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Abstract

Machine learning methods offer the opportunity to design new functional materials

on an unprecedented scale however building the large, diverse databases of molecules on

which to train such methods remains a daunting task. Automated computational chem-

istry modelling workflows are therefore becoming essential tools in this data-driven hunt

for new materials with novel properties, since they offer a workflow by which to create

and curate molecular databases without requiring significant levels of user input. This

ensures well-founded concerns regarding data provenance, reproducibility and repli-

cability are mitigated. We have developed a versatile and flexible software package,

PySoftK (Python Soft Matter at King’s College London), that provides flexible, au-

tomated computational workflows to create, model, and curate libraries of polymers

with a minimal user intervention. PySoftK is available as an efficient, fully-tested,

and easily installed Python package. Key features of the software include the wide
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range of different polymer topologies that can be automatically generated and fully

parallelized library generation tools. It is anticipated that PySoftK will support the

generation, modelling and curation of large polymer libraries to support functional

materials discovery in nano- and bio-technology.

Introduction

The diverse chemical, mechanical and electronic properties of polymers underlie their applica-

tion in relevant technological areas spanning structural materials, cosmetics, pharmaceutical

formulation, electronics, and biotechnology.1–10 In order to optimize their aforementioned

properties for this range of applications, the role of polymer constitution and topology has

been widely explored, with a range of architectures including homopolymers, block copoly-

mers, branched and ring polymers.11–17 As a result of contemporary research activities, the

chemical and structural domains of synthetic polymers are continuously growing.18–20

Polymeric materials have been the focus of a significant amount of scientific research

for many decades. In more recent years, access to ever-growing computational power has

allowed the materials modelling community to carry out increasingly complex investigations

of polymeric materials.21–28 Modern computer simulation studies provide predictive under-

standing of molecular interactions and mechanisms that determine the bulk-scale properties

of polymers of interest. In tandem with experimental data, this combined insight yields

rational design principles for new polymers with enhanced target properties.

While there are well-established computer simulation techniques to support the investi-

gation of polymers, often the most technically difficult part of a polymer simulation workflow

is actually generating models of the polymer(s) of interest. As a result, multiple computa-

tional platforms have been developed in recent years with the aim of making the generation of

polymer models more straightforward.29–33 Several of these packages have been developed to

allow users to build molecular models of polymers for use in molecular dynamics simulations.

These packages generally require the user to provide a detailed description of the underlying
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chemistry of, and connectivity between, constituent monomers to output a topology of the

desired polymer. Some allow the user to input forcefield information to be used in generating

input files for classical molecular dynamics simulations. All of the referenced codes allow

for the user to build homopolymers while some allow the user to build heteropolymers with

different architectures and topologies.29–32

More recently, Polymer Structure Predictor (PSP)34 has reduced the amount of informa-

tion required from the user to describe the chemistry of the monomers by allowing a SMILES

string to be used as the input. The code can assign forcefield parameters from the CHARMM,

AMBER and OPLS generalized forcefields35–37 and integrates with the LAMMPS classical

simulation engine38 and the pysimm package29 for optimization of polymer structures. While

the amount of the predefined information required to build the polymers is less in PSP than

is required by other packages, the polymers that can currently be built are limited to ho-

mopolymers with either linear or cyclic topologies.

Here, we present PySoftK, a modular and versatile code to model polymer structures with

different topologies. We present the various modules that currently exist within PySoftK to

build different polymer structures, and show how they can be combined in order to build

highly complex polymer topologies in an automated way. We subsequently demonstrate the

various functionalities that are found within the code to facilitate high-throughput molec-

ular modelling calculations. PySoftK can also be used in the parameterization of dihedral

terms in conjugated polymers, which are commonly poorly defined by standard classical

forcefields.28,39 Finally, we briefly review the steps that have been taken when developing

the code to ensure it can be successfully used in a broad range of applications.

Software overview

PySoftK is a modular Python package that generates molecular models of polymers with

a diverse range of topologies and chemistries with minimal input from the user. It also
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has various tools to facilitate high-throughput simulations of polymers. The code utilises

RDKit to generate the molecular models of the various polymers.40 The modular nature of

this package will allow the scientific community to easily expand the code base to include

polymer architectures that are not included in this first release of the library.

Generating diverse polymer architectures

Inputting monomers. A key functionality of PySoftK is the automated generation of

a diverse range of polymer architectures. The user-inputted monomers, in which the sites

that link each monomer together are predefined, are the main topological descriptor used

by PySoftK. The chemical structure and connectivity of the monomer(s) that make up the

polymer can be inputted using all formats supported by RDKit, such as SMILES strings

and .pdb, .mol and .xyz files, as shown in Listing 1. Examples of inputs to input a furan

monomer are shown in Figure 1a. In order to construct a polymer from its constituent

monomers, a placeholder atom is used to indicate where the bond formation takes place

during polymerization. In the examples presented in this manuscript, bromine (Br) atoms

or platinum (Pt) are used as these placeholder atoms (see Fig. 1b). It is important to note

that this choice is entirely arbitrary: any atom can be used as the placeholder atom.

1 from rdkit import Chem

2 from rdkit.Chem import AllChem

3 # SMILES. MOL and PDB formats

4 mol_1=Chem.MolFromSmiles(’c1(ccc(o1)Br)Br’)

5 mol_2=Chem.MolFromPDBFile(’furan_pysoftk.pdb’)

6 mol_3=Chem.MolFromMolFile(’furan_pysoftk.mol’)

Listing 1: Code snippet showing the different input foramts that PySoftK accepts.

Generating polymers with different monomer distributions. Once the monomers

are defined, then PySoftK can be used to describe the distribution of the monomers within

the polymer and the overall architecture of the polymer. The code is structured such that
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(a) (b) (c)

Figure 1: Creation of a linear polymer. (a) Undecorated single furan molecule. (b) Decorated
furan molecule (using a Br or Pt atom) highlighting the region where intermolecular bonds
are formed between monomers. (c) Linear polymer with a 5 monomers and optimized atomic
positions at the RDKit MMFF force-field level.40

specific modules are provided to generate homopolymers, diblock copolymers and random

polymers. Block and random copolymers with more than two types of monomers, as well

as alternating, periodic and statistical copolymers of any number of monomers, can be built

using the patterned module within PySoftK. The modular structure of the software allows

users to develop their own codes to design additional polymer topologies. In the following

sections, examples of the different modules to build the various polymer topologies with

different distributions of the monomers are provided.

Generating polymers with different topologies. Users can generate models of

polymers with three different general topologies: (i) linear, (ii) cyclic and (iii) branched. In

the following sections, examples showing how to use the various modules to build each block

and random copolymers with each topology will be presented. Finally, we will present the

patterned module, which provides the user more flexibility in defining the distribution of the

monomers within the polymer and can be used in combination with the various topology

modules to build any of these different polymer architectures.

Linear polymers. Linear polymers consist of individual monomers which are joined
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together end-to-end forming a single molecule. In order to build a linear homopolymer in

PySoftK, the command Lp(mol,atom,n_copies,shift).linear_polymer(FF,iter_ff) is used to

initiate a two-step process. First, a monomer (defined by the variable mol) is copied and

translated along a predefined axis, where the distance between each monomer is defined by

the shift variable in the module call, which results in an unconnected chain of n_copies

monomers. Subsequently, a merging step between end-to-end monomers is performed em-

ploying a user-designated atomic placeholder (defined by the variable atom) indicating to

PySoftK the selected site on the monomer where a bond is formed. Finally, to provide a

realistic initial structure, PySoftK utilizes the MMFF or UFF force-field parameterizations

(as chosen with the FF parameter) as implemented in RDKit40 in order to generate an en-

ergy minimized molecular conformation after iter_ff steps of minimisation. This process is

displayed in Figure 1, where a single furan molecule is decorated with a placeholder atom

(in this case bromine) shown in pink and extended to form a linear polymer containing five

monomers. The full block of code required to generate this homopolymer is found in Listing

2.

The Db module within PySoftK allows users to build linear diblock copolymers. The

command Db(ma,mb,atom).diblock_copolymer(len_block_A,len_block_B,FF,iter_ff) is used to

generate a diblock copolymer that consists of a block containing len_block_A monomers of ma

and a block containing len_block_B monomers of mb. Again the monomers are inputted with

atomic placeholders (atom) that identify the polymerisation site on each monomer, and the

resultant structure undergoes iter_ff steps of energy minimisation using the FF forcefield.

Listing 2 shows an example of how to practically apply this function.

1 from pysoftk.linear_polymer.linear_polymer import *

2 from pysoftk.topologies.diblock import *

3

4 # Build linear homopolymer

5 # Input monomer with SMILES format

6 mol_1=Chem.MolFromSmiles(’c1(ccc(o1)Br)Br’)
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7 AllChem.EmbedMolecule(mol_1)

8 new=Lp(mol_1 ,"Br",5,shift =1.25).linear_polymer("MMFF" ,1)

9

10 # Build linear diblock copolymer

11 # Input ethylene oxide monomer with PDB format

12 mol_1 = Chem.MolFromPDBFile(’eo.pdb’)

13 # Input propylene oxide monomer with PDB format

14 mol_2 = Chem.MolFromPDBFile(’po.pdb’)

15 # Build a polymer with 5 eo monomers & 7 po monomers which is minimised

using the MMFF forcefield over 10 iterations

16 poly = Db(mol_1 ,mol_2 ,"Br").diblock_copolymer (5,7,’MMFF’ ,10)

Listing 2: Code snippet showing the creation of a linear homopolymer and a linear diblock

copolymer.

(a) (b)

Figure 2: Creation of a random polymer with user defined probabilities. (a) Diblock copoly-
mer architecture, where a single probability (P1) of being linked is 0.4. The linkages are
highlighted with a blue circle. Two different polymeric topologies are obtained using the
same probability. (b) Triblock copolymer architecture employing a user-defined probabili-
ties P1 (represented in green) and P2 (displayed in red). Two different moieties are obtained
based on user defined probabilities (0.4 and 0.2), respectively.

Additionally, PySoftK supports the construction of random linear copolymers which con-

sist of two or three different monomers. The module Rnp(mol_1,mol_2,atom).random_ab_copolymer
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(len,pA,iter_ff,FF) is used to build a random copolymer of length len that contains two

monomers, mol_1 and mol_2 which are decorated with atoms of type atom to indicate where

the polymerisation occurs. The number of mol_1 and mol_2 monomers in the resulting poly-

mer are determined from pA*len and (1-pA)*len, respectively. Similarly PySoftK can be used

to generate random linear copolymers consisting of three different monomers via the module

Rnp(mol_1,mol_2,atom).random_abc_copolymer(mol_3, len, pA, pB, iter_ff, FF). In this case,

the resulting polymer will contain len monomers, such that the number of mol_1, mol_2 and

mol_3 monomers is pA*len, pB*len and (1-pA-pB)*len, respectively. A snippet showing the

usage of the functions is displayed in Listing 3, and examples of the polymers produced by

that code are presented in Figure 2.

1 from pysoftk.topologies.ranpol import *

2

3 mol_1=Chem.MolFromSmiles(’BrCOCBr ’)

4 mol_2=Chem.MolFromSmiles(’c1(ccc(cc1)Br)Br’)

5 mol_3=Chem.MolFromSmiles(’c1cc(oc1Br)Br’)

6

7 #diblock random polymer

8 dia = Rnp(mol_1 , mol_2 ,"Br").random_ab_copolymer (5, 0.4, 10)

9 Fmt(dia).xyz_print("dia.xyz")

10

11 #triblock random polymer

12 tri = Rnp(mol_1 , mol_2 ,"Br").random_abc_copolymer(mol_3 , 5, 0.4, 0.2, 10)

13 Fmt(tri).xyz_print("tri.xyz")

Listing 3: Code snippet showing the usage of the random copolymer module functions. The

functions random..ab__copolymer and random..__abc__copolymer allowing the definition of the

user-supplied linking probabilities.

Ring polymers. Current experimental techniques allow a precise control of polymer ar-

chitectures enabling the creation of new topologies. One interesting example is ring, or cyclic,

polymers, which can be described as closed macromolecular structures with no beginning or
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(a) (b) (c)

Figure 3: Creation of a ring polymers using (a) silanol42 and (b) benzene ring. (c) Alter-
nating copolymer (benzene and thiol monomers combined via the Sm module). This example
illustrates the capabilities of PySoftK to utilize previously developed algorithms for creating
new architectures.

end.41 PySoftK enables the creation of ring homopolymers with the module Rn(mol_1,atom

).pol_ring(len,FF,iter_ff) that generates a ring polymer with len mol_1 monomers by first

employing the linear polymer module to generate a polymer chain and then initial and final

atomic placeholders (atom) are used to create a bond, which generates a ring topology, as

displayed in Figure 3(a,b). A snippet of code utilising this command is shown in Listing

4. It is worth mentioning that PySoftK enables the combination of modules to create new

structures. This is demonstrated in the bottom part of Listing 4, where the Sm module is

used to create a linear diblock polymer that is then converted to a ring polymer topology

using the Rn module, with the resultant ring polymer shown in Figure 3(c).

1 from pysoftk.topologies.ring import *

2 from pysoftk.linear_polymer.super_monomer import *

3

4 # Silanol definition using SMILES and PySoftK ring function

5 mol_1 = Chem.MolFromSmiles(’C[Si](OBr)(C)Br’)

6 rn2=Rn(mol_1 ,’Br’).pol_ring (10, "MMFF", 250)

7

8 #Using the Sm module of PySoftK to generate a diblock cyclic polymer

9 mol_1=Chem.MolFromSmiles(’c1cc(sc1Br)Br’)
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10 mol_2=Chem.MolFromSmiles(’c1(ccc(cc1)Br)Br’)

11

12 a=Sm(mol_1 ,mol_2 ,"Br").mon_to_poly ()

13 cyc=Rn(a,’Br’).pol_ring(5, FF="UFF", iters =2000)

Listing 4: Code snippet showing the creation of a cyclic polymer

Branched Polymers. Branched polymers are another topology that has been enabled

in PySoftK. Generally, branched polymers are a set of secondary polymer chains linked to

a primary backbone. PySoftK builds this topology by employing the user-supplied atomic

placeholder as an indicator of the number of branch points from the primary backbone present

in this structure. Thus, for instance, a backbone with four placeholders will generate a model

where four branches (arms) are attached at the regions on the backbone indicated by the

user, as shown in Figure 4. In PySoftK, the module Bd(core,arm,atom).branched_polymer(FF,

ff_iter) is used to generate a branched polymer with a backbone of core and arms described

by arm (Listing 5). The placeholder atoms are defined by atom. The inputted structures

for core and arm can be simple monomers and therefore inputted as previously discussed or

they can be resultant structures from any of the other commands and then inputted into the

branched function. Therefore, the branched architecture not only illustrates the capabilities

of PySoftK to create new architectures from scratch but also the versatility of PySoftK to

be extended. In this case, this has been done by creating the module topologies where all

the previous functions have been organized.

1 from pysoftk.topologies.branched import *

2

3 # Core and Arm molecules

4 core=Chem.MolFromSmiles(’BrN(Br)CCN(Br)Br’)

5 arm=Chem.MolFromSmiles(’C(CC(=O)OCCOC(=O)CCBr)Br’)

6 final = Bd(core , arm , "Br").branched_polymer ()

Listing 5: Code snippet showing the creation of a branched polymer
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(a) (b) (c)

Figure 4: Creation of a branched polymers using (a) ethylenediamine as the primary back-
bone and (b) benzene or polyester oligomer as branches. (c) Branched polymer with provided
core and arms moieties. In this case, only one placeholder atom is used to signal PySoftK
the region where a bond would be formed.

Specifying absolute monomer sequences. Any linear polymer can be described

by listing the combination of monomers in a specific pattern (e.g. ABBACCABBACC, AB-

CABABCBA). Therefore, PySoftK offers the option to build polymers with a specific pattern

of monomers using an alphabet-based pattern expressed in a single string followed by a list

of RDKit40 molecular objects as presented in Listing 6. In Figure 5, thiophene, furan and

benzene monomers are used to present the different possibilities provided by this function

to construct all unique permutations.

1 from pysoftk.topologies.diblock import *

2

3 # Core and Arm molecules

4 mols=[Chem.MolFromSmiles(’c1(ccc(cc1)Br)Br’),

5 Chem.MolFromSmiles(’c1cc(oc1Br)Br’),

6 Chem.MolFromSmiles(’c1cc(sc1Br)Br’)]

7

8 patt="ABC"
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(a) A/B/C (b) ABC/ACB/BAC (c) BCA/CAB/CBA

Figure 5: Figure (4) Patterned construction of a polymer based on a user-defined pattern.
(a) An user created list is mapped to an alphabetic string representing the position of the
molecule in the list. (b) Possible unique permutations for an arbitrary list containing 3
elements.

9 a=Pt(patt , mols , "Br").pattern_block_poly ()

Listing 6: Code snippet showing the creation of a patterned polymer

This function can also be used in conjunction with the linear_polymer module of PySoftK

to construct polymeric macromolecules that have other polymers as their monomeric units.

Facilitating High-Throughput Calculations

Folder creation and organization. The module pysoftk.folder_manager.folder_creator

has been designed to create a user-defined number of folders with unique names. In the

case of high-throughput calculations (HTC), usually many different systems are created in

a single folder and then relocated to enable calculations or post-processing analyses to be

conducted. As shown in Listing 7, this workflow can be carried out utilizing the function

Fld().file_to_dir implemented in PySoftK. The result of the code in Listing 7 is that two

new, uniquely named directories would be created and each of the two .smi files (mol_1.smi

& mol_2.smi) would be moved into one of these new directories, such that each new directory
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would contain one .smi file.

1 from pysoftk.folder_manager.folder_creator import *

2

3 print(’c1cc(sc1Br)Br’,file=open("mol_1.smi", ’w’))

4 print(’c1(ccc(cc1)Br)Br’, file=open("mol_2.smi",’w’))

5

6 # Test 3: Seek for .smi files and create the needed folders.

7 Fld().file_to_dir("smi" ,2)

Listing 7: Code snippet showing the automatic creation of folder to organize files based on

an user-defined extension.

The aforementioned function is able to search for files with a given file extension, and

relocate them within individually created folders. Likewise, for cases where many files are

present, this command can be executed in parallel. The creation of automated workflows (as

displayed in Figure 6) can be achieved by combining many different functions in PySoftK

enabling the modeling of thousands of polymers using a single script. An example demon-

strating how this can be done can be found in the SI. Alternatively, these modules can be

used separately as part of another workflow that generates other types of directory structures

or simply a folder where many different files are located.

Automatic torsional angle detection for conjugated polymers. PySoftK offers

a tool to perform analysis of the torsion angles within conjugated polymers that connect

the ring subunits that are commonly found in their backbone. These dihedrals are generally

poorly captured by the existing parameters within classical forcefields.28,39 Thus having

the capability to rapidly identify those dihedrals then allows the user to easily set up the

necessary ab initio simulations required to determine the potential energy landscape of those

dihedrals, which then can be used to reparameterize the forcefield for those dihedrals.

The module pysoftk.torsional automatically detects and reports the atoms involved in

the torsional angles found within planar conjugated polymers. PySoftK also enables the

creation of molecular sketches highlighting and reporting the atom numbers that form a
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Figure 6: PySoftK workflow generation. Topology objects (polymers) are created and au-
tomatically parsed to RDKit force-field optimization.40 External programs such as GFN2-
XTB, GFN-FF or PySCF are linked using internal modules which facilitates the automation
process.43,44 Concurrent parallelization allow the creation of events in which subsequent par-
allelization strategies can be used. File organization is performed.

(a) (b)

Figure 7: Graphical explanation of the P-Graph description and algorithm used for auto-
matically detecting intermolecular torsional angles. (a) Bond linking atoms are detected.
(b) All connecting paths are computed where previously detected atoms are used as starting
and end points.

torsional angle as shown in Figure 7. The topological fingerprint used in this module relies

on the description of molecules as graphs where the atoms are nodes and the covalent bonds
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are the edges.45 Based on the idea to convert a molecular Graph (M-Graph) into a path

Graph (P-Graph), we have been able to label connections between edges in the M-Graph

providing a nomenclature to name the P-Graph.46

In order to identify the torsions between ring subunits within the backbone of a conju-

gated polymer, we have identified two conditions that the atoms (e.g. nodes) making up the

central bond of the torsion must meet. First, an atom must have three neighbours which

are from the inner structure (such as rings) and one provided from the next monomer (as

displayed in Fig. 7a). However, this condition can be also be found in atoms that are embed-

ded within aromatic rings. To avoid this, we have used the ring detection function provided

by RDKit to remove potential bonds within a ring, and therefore identifty the bonds which

connect the ring moieties in the polymer (Fig. 7a). After identifying all of these important

bonds within the polymer, we then identify all of the torsions that include these bonds as the

central bond and therefore can provide the relevant atomic labels involved in these torsional

angles as shown in Figure 7b.47

This module then reports all of these important torsional angles within the molecule, and

generates 2D molecular sketches of each one. Figure 8 shows an example of this output for

a boroxine polymer.48

Data Provenance and Software Development

One of our main objectives while creating PySoftK is to provide tools to the community that

allow users to utilize high-performance computational facilities to automate the creation of

databases for polymeric structures as easily as possible. To do so, we have greatly simplified

the installation process of PySoftK by employing the pip command strategy. PySoftK has

been tested in Linux and Mac operating systems based on python 3.6 or more recent versions.

Parallel strategies have been developed in parts of the code to enhance the scalability in tasks

such as HTC or general organization of molecular databases. In this sense, we have developed
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(a) (b)

Figure 8: Automatic recognition of intermolecular torsional angles within a planar polymer.
(a) Boroxine planar polymer. (b) 2D depiction of selected torsional angles highlighting the
atoms and its numerical labels.

modules of PySoftK using concurrency where independently executing tasks are created and

queued to use the available resources. This approach ensures that the calculator module can

run utilizing all available resources combining task assignment and core usage for parallel

codes such as GFN2-xTB43 while efficiently avoiding bottlenecks, as displayed in Figure 9.49

In this sense, the user can maximize the parallel performance of the code by tuning variables

such as number of available processors against simultaneous task management.

PySoftK has been constructed using principles of modern code development practices.

Thus, continuous integration (CI) strategies have been incorporated to probe the code in-

tegrity against suggested changes. In our case, these tests have been designed not only as

a showcase of all of the capabilities of PySoftK, but also with the aim of maximum code

coverage achieved with our current test set. This design ensures that new commits are com-

patible with the majority of the modules before a new version is integrated into the main

branch and released.

Continuous deployment (CD) is achieved once all previous tests have passed enabling
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(a) (b)

Figure 9: Parallelization strategies implemented in PySoftK. (a) Schematic diagram present-
ing the distribution of user defined workers (threads). Each worker performs a calculation
using the pysoftk.calculator object where further parallelization schemes can be used (cores).
(b) Usage report of a calculation performed using an Intel(R) Core(TM) i9-900 CPU 3.10
GHz computer employing 16 polymers created on-the-fly in a 4x4 scheme where 4 threads
are performing task management while 4 cores are used to perform ab-initio calculations at
the GFN2-xTB level of theory.43,49,50

an agile updating of PySoftK. At this point, we would like to comment, that a success-

ful CD is only achieved when the corresponding explanatory examples are included in the

documentation. This process is greatly facilitated since the documentation is also part of

PySoftK building process. Finally, a detailed documentation (which is also part of our

CI/CD workflow) has been developed showing working examples (based on our tests) along-

side of tutorials for all the different features enabled in PySoftK. They have been tested by

members of our community and feedback has been incorporated into the latest version of

the code, ensuring a clear and concise approach for new users.
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Conclusions

PySoftK is a modular and versatile software that has been designed to facilitate high-

throughput calculations of polymeric systems. The code contains a range of modules that

allow its users to generate polymers with a uniquely broad range of topologies and composi-

tions. Additionally, the code has unique tools to assist in the file and directory structure man-

agement which is inherent in high-throughput calculations. All of the functionality within

PySoftK has been developed to be embedded as part of user-defined workflows enabling steps

such as modeling or computing using the specifically defined modules. In a complementary

fashion, PySoftK allows the user to keep a track-record of the data produced, facilitating

post-processing analysis that can be also part of the same workflow. An ample set of testing

scripts has been created aiming at a high-coverage of the code which ensures that future algo-

rithm developments are preserving the code structure. Further documentation and tutorials

are available on the PySoftK website (https://alejandrosantanabonilla.github.io/pysoftk/#).

The modular nature of the code allows for the user community to easily contribute code that

complements the existing functionality of this published version of the code.
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