing problems of molecular dynamics and modeling of biological macromolecules and their 
partners, e.g., small molecule binding ligands. When combined with the highly developed 
CHARMM parameters for proteins, nucleic acids, small molecules, lipids, sugars, and other 
biologically relevant building blocks, and the versatile CHARMM scripting language, CHARMM 
has been a trendsetting platform for modeling studies of biological macromolecules. To further 
enhance the utility of accessing and using CHARMM functionality in increasingly complex 
workflows associated with modeling biological systems, we introduce pyCHARMM, Python 
bindings, functions, and modules to complement and extend the extensive set of modeling tools 
and methods already available in CHARMM. These include access to CHARMM function-
generated variables associated with the system (psf), coordinates, velocities and forces, atom 
selection variables and force field related parameters. The ability to augment CHARMM forces 
and energies with energy terms or methods derived from machine learning or other sources, 
written in Python, CUDA or OpenCL and expressed as Python callable routines is introduced 
together with analogous functions callable during dynamics calculations. Integration of Python-
based graphical engines for visualization of simulation models and results are also accessible. 
Loosely coupled parallelism is available for workflows such as free energy calculations, using 
MBAR/TI approaches or high-throughput multisite 𝜆-dynamics (MSλD) free energy methods, 
string path optimization calculations, replica exchange and molecular docking with a new Python-
based CDOCKER module. CHARMM accelerated platform kernels through the 
CHARMM/OpenMM API, CHARMM/DOMDEC and CHARMM/BLaDE API are also readily 
integrated into this Python framework. We anticipate that pyCHARMM will be a robust platform 
for the development of comprehensive and complex workflows utilizing Python and its extensive 
functionality as well as an optimal platform for users to learn molecular modeling methods and 
practices within a Python-friendly environment such as Jupyter Notebooks. 
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Introduction 
 
Understanding how biological macromolecular systems (proteins, nucleic acids, lipid membranes, 
carbohydrates, and their complexes) function is a major objective of current research by 
computational chemists and biophysicists. The utility of atomic models with realistic microscopic 
interactions in the investigation of biomolecules, as well as other chemical systems, has been 
established through what now represents nearly five decades of computational studies to address 
biological questions.1 These methods and applications have been described in a plethora of books 

and reviews.
2-11 Moreover, such studies have now reached a point where computational models 

play an important role in the design and interpretation of experiments.12 This is of particular 
importance where molecular simulations are used to obtain information that is difficult to 
determine experimentally.

13, 14  
 
With the continued evolution of the field of biomolecular simulation and the complexity of 
questions explored and phenomena investigated, maintaining maximum flexibility and availability 
of a wide range of computational methods for the exploration and integration of novel ideas in 
research and its applications is essential. Access to software platforms for the development and 
application of computational biophysical methods has spurred the introduction of several general-
purpose programs distributed in academic and commercial environments. Many of these were 
described in two special issues of the Journal of Computational Chemistry (JCC)15-20 and 
elsewhere.21-23 Additionally, resources that enable complex simulation models of biological 
macromolecules to be set-up, run and analyzed have emerged, with CHARMM-GUI seeing the 
broadest range of functionality.24-47 
  
CHARMM (Chemistry at HARvard Molecular Mechanics) is a general and flexible molecular 
simulation and modeling program that uses classical (empirical, fixed charge and polarizable, and 
semi-empirical) and quantum mechanical (QM) (semi-empirical or ab initio) energy functions for 
molecular systems of many different classes, sizes, and levels of heterogeneity and complexity. 
This functionality is integrated into a single executable (approximately 1,000,000 lines of modular 
Fortran, C/C++, CUDA and OpenCL code) and calculations are accessed using CHARMM 
through the interpreted CHARMM scripting language. This feature in CHARMM is unique relative 
to the other major packages noted above, and has been provided since the introduction of 
CHARMM in 1983.48 The script-level programmability of CHARMM has enabled many algorithmic 
ideas and complex simulation schemes to be tested and applied without the need to develop 
software routines to be compiled and integrated with the executable version of the program on a 
particular platform. This ability to prototype methodological ideas prior to committing them to code 
has been a key driver in the impressive range of methods available in CHARMM.  
 
Within the CHARMM scripting language a set of command structures, including GOTO, STREam, 
and IF-ELSE-ENDIf structures, corresponding to the respective control-flow statements in most 
programming languages, provide the basis for the powerful high-level scripting function that 
permits the general and flexible control of complicated simulation protocols and facilitates the 
prototyping of new methods as just noted. The various functionalities of CHARMM can be 
combined in myriad ways using these command structures. The order of accessible CHARMM 
commands at any point in the script is controlled by the data required by the command. One 
example would be calculation of the energy: the energy cannot be calculated until i) the topology 
and parameter files describing the fragment (or residue) libraries needed to generate the system 
of interest are read; ii) the sequence of said residues is specified; iii) the data structures 
associated with that sequence are generated, i.e., the psf and any patching is performed; iv) and 
the coordinates are either built or read from a file. While other programs used in the field enable 
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some of this flexibility through shell scripting or related interpreted language scripting that is 
exercised during the running of the program, these programs largely rely on fixed input files to 
describe a single computational workflow or rely on external programs and pre-processing to 
achieve related objectives. The programmability of CHARMM through its scripting language is 
unique and was instrumental in establishing both complex workflows in structure refinement as 
well as simplified interfaces for specific modeling tasks, both realized in the MMTSB ToolSet 
developed in 2004.49  
 
pyCHARMM Architecture, Organization and Functioning 
 
Given the architecture of CHARMM and its extensive programmability using the CHARMM 
scripting language, it is a natural evolution to augment CHARMM scripting language to leverage 
the popularity, familiarity and utility of the Python language.50 This task was accomplished by 
implementing a thin API for calling CHARMM routines from Python, called pyCHARMM.  
 
Installation of pyCHARMM starts with obtaining the latest version of the CHARMM source code 
and compiling CHARMM as a shared, callable library (as opposed to a binary executable). 
Separately, using the pip package manager, pyCHARMM – expressed as a Python package – is 
installed. To successfully complete the process, an environment variable called 
CHARMM_LIB_DIR is defined to inform the Python module of the location of the CHARMM shared 
library. It is this library that the modules of pyCHARMM use to access CHARMM functionalities. 
The detailed steps of installation are provided in the SI. 
 
 
A successful installation of the pyCHARMM package in a location appropriate to Python creates 
a thin Python API - where each module consists of Python bindings to Fortran functions that 
collectively constitute a thin Fortran API, a.k.a. the pyCHARMM API. Through these functions, 
access is provided to the core CHARMM functionalities and users only interact directly with the 
Python API. This architecture, through careful marshalling, ensures that many of the key 
CHARMM data structures can be bi-directionally passed between the two APIs. Figure 1 
illustrates the architecture of the installation. From the user’s end, calls to functions are made 
which eventually access Fortran/C++ routines in CHARMM via Python bindings to these routines. 
A Python binding in a module calls a Fortran function defined in a Fortran module file and they 
typically have a one-to-one relation. As Fortran routines are successfully executed, the returned 
data travel back to the end-user. 
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Figure 1: pyCHARMM architecture. (Top) The end user writes a Python script to call CHARMM 
commands by their Python expressions after importing the necessary Python modules in 
pyCHARMM. (Middle) The functions available to the user are the Python modules in the Python 
API, which in many cases represents bindings to the Fortran routines in the pyCHARMM API (or 
the Fortran module). The pyCHARMM API is a collection of Fortran modules that is included with 
the CHARMM source code. 
  
 
The current pyCHARMM APIs consist of the functional components of CHARMM and they provide 
the interfaces between CHARMM functionality and its expression in Python. For example, as 
illustrated in Figure 1, the API file api_coor.F90 provides an interface between CHARMM 
coordinate functionality as part of the coordinate manipulation commands (doc/corman.info) 
and the pyCHARMM commands, api_minimize.F90 interfaces with the CHARMM ABNR, SD 
and OpenMM (OMM) minimizers, api_generate.F90 contains the interface to Python 
instantiations of psf generation and manipulation commands (from doc/struct.info) and 
api_ic.F90 enables the internal coordinate manipulation commands from CHARMM 
(doc/ic.info). A list of current pyCHARMM APIs is presented in Table S1. 
 
The CHARMM commands and functionality are then expressed through Python modules. These 
modules provide bindings to the CHARMM commands denoted by the module name and they 
must be imported into the python script before they can be used. For example import 
pycharmm.shake provides the Python bindings to set-up and execute the SHAKE command 
and import pycharmm.nbonds allows the manipulation of the non-bonded data structure (e.g., 
see doc/nbonds.info). Likewise, the module psf.py provides an interface to the psf-based 
data structures and access to the variables that reside within them. Table S2 lists the Python 
modules provided as part of the CHARMM distribution for use in pyCHARMM.  
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In the Python expression of CHARMM, the basic CHARMM scripting keywords have been largely 
maintained to provide continuity in the structure of CHARMM commands through pyCHARMM. 
This was deliberate to conveniently enable an experienced CHARMM user to transfer their current 
CHARMM scripts to pyCHARMM scripts as well as allow new CHARMM users to utilize the 
extensive libraries of CHARMM scripts that are available on the world-wide-web. The pyCHARMM 
modules can also be conveniently integrated with other functionalities from external Python 
modules and libraries for the creation of complicated frameworks for simulations and/or analyses. 
For instance, the module energy_func.py represents an abstraction of the CHARMM user 
energy term and enables one to call any user-supplied energy function at every energy evaluation 
during pyCHARMM execution. This function can also utilize Python interfaces to machine learned 
energy functions such as TorchANI Neural Network Potential in PyTorch,51 as well as 
implementations of CUDA or OpenCL utilizing established Python APIs, e.g, NVIDIA CUDA 
Python 11.7.1, Numba, PyCUDA, and PyOpenCL.  
 
A Python module in pyCHARMM typically represents a single command in CHARMM and is 
documented with `Docstrings`, which allow the user to access documentation at the command 
line or at the Python session prompt. Alternatively, a user can also visit pyCHARMM’s 
documentation located at https://github.com/clbrooksiii/pyCHARMM-Workshop that provides 
details about the usage of each Python module, the CHARMM commands they provide bindings 
to (with examples and links to the command’s documentation webpage), and their member 
functions along with their syntactic usage, input parameters and return values.  
 
 
While the core of CHARMM functionality is directly represented by Python modules, in the present 
implementation not every CHARMM command is expressed by an explicit Python binding. 
Nevertheless, all CHARMM commands are available for use in Python scripting through the 
lingo.py module, which is an interface to the CHARMM script command interpreter. This 
module can also be combined with script.py to create callable custom python functions for 
repeated tasks.  
 
 
Python Mapping of “Standard” Molecular Modeling Tasks in pyCHARMM 
 
It is instructive to illustrate the correspondence between a simple task in CHARMM scripting 
language and pyCHARMM. In Figure 2, we illustrate this for the case of building a blocked alanine 
residue, minimizing its conformation in vacuum, and computing its energy. The emphasis is on 
the correspondence between the CHARMM script commands and the structure of the Python 
bindings to those commands. The close correspondence was a design feature instituted in this 
manner to allow users to take advantage of the wide range and distribution of CHARMM scripts 
as they begin learning to program their molecular modeling applications in pyCHARMM. 
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Figure 2: Building an alanine dipeptide. An illustration of the correspondence between CHARMM 
scripting language commands and their expression as Python functions. Shown are the specific 
tasks of building the structure of Ala-dipeptide, assigning coordinates to it, and setting up a list of 
non-bonded interaction parameters for energy minimization calculations.  
The tasks illustrated in Figure 2 also include reading the CHARMM topology and parameter files, 
reading a protein sequence, and in the end writing a CHARMM psf file and coordinates in 
CHARMM CRD and PDB formats. The Python bindings for such commands in pyCHARMM are 
contained in the read.py and write.py modules as noted in Table S2. Also included are psf 
generation and terminal patching, non-bonded specification, energy calculation and minimization. 
 
A key point to note from this illustrative example is the order in which pyCHARMM functions can 
be called. When using pyCHARMM, Pythonic functions – Python expressions of the CHARMM 
commands – must be called in the same order in which the corresponding CHARMM commands 
would typically be called. For instance, functions to read the topology and parameter files must 
precede functions to build or read the structures (using one of the many ‘struct’ module commands 
like READ SEQUence/GENErate or READ PSF). Likewise, coordinates for all the atoms in the 
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system must be defined before the functions to build the simulation box (CRYSTal) and setup 
images are called when setting up the periodic boundary conditions. 
 
Running Dynamics using pyCHARMM 

In CHARMM, the DYNAmic command is used to run molecular dynamics. In pyCHARMM, to do 
the same, an object of class `DynamicsScript` must be invoked and then the object’s member 
function `run()` must be called. An illustrative example in Figure 3 shows how the CHARMM 
DYNAmic command corresponds to the use of an instance of `DynamicsScript`. 

The example shows the use of function arguments used to instantiate the object. These 
arguments correspond exactly to the keywords that accompany the DYNAmic command in 
CHARMM. For example, the keyword “NSTEP”, which is used for the number of steps of 
integration, is supplied as a function argument by the same name (lower cased). Likewise, these 
function arguments can be used to specify the frequency-spec parameters (e.g., frequency of 
updating non-bonded lists), temperature-spec parameters (e.g., temperature and pressure 
conditions), unit-spec parameters (e.g., I/O channels) and options-spec parameters (e.g., method 
of velocity assignment) for the run. A complete list of keywords accompanying the DYNAmic 
command, with detailed documentation for each of the keywords, can be found at 
https://academiccharmm.org/documentation/version/c47b1/dynamc. One should also note that 
there are certain keywords as components of the DYNAmic command which do not have an 
associated value but whose presence in the command dictates their use. For example, the 
keyword “START” in the command instructs CHARMM to initiate a new dynamics run as opposed 
to extending a previous run (done using the RESTART keyword instead). To use them in 
pyCHARMM, the function argument (of the same name as the keyword) should be supplied with 
a ‘True’ or ‘False’ value to achieve the equivalent effect, e.g., ‘start’ = True. Conveniently, 
pyCHARMM also accommodates the use a Python dictionary with the aforementioned 
parameters instead of/in conjunction with the function arguments (Figure S1).  
 
Of added note is the fact that the ‘DynamicsScript’ class is derived from the ‘CommandScript’ 
base class in pyCHARMM. Other derivatives are the ‘NonBondedScript’ and 
‘UpdateNonBondedScript’. Likewise, they can be instantiated in the same way where the 
command keywords can be provided as function arguments or Python dictionaries or both. Then 
a member function ‘run()’ executes the associated action. In Figure 2 above, the use of 
‘NonBondedScript’ class is shown. 
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Figure 3: Configuring and performing a molecular dynamics run using the ‘DynamicsScript’ class 
in pyCHARMM.  The correspondence with the DYNAmic command in CHARMM in terms of the 
use of command keywords as function arguments to instantiate an object of the class is shown 
and the presence of different categories of run parameters is illustrated. In Figure S1, the use of 
Python dictionaries for the same purpose is shown. 
 
pyCHARMM Script Factory 
 
The ‘script_factory’ function in the pyCHARMM module gives users a convenient way to run any 
CHARMM command like they would when running CHARMM. This feature allows them to execute 
CHARMM commands that, at present, don’t have a corresponding pyCHARMM function. The 
function takes a string as the first argument, which must correspond to a CHARMM command, 
and returns an object of the ‘CommandScript’ class. Subsequently, an object of the newly minted 
class can be instantiated while simultaneously providing arguments for the CHARMM command 
as function arguments or as keys in a Python dictionary. These arguments, akin to the 
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instantiation of the of the DynamicsScript class object mentioned above, must correspond to the 
keywords that accompany the command for which the class was created. Note that keywords, 
whose presence only directs CHARMM to invoke or revoke specific operations of that command, 
must be passed with a True or False value as opposed to keywords expected to be accompanied 
by a value, which must be passed as an argument along with that value. As a child of the 
CommandScript base class, the returned class has a ‘run()’ method which can be called to 
execute the command. Table 1 presents an example usage of the script_factory function to run 
the ‘SKIPenergy’ command in CHARMM, which directs the ‘ENERgy’ command to selectively 
exclude or include terms when calculating and printing out energy values. 
 
Table 1: Example usage of the script_factory function to execute a CHARMM command without 
a corresponding pyCHARMM function.  
SKIPenergy – 
   EXCL BOND ANGL DIHE  

import pycharmm 
NewSkipClass = pycharmm.script_factory(‘SKIPenergy’) 
my_skip = NewSkipClass(excl = “bond angl dihe”) 
my_skip.run() 
 

 
The ‘script_factory’ function and the ‘charmm_script’ function in the lingo.py module are 
essentially the same. But whereas the latter would have to be fully written every time a certain 
command is called (for example in a loop), the class returned by ‘script_factory’ associated with 
that command can be used repeatedly and more conveniently to do the same.  
 
Preserving and Extending Parallelization 
 
CHARMM has multiple accelerated platform kernels for molecular dynamics simulations and 
related modeling tasks, such as the CHARMM/OpenMM interface, CHARMM/DOMDEC52 and 
CHARMM/BLaDE53. They can all be accessed in pyCHARMM to run individual simulations on 
CPU and/or GPU hardware. In addition, the Python package mpi4py54, 55 can be used to run 
multiple simulations simultaneously, with flexible distribution of work across parallel processors 
enabling loosely-coupled parallelism via MPI. These two levels of parallelization can lead to 
significant speed-ups at par with CHARMM. However, tightly coupled MPI parallelism as used in 
large parallel DOMDEC simulations, is not currently accessible in pyCHARMM. 
 
Python Integrated Workflows Facilitate CHARMM-based Simulations in pyCHARMM 
 
A key advantage of pyCHARMM is the ready integration with a broad range of Python 
functionality. This may include existing Python-based toolkits for preparing initial structures for 
molecular modeling and simulations (e.g., RDKit,56 PROPKA,57 Pybel,58 and PDB2PQR59, 60), 
analysis of molecular dynamics simulations, such as MDAnalysis,61, 62 and MDTraj,63 and 
visualization of molecular systems and trajectories, including VMD-Python,64 PyMOL, py3Dmol 
and NGLView.65 On one hand, users could prepare a system using a single Python script and 
closely monitor the changes made during the process, for example, in a Python-friendly 
environment like Jupyter Notebooks.66 This makes pyCHARMM a powerful tool for beginners to 
learn molecular modeling and simulation. On the other hand, it allows for easy implementation of 
various pipelines using pyCHARMM and even enables end-to-end application in some cases. For 
instance, by combining pyCHARMM with free energy calculation tools like FastMBAR67 or 
pymbar,68 one can implement a pipeline to rapidly compute absolute solvation free energies of 
small molecules using the MBAR/TI approach (see Figure 4 and absolute_solvation.ipynb in SI). 
Here, multiple molecular dynamics simulations need to be performed at various 𝜆	values for a 
given molecule. Then, potential energies are computed for each trajectory under perturbed 
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thermodynamic states (i.e., with different 𝜆	values), which are used in FastMBAR,67 a Python 
solver for large scale MBAR equations, for free energy calculations. Due to the ready integration 
of pyCHARMM with FastMBAR and other Python modules such as numpy69 and pandas,70 
simulation and analysis can be performed without exiting the Python environment, and this 
pipeline allows for end-to-end prediction of absolute solvation free energy of a given small 
molecule. Similarly, we can perform high-throughput multisite 𝜆-dynamics (MS𝜆D) simulations71 
using pyCHARMM to calculate relative binding free energies for multiple small molecules to a 
target protein. In this case, the Python tool msld_py_prep72 may be utilized to identify the 
maximum common substructure of the set of small molecules, followed by charge 
renormalization. The adaptive landscape flattening (ALF) algorithm,73 which is available as a 
series of Python scripts, may be used to flatten the free energy landscapes in the alchemical 
space, thus enhancing sampling. By integrating msld_py_prep and ALF with pyCHARMM using 
Python scripts it becomes much easier to perform such MS𝜆D simulations, allowing one to 
compute the relative free energies of many molecules in a single simulation.  
 

 
Figure 4: Illustration of the workflow in the absolute solvation free energy calculation pipeline. 
Based on the thermodynamic cycle, the absolute solvation free energy is obtained from the 
difference between ∆𝐺!"##$% and ∆𝐺&"'(), i.e., the free energy change of molecule annihilation in 
vacuum and water, respectively. To compute ∆𝐺!"##$% and ∆𝐺&"'(), multiple molecular dynamics 
simulations are performed at different 𝜆	values and potential energies are computed for each 
trajectory under perturbed thermodynamic states. These simulations and energy calculations can 
be executed in parallel to reduce the overall wall-time. Finally, FastMBAR is utilized to calculate 
the free energy difference between different alchemical states. 
 
Although the original CHARMM script could also be used to develop complex workflows, 
preparing such scripts can be daunting for researchers who have little experience in molecular 
simulation and modeling. For example, to perform rigid docking with the CDOCKER module in 
CHARMM,74, 75 the CHARMM script contains more than 400 lines for grid generation, ligand initial 
placement, i.e., random translation and rotation from the pocket center, hundreds of docking trials 
with the simulated annealing algorithm, clustering and sorting of docked poses, and energy 
minimization with explicit all-atom representations. For flexible CDOCKER,76 additional scripting 
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is needed to select flexible side chains of the receptor, and to use the genetic algorithm to search 
for optimal docking poses. With pyCHARMM, these complex workflows has been compiled into a 
single Python module (pycharmm.cdocker) and standard docking calculation can be performed 
through a one-liner code (see SI). This greatly simplifies the usage of CDOCKER in CHARMM 
and is anticipated to enhance its accessibility and utility for a larger community. Also, pyCHARMM 
CDOCKER reduces I/O, which leads to reduced wall-time for a given docking trial. Therefore, 
more extensive searching can be performed to further improve the docking accuracy.77 
 
Another powerful feature in CHARMM is the ability of augmenting CHARMM forces and energies 
from user-defined energy terms in molecular modeling applications, e.g., molecular dynamics 
simulations, minimization, etc. With pyCHARMM, we believe that it becomes exceptionally easy 
to use this feature, for instance, in enhanced sampling techniques where novel, custom biasing 
potentials need to be incorporated, or in simulations with machine learning based force fields. In 
the SI (see NNPotential_pyCHARMM.ipynb), we illustrate a simple example of using the 
TorchANI force field 51 in pyCHARMM to examine the potential energy as a function of the dihedral 
angle of butane. TorchANI is a Python implementation of the ANI neural network potentials based 
on PyTorch, which provides accurate energies and forces for organic molecules at the QM level. 
With a concise pyCHARMM script, one can set up the TorchANI model and incorporate it into 
CHARMM calculations through the user-defined energy term. Such extensibility, customization 
and user-friendliness of pyCHARMM may dramatically simplify the setup of simulations with novel 
potential energy functions. For example, mixed machine-learning/empirical energy functions have 
been used in reactive molecular dynamics simulations to study ligand binding to proteins, which 
can carry out the necessary sampling to reach relevant time scales that were impossible with 
QM/MM approaches.78, 79 Also, hybrid machine learning/molecular mechanics potentials have 
shown to be highly accurate in relative binding free energy calculations.80 With pyCHARMM, such 
simulations may be more accessible to the scientific community.   
 
As discussed in the previous section, pyCHARMM preserves and even extends the parallel 
capabilities of CHARMM. A particularly useful feature is in the case of loosely coupled parallelism 
through the Python module mpi4py.54, 55 For instance, in the pipeline for absolute solvation free 
energy calculations as mentioned above (see Figure 4 and absolute_solvation.ipynb in the SI 
for more details), mpi4py is utilized to run multiple simulations at different λ windows 
simultaneously, with flexible distribution of work across parallel processors (GPUs in this 
instance). This greatly reduces the wall time of end-to-end prediction of free energies. Similar 
parallelization schemes can be realized in other complex workflows as well, such as the string 
method for path optimization,81-84 replica exchange,85, 86 umbrella sampling,87 weighted 
ensemble,88-90 and even machine-learning based enhanced sampling methods like diffusion-map-
directed molecular dynamics simulations,91-93 For example, here we provide an implementation of 
the string method using harmonic Fourier beads (HFB)82 to find the optimal path between two 
metastable states of an alanine dipeptide (see aladipep_string in SI). In the space of a set of 
collective variables, which are usually Cartesian coordinates of selected atoms, multiple beads 
(i.e., conformations of the system) are equally distributed along the string. During each cycle of 
path optimization, all beads are evolved independently, using either energy minimization (to find 
the minimum energy path) or molecular dynamics simulation (to find the minimum free energy 
path). Such path evolution procedure can be easily parallelized through mpi4py, by distributing 
the beads across multiple processors. After this, information from all beads is gathered and the 
path is updated through the HFB interpolator. Similarly, for replica exchange simulations, where 
multiple copies of the same system (i.e., replicas) are simulated under different thermodynamic 
states and they are exchanged periodically based on the Metropolis criterion, these simulations 
can run in parallel using mpi4py to allocate resources for each replica and to gather information 
from all replicas to determine how exchange is attempted and whether an exchange should be 
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accepted (see replica_exchange in SI for details). Besides speeding up the overall calculations in 
these complex workflows, another great advantage of such loosely coupled parallelization through 
mpi4py is that it allows researchers to modify the parallel aspects of the workflow without having 
to change the source code of CHARMM. Thus pyCHARMM enables prototyping new 
methodological ideas in a facile manner.                         
  
Conclusion 
 
In this paper, we have presented a novel Python-based instantiation of CHARMM, pyCHARMM, 
as well as the Python bindings, functions and modules that complement and extend the extensive 
set of modeling tools and methods already available in CHARMM. All of the CHARMM commands 
are available in pyCHARMM, either as direct Python bindings or through the CHARMM command 
interpreter module lingo.py. This allows users to take advantage of utilizing the wide range and 
distribution of CHARMM scripts as they begin learning to program their molecular modeling 
applications in pyCHARMM. Moreover, due to its ready integration with other Python-based 
visualization toolkits such as NGLView or py3Dmol, users could closely monitor the changes 
made at each step, especially within a Python-friendly environment like Jupyter Notebooks. 
Therefore, we believe that pyCHARMM will be an optimal platform for users to learn molecular 
modeling and simulation. With pyCHARMM new methods can become immediately available to 
the larger community through repositories of pyCHARMM scripts and Jupyter Notebooks. For 
instance, the complex workflow of rigid and flexible docking through CDOCKER has been 
compiled into a single Python module (pycharmm.cdocker) and standard docking calculations can 
be performed with a one line Python call. This makes pyCHARMM CDOCKER more user-friendly 
and will enhance its accessibility and utility for a larger community.  
 
pyCHARMM should also serve as a robust platform for the development of comprehensive and 
complex workflows for researchers with more experience in molecular simulation and modeling. 
As a complete and programmable package in the Python framework, pyCHARMM can be readily 
integrated with other Python functions and toolkits. This allows for easy implementation of various 
pipelines, such as alchemical free energy calculations using MBAR/TI approaches or high-
throughput free energy calculations with MSλD. Another powerful feature in pyCHARMM is the 
ability to augment CHARMM forces and energies with user-defined energy terms, especially 
machine learning based force fields. This may be particularly useful in developing novel enhanced 
sampling methods as well as in simulations with hybrid machine learning/molecular mechanics 
force fields. pyCHARMM also provides a straightforward means of implementing parallel 
calculations.  Moreover, multiple accelerated platform kernels, such as the CHARMM/OpenMM 
interface, CHARMM/DOMDEC and CHARMM/BLaDE, are available in pyCHARMM. Loosely 
coupled parallelization achieved through the Python module mpi4py, for instance, in alchemical 
free energy calculations, string path optimization calculations, and replica exchange significantly 
enhance the configurability and facile implementation of such calculations. This not only speeds 
up the overall calculations in these complex workflows, but also makes modification of existing 
workflows exceptionally easy. Taken all together, pyCHARMM permits the general and flexible 
control of complicated simulation protocols and facilitates the prototyping of new methodological 
ideas. 
 
We finally summarize by noting that CHARMM and subsequently pyCHARMM are available free 
of charge to non-profit laboratories through the established CHARMM licensed distribution at 
www.academiccharmm.org. This distribution provides full access to all sources needed to install 
pyCHARMM. In addition, we have developed an evolving GitHub site pyCHARMM-Workshop 
(https://github.com/clbrooksiii/pyCHARMM-Workshop) that includes many of the examples 
discussed in this paper as Jupyter Notebooks or python scripts. With the work we present here it 
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is our intention to provide a Python-based platform for molecular modeling and simulation that 
brings the extensive development of methods and techniques from CHARMM to the broad 
community of novice and expert molecular modelers. 
 
Data Availability 
All data, examples, documentation files and tutorial files that are described and discussed here 
are available in the GitHub repository (https://github.com/clbrooksiii/pyCHARMM-Workshop). The 
full source and documentation for CHARMM and pyCHARMM are licensed and available free of 
charge to non-profit and academic laboratories at https://academiccharmm.org/program. The 
release version of CHARMM/pyCHARMM described here corresponds to c47b2. 
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