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ABSTRACT:  

In recent years, feces has surfaced as the matrix of choice for investigating the gut microbiome-health axis because of its non-invasive 

sampling and the unique reflection it offers of an individual’s lifestyle. In cohort studies where the number of samples required is 

large, but availability is scarce, a clear need exists for high-throughput analyses. Such analyses should combine a wide physicochem-

ical range of molecules with a minimal amount of sample and resources, and downstream data processing workflows that are as 

automated and time efficient as possible. We present a dual fecal extraction and UHPLC-HR-Q-Orbitrap-MS-based workflow that 

enables widely targeted and untargeted metabolome and lipidome analysis. A total of 836 in-house standards were analyzed, of which 

360 metabolites and 132 lipids were consequently detected in feces. Their targeted profiling was validated successfully with respect 

to repeatability (78% CV<20%), reproducibility (82% CV<20%) and linearity (81% R2>0.9), while also enabling holistic untargeted 

fingerprinting (15 319 features, CV<30%). To automate targeted processing, we optimized an R-based targeted peak extraction 

(TaPEx) algorithm relying on a database comprising retention time and mass-to-charge ratio (360 metabolites and 132 lipids), with 

batch-specific quality control curation. The latter was benchmarked towards vendor-specific targeted and untargeted software and 

our IPO/XCMS-based untargeted pipeline in Lifelines Deep cohort samples (n = 97). TaPEx clearly outperformed the untargeted 

approaches (81.3 vs. 56.7-66.0% compounds detected). Finally, our novel dual fecal metabolomics-lipidomics-TaPEx method was 

successfully applied to Flemish Gut Flora Project cohort (n = 292) samples, leading to a sample-to-result time reduction of 60%. 

 

 

Metabolomics is a holistic top-down analytical approach that 

maps the whole of small (<2 500 Da) molecules present in any 

biological matrix, as such offering an accurate reflection of an 

individual’s physiological state. Metabolomics is highly useful 

for studying disease pathology, discovering clinical biomarkers, 

and developing new therapeutic strategies1,2. Because the hu-

man gut microbiome plays a vital role in human health, but 16S 

rDNA sequencing characterization lacks quantitative functional 

annotation, feces has been popularized as a metabolomics ma-

trix in recent years3. Fecal metabolomics provides a comple-

mentary functional readout of the gut microbial metabolism, as 

well as its interaction with the host and environmental factors 

including dietary and drug intake4.  

Currently, analysis of fecal metabolites and lipids using ultra-

high performance liquid chromatography (UHPLC) hyphenated 

to high-resolution mass spectrometry (HRMS) requires at least 

two separate strategies for both sample preparation and analy-

sis5–7. The typical workflow for both metabolomics and lip-

idomics involves multiple time-consuming steps including 

freeze-drying, weighing and homogenization of the sample, ex-

traction of the to-be-measured molecules from the sample with 

optimized solvent mixtures and purification, followed by chro-

matographic separation and detection8. Due to the increased in-

terest in the implementation of fecal metabolomics for the anal-

ysis of large batches of samples (n>100) in light of e.g. longitu-

dinal cohort or exposomics studies where sample availability is 

scarce9, there is a clear need for comprehensive high-throughput 

analyses combining an as large as possible physicochemical 

range and physiological scope of molecules, using a minimal 

amount of sample material and consumables.  

Besides requiring wide-scale, yet also high-throughput metab-

olomics sample analysis, there is also a distinct need for less 

time-consuming data processing and analysis workflows, 
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wherein automatization of large-scale metabolite profiling is 

envisioned. The (semi)-automated high-throughput metabolite 

profiling of metabolites and lipids may be accomplished by two 

approaches: untargeted peak search10–12 and targeted peak ex-

traction13. In untargeted peak search, a feature table is obtained 

through preprocessing algorithms, most importantly automated 

peak picking, and then a search is performed based on com-

pound data such as retention time (RT) and mass-to-charge ratio 

(m/z), to annotate a selection of target compounds10–12. In tar-

geted peak extraction, the extracted ion chromatogram (EIC) of 

the known compound is constructed directly from the data 

file13,14 using the compound-specific information (RT, m/z, 

etc.). 

The main challenge in targeted processing is that it requires vast 

expertise to curate the chromatographic peaks, is labor-inten-

sive and thus very time-consuming. Furthermore, it relies heav-

ily on proprietary, vendor-specific software (e.g. Thermo’s 

XCalibur™). These proprietary tools are often easy to use, of-

fering an extensive graphical user interface (GUI), but limit re-

producibility and transparency between labs or even within the 

same lab15. Although open-source alternatives for targeted pro-

cessing exist, e.g., Skyline: a software package for quantitative 

metabolomics16, the work remains highly repetitive and moreo-

ver still requires a high level of training. 

Due to the high sensitivity and broad coverage of untargeted 

LC-MS-based metabolomics and lipidomics, a vast amount of 

high-dimensional data is generated, with the detection of thou-

sands of metabolites per sample17–19. Manual processing of this 

immense number of compounds is deemed impossible, and as 

such several proprietary and open-source software tools have 

been developed to automate data (pre)processing, including 

e.g., Compound Discoverer™ (Thermo Fisher Scientific, San 

Jose, CA, USA), XCMS11, OpenMS20 and MZmine21. Two im-

portant challenges in untargeted preprocessing of metabolomics 

data are parameter optimization and the detection of false posi-

tive peaks22–24. The first challenge entails that proprietary and 

open-source parameter settings for preprocessing are frequently 

difficult to interpret and suboptimal parameter settings can lead 

to biased results25–27. Thus, parameter optimization is required 

for the different steps in data preprocessing (extraction of ion 

traces, peak detection, adjusting RTs, grouping peaks into fea-

tures, …), which all involve different algorithms (e.g. cent-

Wave10 and OBI-Warp28). Therefore, to facilitate automatic pa-

rameter optimization, several tools have been developed, like 

e.g., Isotopologue Parameter Optimization (IPO)26, Autotuner25 

and Paramounter27. The hence-obtained optimized parameters 

generally outperform default settings but can be topped by ex-

pert-chosen parameter settings29. The second challenge in un-

targeted metabolomics preprocessing is the retrieval of false 

positive peaks, which add unwanted noise and might end up as 

falsely discriminant features in downstream comparative anal-

ysis24. Different strategies are being employed to counter this. 

A first strategy attempts to improve peak picking performance 

by tweaking the centWave algorithm, such as ADAP and 

EIC+24,30. A second strategy involves filtering poor-quality 

peaks by means of tools like MetaClean, Peakonly, and 

NeatMS, which use deep learning and machine learning classi-

fication to classify peaks as real, high-quality peaks or as 

noise31–33. Alternative tools also rely on filtering, e.g. the Com-

prehensive Peak Characterization (CPC)18 algorithm, which 

characterizes and filters the peaks after XCMS processing to re-

duce data complexity and increase data quality.  

In this work, the consecutive extraction and dual analysis of 

both the metabolome and lipidome (Fig. 1A) were optimized 

and a total of 836 in-house metabolite and lipid standards en-

compassing a wide physicochemical variety (Fig. 1B, Table S1) 

were screened. Of these, 360 metabolites and 132 lipids were 

consistently detected in feces and their targeted profiling was 

successfully validated with respect to repeatability, reproduci-

bility and linearity, while also enabling holistic untargeted fin-

gerprinting in parallel. To automate the targeted processing of 

said 360 fecal metabolites and 132 lipids, and as such maxi-

mally harvest the underlying molecular signature of the human 

gut metabolome, we finetuned our in-house R-based untargeted 

peak picking pipeline (IPO/XCMS-based) (Fig. 1C) and devel-

oped and optimized an R-based targeted peak extraction ap-

proach (TaPEx) (Fig. 1D). The latter utilized method-specific 

metabolome and lipidome database searches with entries (RT 

and m/z) re-iterated per batch, employing quality control sam-

ples run throughout the batch. TaPEx was subsequently bench-

marked towards manual vendor-specific software-based tar-

geted data analysis (XCalibur™), IPO/XCMS34 and vendor 

software-based untargeted peak picking (Compound Discov-

erer™) on our validation QC samples (n = 39) and a subset of 

the Lifelines Deep (LLD) cohort (n = 97). Finally, our novel 

dual fecal metabolomics-lipidomics analytical methodology, 

followed by automated TaPEx targeted profiling and 

IPO/XCMS-based untargeted fingerprinting were successfully 

applied to the Flemish Gut Flora Project (FGFP) Long cohort 

(n = 292), resulting in a total sample-to-result time reduction of 

60% (Fig. 1E). 

 

MATERIALS AND METHODS 
Analytical Standards and Reagents. Analytical standards (n 

= 836) (Table S1, Fig. 1B), internal standards (ISTDs) for 

metabolomics (n = 6; alanine-d3, dopamine-d4, tyrosine-d2, 

phenylalanine-d2, deoxycholic acid-d4 and indole-3-acetic 

acid-d5) and ISTDs for lipidomics (n = 2; palmitic acid-d31 and 

1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (14:0 PC-

d54)) were purchased from Sigma-Aldrich (St-Louis, Missouri, 

USA), ICN Biochemicals Inc. (Ohio, USA), TLC Pharmchem 

(Vaughan, Ontario, Canada) and Gianni Degreve Cambrigde 

Isotope Laboratories Inc. (Tewksbury, Massachusetts, USA). 

Solvents (methanol, ethanol, acetonitrile, dimethyl sulfoxide 

and IPA) were acquired from Fisher Scientific UK (Loughbor-

ough, UK) and VWR International (Merck, Darmstadt, Ger-

many).   

Biological Samples. For optimization and validation purposes, 

fecal samples from 4 healthy donors (2 females, and 2 males, 

average age = 29 ± 6 years), hereafter called QC samples (n = 

4), from our prospective UGent – LCA biobank (BR-184) were 

used.  

For benchmarking of the data processing pipeline, selected 

samples (n = 97, average age = 46 ± 11 year) of the LLD cohort 

were used. The LLD cohort (n = 1500) is a sub-cohort of the 

large prospective Lifelines cohort study35. Lifelines is a multi-

disciplinary prospective population-based cohort study examin-

ing the health and health-related behaviors of 167 729 persons 

living in the North of the Netherlands in a unique three-  
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Figure 1. Visualization of the analytical and data analysis workflows used in this work. A. Dual extraction workflow. After sample prepa-

ration, metabolome extraction was performed, after which lipid extraction was performed on the rest fraction. Both fractions were subse-

quently analyzed in parallel on two state-of-the-art UHPLC-HRMS systems. B. Ontology of the LIMET in-house analytical standard library 

comprising a total of 836 analytical standards. Percentages are shown for the most abundant superclasses, classes and subclasses. C. Untar-

geted processing workflow. First, samples were converted from the vendor-specific to an open-source format (1). Next, parameters for 

XCMS processing were optimized using Autotuner, IPO and analyst knowledge (2). Peak picking was performed using the XCMS centWave 

algorithm (3) after which the CPC algorithm was used to assess peak quality. Afterwards, the XCMS OBI-Warp algorithm corrects retention 

time differences between the samples and aligns the peaks (5). Finally, the peaks are grouped into features using the XCMS density algorithm, 

and isotopes and adducts are annotated by CAMERA (6, 7). D. Overview of the TaPEx workflow. First, using vendor-specific software, a 

benchmark list of targeted compounds defined by their m/z and RT was constructed by experienced analysts (1, 2). Next, the chromatograms 

for the compounds in the database were extracted by TaPEx in a new sample set. To account for the shift in RT between batches of samples, 

the RT of the compounds was automatically curated based on batch-specific QC samples (3). Finally, an intensity table and diagnostic plots 

were returned, so the user could assess which compounds are reliably detected in the samples (4). E. Timeline of the different steps and their 

estimated time span to detect 360 metabolites and 132 lipids in 97 samples (and 20 QCs) in the classic, sequential and manual approach vs. 

our proposed parallel, semi-automated workflow.
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generation design. It employs a broad range of investigative 

procedures in assessing the biomedical, socio-demographic, be-

havioral physical, and psychological factors which contribute to 

the health and disease of the general population, with a special 

focus on multi-morbidity and complex genetics from the North 

of the Netherlands36. All LLD cohort participants signed an in-

formed consent form before sample collection. Individuals from 

the Flanders region of Belgium were recruited into the FGFP 

cohort through public announcements in print and social media 

through the FGFP website (www.vib.be/darmflora), from Jan-

uary 2013 onwards. Volunteers provided informed consent by 

mail and FGFP procedures were approved by the medical ethics 

committee of the University of Brussels/Brussels University 

Hospital (approval 143201215505, 5/12/2012). A declaration 

concerning the FGFP privacy policy was submitted to the Bel-

gian Commission for the Protection of Privacy. FGFP samples  

and data were collected as described in Falony et al.37 In short, 

stool samples were collected between June 2013 and April 2016 

by mail. Sampling kits were sent to volunteers’ home addresses 

and upon collection, samples were stored at -18 °C locally, 

cooled during delivery, and again stored at -18 °C upon arrival 

at a collection point until long-term storage was possible at -80 

°C at the research facility. All samples were freeze-dried, 

ground, and sieved upon receipt at LIMET (within 48 h) and 

stored at -80 °C.  

Optimization of Dual Fecal Metabolomics and Lipidomics 

Extraction. The metabolome extraction was optimized using an 

experimental setup in JMP 16 (SAS Institute Inc, Cary, USA), 

in which the effect of 3 parameters was screened with a full fac-

torial design in line with our earlier fecal metabolomics work in 

a targeted and untargeted fashion6. A variable amount (50, 100 

or 200 mg) of lyophilized homogenized feces was mixed with 

a proportionate amount (1, 2 or 4 ml) of ultrapure water (UPW). 

Then, 10 µl of a mixture of six ISTDs was added, after which a 

mixture of ice-cold methanol and UPW or a mixture of acetoni-

trile and UPW in a ratio of 25:75, 50:50, and 75:25 was added 

proportionally (250, 500 or 1000 µl) to the fecal slurry. Power 

analysis (JMP 16, SAS Institute Inc, Cary, USA) showed the 

highest intercept (p = 0.99) for the design with 2 replicas and 3 

center points, resulting in 60 experimental runs. The effect of 

each factor was statistically evaluated based on the untargeted 

metabolome coverage (i.e., total number of detected compo-

nents), as well as the summarized peak area of a representative 

selection of 161 metabolites based on our previous work5,6 

(marked with an * in Table S1).  

For the fecal lipidome extraction, the residual fraction of the 

metabolome extraction was used as the starting point. Next, the 

obtained lipidome extracts were compared to extracts generated 

using our recently optimized single fecal lipidomics protocol7. 

This was statistically evaluated based on the untargeted lip-

idome coverage, as well as the summarized peak area of the 138 

analytical standards included in our lipidomics target panel3,7 

(marked with an § in Table S1).  

Final Dual Fecal Metabolomics and Lipidomics Extraction 

Protocol. To extract the fecal metabolome, 100 mg of feces was 

dispensed in 2 ml of UPW. After the addition of 12.5 µl of a 

100 ng/µl mixture of six ISTDs, 0.5 ml of a mixture of ice-cold 

methanol and UPW (75:25, v/v) was added. The solution was 

thoroughly vortexed for 1 min, rotated for 10 min, and centri-

fuged for 10 min at 9000 rpm (room temperature) Next, the su-

pernatant was collected and passed over a polyamide filter (25 

mm diameter, 0.45 µm pore size, Macherey-Nagel, Düren, Ger-

many). Depending on the size of the sample batch, a 1:3 (n>20) 

to 1:6 (n>100) dilution with UPW was additionally applied. Fi-

nally, 500 µL of the diluted extract was transferred to a glass 

LC vial.  

To extract the fecal lipidome, the residual fraction of the metab-

olomics extraction was supplemented with 600 µl of methanol 

containing 0.01% (w/v) butyl-hydroxy toluene (BHT) to 100 

+/- 0.50 mg and vortexed for 1 min. Next, 2.7 ml of methyl tert-

butyl ether (MTBE) with 0.01% (w/v) BHT was added to the 

homogeneous mixture and vortexed for 30 s7. Subsequently, the 

sample was shaken for 20 min at 200 rpm at 20 °C in an incu-

bator (New Brunswick Innova 42, Eppendorf). Thereafter, 1.5 

ml of UPW with 2.5% trichloroacetic acid (w/v) was added, fol-

lowed by centrifugation for 5 min at 3000 x g (20 °C). Then, 

500 µl of the upper layer consisting of MTBE was collected and 

transferred to a Teflon tube (40 mL, VWR International, Darm-

stadt, Germany) and evaporated to dryness at 30 °C under a gen-

tle stream of nitrogen. The residue was sequentially suspended 

in 125 µl of chloroform and 325 µl of methanol followed by 5 

min of centrifugation at 3000 x g (20 °C). Finally, a 50-µl sub-

fraction was transferred to an amber glass LC-vial and diluted 

1:2 by the addition of 50 µl lipidomics ISTD mixture (concen-

trations between 1 and 100 ng/µl). 

Optimization of Fecal Metabolomics HESI source and 

HRMS Parameters. A total of 10 parameters, i.e., ion spray 

voltage, sheath gas, aux gas and sweep gas flow, ion transfer 

tube and vaporizer temperature, S-lens Radio Frequency level, 

position source, mass resolution and injection time were further 

optimized using three replicas of fecal metabolome extracts per 

parameter. This was evaluated based on the untargeted cover-

age, as well as targeted processing of the same selection of 161 

analytical standards used for the extraction optimization 

(marked with an * in Table S1). 

Final Fecal Metabolomics and Lipidomics UHPLC-HRMS 

Analysis Protocols. For metabolomics, chromatographic sepa-

ration was achieved using a Vanquish Flex UHPLC system 

(Thermo Fisher Scientific, San José, CA, USA), equipped with 

an Acquity HSS T3 column (150 x 2.1 mm, 1.8 µm) (Waters, 

Manchester, UK) kept at a constant temperature of 45 °C, as 

adapted from De Paepe et al.5. The binary solvent system con-

sisted of UPW (A) and acetonitrile (B), both acidified with 

0.1% formic acid. Using a flow rate of 400 µL·min-1, the fol-

lowing gradient was applied (solvent A, v/v): at 98% from 0-

1.5 min, 98% to 75% from 1.5-7.0 min, 75% to 40% from 7.0-

8.0 min, 40% to 5% from 8.0-12.0 min, at 5% from 12.0-14.0 

min, 5% to 98% from 14.0-14.1 min, followed by a re-equili-

bration step of 4.0 min. Detection was performed using an Or-

bitrap Exploris™ 120 mass spectrometer (Thermo Fisher Sci-

entific, San José, CA, USA), preceded by heated electrospray 

ionization (HESI-II source) in polarity switching mode (posi-

tion: interL/M/1.5). Instrumental parameters included a sheath, 

auxiliary and sweep gas flow rate of 55, 25 and 3 arbitrary units 

(a.u.) respectively, heater and capillary temperature of 300 and 

300 °C respectively, S-lens RF level of 50%, and a spray volt-

age of 2.9 kV for both positive and negative ionization mode. 

The m/z scan range was set from 53 to 800 Da, the automatic 

gain control target was 1 x 106 ions, the maximum injection time 

was 70 ms and the mass resolution was 120 000 Full Width at 

Half Maximum (FWHM) (1 Hz). The sample injection volume 

was 10 µL. 
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For the lipidomics analysis7, chromatographic separation was 

achieved by means of a Dionex UltiMate 3000 XRS UHPLC 

system (Thermo Fisher Scientific, San José, CA, USA), 

equipped with an Acquity ethylene-bridged hybrid (BEH) phe-

nyl column (150 × 2.1 mm, 1.7 μm) (Waters, Manchester, UK) 

kept at a constant temperature of 45 °C. A Hypersil Gold col-

umn (50 x 2.1 mm, 1.9 µm) (Thermo Fisher Scientific, San José, 

CA, USA) was installed between the LC pump and injector 

valve, with the purpose to delay any lipophilic compounds orig-

inating from the solvent system. Hereby, a binary solvent sys-

tem consisting of UPW (solvent A) and methanol (solvent B), 

both acidified with ammonium acetate (3.5 mM), was used to 

establish a gradient elution program. The following proportions 

(v/v) of solvent B were used: 0−1 min at 75%, 1−2 min from 

75% to 90%, 2−6 min from 90% to 98%, 6−15 min from 98% 

to 100%, and 15−17 min at 100%, followed by 3 min of equili-

bration at initial conditions. A constant flow rate of 300 μL.min-

1 and a column oven temperature of 40 °C were set. A Q-Exac-

tive mass spectrometer was employed (Thermo Fisher Scien-

tific, San José, CA, USA) for detection, equipped with a HESI-

II source that was operated in polarity switching mode (posi-

tioned in 0/B/1). The same instrumental mass spectrometric pa-

rameters were applied as described by Van Meulebroek et. al.7. 

An aliquot of 5 µl was injected into the chromatographic sys-

tem.  

Method Validation. In accordance with the guidelines of Naz 

et al., the method’s analytical performance was thoroughly as-

sessed in a targeted and untargeted fashion38. For the targeted 

analysis, we evaluated the consistent abundance (present in 

30/30 QCs) of our 836 in-house analytical standards (Table S1, 

Fig. 1B) in the fecal QC samples (detected in 30/30 QCs) using 

our optimized dual extraction protocol. A total of 360 metabo-

lites and 132 lipids could be detected successfully, both as an 

analytical standard and in our fecal QC samples (Table S2) and 

were further retained for targeted validation of our methods.  

Instrumental, intra-, and inter-day assay variances were as-

sessed in a targeted manner for each of the consistently detected 

metabolites and lipids and in an untargeted manner as a measure 

of precision. Instrumental precision was determined by repeat-

edly injecting (n = 10) a QC sample. For the intra-assay preci-

sion, multiple QC samples (n = 10) were extracted in parallel 

under identical experimental conditions, whereas inter-day as-

say precision (n = 30) included within-laboratory variations 

such as different analysts and different days39.  

Linearity was assessed for each of the consistently detected me-

tabolites and lipids by considering a nine-point dilution series 

(1, 2, 5, 10, 20, 50, 100, 200, and 500 times) of a pooled QC (n 

= 4) with UPW. Usage of the peak area (100 000 au) as a deci-

sion criterium instead of the signal-to-noise ratio (S/N) was re-

lated to the properties of the HRMS, where S/N is often infinite. 

Linearity was also determined in an untargeted way. For each 

metabolite and lipid, linearity was evaluated based on the deter-

mination coefficient (R2).  

Data and File Conversion. Both metabolomics and lipidomics 

.raw files were acquired from the 39 QC validation samples (n 

= 4) and 97 LLD cohort samples. All .raw files were converted 

to the open-source .mzXML and .mzML formats using Prote-

owizard’s MSConvert40. Each file was centroided and split into 

a positive and negative polarity open-source format file. 

Manual Targeted Benchmark. To establish a ground truth for 

benchmarking, manual targeted data processing was carried out 

on all .raw full scan HRMS data files including metabolite iden-

tification and quantification using XCalibur™ 4.1 software 

(Thermo Fisher Scientific, San José, CA, USA) by at least two 

experienced analysts. Identification of a metabolite required 

congruence with the corresponding authentic analytical stand-

ards, i.e., the m/z-value of the molecular ion (mass deviation≤5 

ppm), the C isotope pattern (13C/12C isotope ratio, compliant 

with CD 2002/657/EC) and a retention time relative to that of 

the ISTD (max. deviation of 2.5%)41 as such achieving the Tier 

1 annotation level42.  

Untargeted Peak Picking Pipeline (IPO/XCMS). An untar-

geted feature table was generated using our in-house R (version 

4.2.1) pipeline (Fig. 2C). Parameters for XCMS (version 3.18.0) 

preprocessing were optimized using IPO (version 1.21.0) and 

AutoTuner (version 1.3.0) and were further tuned based on ex-

pert knowledge and literature29,43–46. The parameters used can 

be consulted in Table S4. Prior to further preprocessing, empty 

spectra were filtered. Next, peak picking was performed with 

XCMS centWave and low-quality peaks were filtered using 

CPC. The CPC step was excluded during extraction and analyt-

ical method optimization. The remaining peaks were merged 

with neighboring peaks within each sample and RT alignment 

was performed using XCMS OBI-Warp. Then, the XCMS den-

sity algorithm was used to perform correspondence, in which 

detected peaks are matched between samples and groups them 

into features. Isotopes and adducts were identified using the 

CAMERA47 R package (version 1.52.0). 

Targeted Peak Extraction Pipeline (TaPEx). The most used 

data handling functions from XCMS and MSnbase48, and code 

adapted from the MetEx package 

(https://github.com/zhengfj1994/MetEx, accessed on 19 Au-

gust 2022) were wrapped into our database specific TaPEx 

pipeline (Fig. 2D). Based on an input table containing the tar-

geted compounds defined by their m/z and RT, EICs were ex-

tracted from the data. Within these EICs, peaks were automati-

cally recognized using the findPeaks algorithm to find local 

maxima (adapted from https://github.com/stas-g/findPeaks, ac-

cessed on 19 August 2022). A mass deviation of 5 and 10 ppm 

was allowed for metabolomics and lipidomics, respectively. For 

both metabolomics and lipidomics databases, an RT window of 

± 0.3 min was applied. The output consisted of an intensity table 

containing the intensities of each compound in each sample and 

diagnostic plots that allow evaluation of the peaks. First, this 

method was applied to the validation QC samples. To ensure 

robustness in case of so-called RT drift (measured RT in sam-

ples deviating from RT in the database) caused by column wear, 

type of column used, etc. in larger cohorts such as LLD and 

FGFP, TaPEx was run first on three QC samples (one ran in the 

beginning, middle and at the end of the analysis batch). For 

these QC samples, the diagnostic plots were manually inspected 

to assess which peaks could be reliably detected by the algo-

rithm (Fig. S1 and S2). Next, for the peaks that were reliably 

detected, the RTs to extract EICs in samples were automatically 

altered to the average RT of the peaks extracted in the previ-

ously analyzed QC samples (Fig. S3), resulting in a final inten-

sity table of all components per sample. 

Untargeted Peak Search. To search for known targeted com-

pounds based on m/z and RT in the untargeted feature table ob-

tained from our untargeted peak picking pipeline 

(IPO/XCMS)34, the MetaboAnnotation12 R package was used. 

This method was applied both on the validation QC samples and 



 

 

6 

samples from the LLD cohort data. To include a comparison 

with industry-standard software, the same methodology was ap-

plied on an untargeted feature table generated using Compound 

Discoverer™ 3.3 (Thermo Fisher Scientific, San José, CA, 

USA). The parameters of Compound Discoverer™ 3.3 (Table 

S5) were tuned to match those of IPO/XCMS as close as possi-

ble for a fair comparison in performance.  

 

RESULTS AND DISCUSSION 
Selection of Panel of Targeted Metabolites and Lipids. Our 

targeted panel of 836 metabolites (Table S1, Fig. 1B) for which 

analytical reference standards were acquired, was selected 

based on our initial list of relevant fecal metabolites from 20156 

and 20185 and lipids from 20177. The metabolites are character-

ized by a broad range of psychochemical properties and were 

considered relevant from a gastrointestinal perspective49–53, 

while the selected fecal lipids covered all 8 LIPID-MAPS clas-

ses54. This list was further complemented with mostly metabo-

lites and some lipids that were detected in the last 5 years in 

multiple fecal metabolomics and lipidomics studies5,55–58, the 

HMDB59 and recent work from Han et al. reporting on 833 gut 

microbial metabolites3. 

Optimization of Dual Metabolomics and Lipidomics Ex-

traction. As a first step towards obtaining a dual extraction ap-

proach for both the fecal metabolome and lipidome, the extrac-

tion parameters that showed the highest impact based on prior 

stool metabolomics studies 6,49,50,60–64, i.e., starting weight of the 

fecal sample, type of solvent and solvent ratio were studied 

more in-depth using an experimental design (18 different com-

binations, 120 runs). The 4 combinations that generated the 

highest number of untargeted components (26 157 - 26 296), 

and highest peak areas and repeatabilities for the 161 target an-

alytes (i.e., CV<20% for 123 - 135/161), were analyzed again 

in triplicate to corroborate the obtained results. A fecal sample 

mass of 100 mg, and methanol vs. UPW ratio of 75:25 (v/v) 

generated the highest number of untargeted components (26 

296) with 15 966 of those untargeted features displaying a 

CV<20% and 135/161 targeted features displaying a CV<20%. 

This extraction protocol is relatively similar to earlier reported 

procedures for fecal metabolomics6,64–66, the main differences 

pertain to the lower starting material mass (100 vs. >= 200 mg) 

and the different methanol vs. UPW ratio (75:25 vs 80:20).  

The residual metabolome fraction was used to perform a lip-

idomic extraction. Because our lipidomics extraction protocol 

was optimized relatively recently and displayed excellent re-

sults7 both untargeted as well targeted (8 LIPID-MAPS classes), 

we did not re-optimize the solvent composition and other rele-

vant extraction parameters, but merely compared our dual ap-

proach with the original protocol starting from crude feces. In 

comparison to the original single fecal lipidomics extraction7, 

the dual approach generated 3 191 vs. 3 252 untargeted compo-

nents, while 122 vs. 128/132 targeted lipids were detected. As 

such, the dual approach was considered sufficiently performant 

for implementation in large cohort studies. To the best of our 

knowledge, dual protocols have been reported for blood67 and 

tissue68, but is unique for feces. 

Optimization of UHPLC-HRMS Metabolomics Analysis. 

The optimized dual extraction protocol was applied to a series 

of pooled QC samples. The obtained metabolomics extracts 

were further used to optimize the HESI source and HRMS pa-

rameters on the Exploris 120 mass spectrometer (Thermo Fisher 

Scientific, San José, CA, USA). Maximal untargeted feature 

counts (37 572) and number of consistently detected targeted 

features (140/161) were obtained with a sheath, auxiliary, and 

sweep gas flow rate of, respectively, 50, 25, and 3 a.u., a heater 

and capillary temperature of 300 °C and 300 °C, an S-lens RF 

level of 50 V and a spray voltage of ± 2.7 kV and deviated only 

minimally from those reported earlier for HESI-Orbitrap instru-

ments in fecal metabolomics analysis 64,69,5. 

Dual Metabolomics-Lipidomics Analytical Method Valida-

tion. We pursued the validation of our optimized dual metabo-

lomics and lipidomics methodology using various performance 

characteristics (Table 1), which were assessed in a targeted and 

untargeted fashion. For the targeted metabolites and lipids con-

sistently detected in the pooled QC samples (Tables S2 and S3) 

the instrumental variability, repeatability (intra-day variability), 

reproducibility (inter-day variability), and linearity were evalu-

ated (Table 1, Tables S6 and S7). Targeted evaluation of the 

dilution series showed good linearity (R2≥0.90) for 304 out of 

360 metabolites and 94 out of 132 lipids. Similar results for lin-

earity were observed in previous studies for both fecal metabo-

lomics and lipidomics, although the number of known com-

pounds used for targeted validation was significantly higher in 

the current study (>15-fold)6,7. 

For targeted profiling, the FDA guidelines recommend a 

CV≤15%, except when operating close to the limit of detection 

(CV≤20%)41. For untargeted fingerprinting, a CV≤30% is gen-

erally recommended as acceptable precision41. Our novel dual 

metabolomics and lipidomics fecal extraction method estab-

lished a high fecal metabolome coverage with a good level of 

repeatability and reproducibility. To the best of our knowledge, 

this is the first report presenting the repeatability and reproduc-

ibility of so many molecules, with such a broad physicochemi-

cal diversity (Fig. 1B) in feces 69,70. 

 
Table 1. Summary of the UHPLC-HRMS validation of dual fecal 

metabolomics and lipidomics. For the targeted analysis, the number 

of analytes is reported. Regarding the untargeted analysis, the % 

refers to the % of components that match the specified criteria. 

              Targeted Untargeted 

 Metabolome   Lipidome    Metabolome   Lipidome 

Linearity  
(R2≥0.90) 

 
304/360          94/132             -                          - 

 

 
345/360          90132              -                          - 

355/360          108/132         86%                   49% 

 
344/360          57/132             -                          - 

353/360          88/132           85%                   45% 

 
336/360          49/132             -                          - 

347/360          84/132            85%                   45% 

Precision 

  Instrumental 
  (CV<20%, 

  CV<30%) 

  Intra-day      
  (CV<20%, 

  CV<30%) 

  Inter-day 
  (CV<20%, 

  CV<30%) 

 

Fig. S4 shows our validation results for the 360 metabolites (A-

C) and 132 lipids (D-E) per superclass. For the metabolites and 

lipids, respectively, eight out of twelve superclasses and six out 

of seven superclasses were presented as the remaining super-

classes were only represented by one analyte. Notably, those 

compounds detected with a lower peak area (and thus abun-

dance) generally also display higher CV-values, therefore being 

responsible for the outliers in Fig. S4. This was the case for i.a. 

cotinine, biliverdin, 4-methyl valeric acid, 2-methyl maleic 

acid, and adipoylcarnitine for which reproducibility CV-values 
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of 34.6%, 28.5%, 50.3%, 53.2%, and 51.2%, respectively, were 

obtained. Moreover, all metabolite superclasses presented rela-

tively lower average CV values compared to the superclasses 

representing the lipidome.  

Target Compound Database. For the method-specific metab-

olomics and lipidomics database, the detection of the aforemen-

tioned 360 targeted metabolites and 132 targeted lipids was con-

firmed in the validation QC samples using manual curation by 

an experienced analyst using Xcalibur™ 4.1, and as such the en-

try databases for our TaPEx pipeline were created (Tables S2 

and S3).  

Target Compound Detection. In the validation QC samples (n 

= 39), 298/360 metabolites and 98/132 lipids could be reliably 

detected by the TaPEx approach (see Table S8 and S9 for peak 

intensities). Using the untargeted feature list obtained when 

running our method-specific (metabolomics and lipidomics) 

optimized IPO/XCMS pipelines (Fig. 1C) 253/360 metabolites 

and 68/132 lipids were retrieved, respectively (peak areas in Ta-

ble S10 and S11) while using the same approach with CD 3.3 

generated 290/360 metabolites and 82/132 lipids (Fig. 2, peak 

areas in Table S12 and S13).  

In the LLD cohort samples, TaPEx detected 304 metabolites 

and 96 lipids (intensities in Table S14 and S15), corresponding 

to 81.3% of all targeted compounds. To ensure reliable detec-

tion, TaPEx was applied on pooled QC samples (n = 20) that 

were run throughout the LLD cohort samples first (2 before and 

after and in between every 10 samples). Following visual in-

spection by an experienced analyst, our TaPEx algorithm auto-

matically shifts the RT range to be used when applied to the 

samples based on the results of the batch-specific QCs (Fig 1. 

D). Using IPO/XCMS, respectively 264 metabolites and 61 li-

pids were found (areas in Table S16 and S17), CD 3.3 generated 

218 metabolites and 61 lipids (Fig. 3, areas in Table S18 and 

S19) which corresponds to 66% and 56.7% of targeted com-

pounds respectively. 

Comparison of TaPEX to IPO/XCMS and CD 3.3. In the val-

idation QC samples 80.5%, 65.2%, and 75.6% of the total num-

ber of metabolites and lipids were retrieved by TaPEx, CD 3.3- 

and IPO/XCMS, respectively (Fig. 2). None of the three meth-

ods managed to successfully retrieve all manually curated 

peaks. A total of 28, 17 and 3 components were uniquely re-

trieved by TaPEx, CD 3.3 and IPO/XCMS, respectively. It was 

expected that none of the approaches would succeed in retriev-

ing all compounds from the manual benchmark. In manual cu-

ration, peaks that deviate from the expected peak shape and RT 

can still be integrated by the analyst. Furthermore, when using 

the default settings for peak detection, the XCalibur™ software 

applies gaussian smoothing to the data, which can cause few 

data points to present as high-quality chromatographic peaks. 

Whilst it has been demonstrated by Loziuk et al. that this 

smoothing does not impact the processing results71, these peaks 

are less likely to be retained by the algorithms in XCMS and 

CD 3.3. The lower number of compounds detected in the CD 

3.3- and IPO/XCMS-based approach was also expected because 

low-quality peaks were filtered at different points during both 

CD 3.3 and IPO/XCMS preprocessing (e.g., by the CPC algo-

rithm) (Fig. 1C). TaPEx does not contain such (automatic) qual-

ity control and will thus include any data points within the given 

RT and m/z ranges. The discrepancy between CD 3.3 and 

IPO/XCMS shows that, despite our efforts to match XCMS pa-

rameters to those of CD 3.3, there are still (performance) differ-

ences in the algorithms for peak picking and quality filter-

ing24,46.   

 

   
Figure 2. Venn diagram displaying the number of detected targeted 

compounds in the validation QC samples (n = 39) by the different 

approaches for metabolomics (left) and lipidomics (right). 

 
The results displayed in Fig. 3 demonstrate that TaPEx was able 

to extract a larger number of metabolites and lipids compared 

to both CD 3.3- and IPO/XCMS-based approaches. Further-

more, it is notable that there was a greater overlap in compounds 

between TaPEx and IPO/XCMS, than between CD 3.3 and 

IPO/XCMS, reinforcing again that different peak picking algo-

rithms gain variable results, as reported before24,46. 

 

   
Figure 3. Venn diagram displaying the number of detected targeted 

compounds in the benchmark LLD sample data (n = 97) by the dif-

ferent approaches for metabolomics (left) and lipidomics (right). 

 

Also, the number of compounds uniquely detected by TaPEx 

was greater than for both other approaches (Fig. 4). It is clear 

that TaPEx outperforms IPO/XCMS and CD3.3 in the detection 

of lipids, organic acids, nucleosides, organic nitrogen- and or-

ganoheterocyclic compounds. Furthermore, TaPEx success-

fully enabled the detection of larger compounds (m/z > 500), 

eluting at later RTs, while compounds uniquely detected by 

IPO/XCMS and CD3.3 were mainly metabolites characterized 

by lower m/z-values eluting at earlier RTs. Combined, the meth-

ods were able to retrieve all but 24 compounds from our tar-

geted metabolome (n = 360) and lipidome (n = 132) fecal panel 

(95%). Compounds that could not be retrieved by any of the 

methods were mainly lipids and lipid-like molecules (Fig. S5). 

This was expected, as the results presented in Fig. 2 already dis-

played a lower retrieval rate for lipidomics compared to metab-

olomics. These results indicate that TaPEx is a promising leap 

forward in the automated detection of lipids and that future re-

search should focus on improving automated peak-picking in 

lipidomics.
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Figure 4. Visualization of the unique chemical space covered by the different methods used for targeted metabolome (n = 360) and lipidome 

(n = 132) peak detection. Left: bar plot presenting the number of compounds uniquely retrieved by each method, colored according to 

compound class. The pattern on the bars indicates the applied method. Right: Scatterplot of the uniquely retrieved compounds.  

 

TaPEx Performance and Application to Larger Cohorts. 

Both results for the QC validation samples and the LLD cohort 

samples point towards TaPEx outperforming the untargeted ap-

proaches with respect to the number of targeted compounds 

generated successfully. TaPEx also outperforms the untargeted 

processing-based methods in terms of computing speed (~60 

minutes vs. ~24 hours for 97 samples and 20 QCs on a machine 

equipped with an Intel® Core™ i9-9900 CPU) since it does not 

rely on generating an untargeted feature table first and lacks ad-

ditional quality control algorithms. The lack of automatic qual-

ity control brings about the need to visually inspect which com-

pounds are reliably detectable in QC samples first, rendering it 

a semi-automated approach. Still, TaPEx remains far less time-

consuming compared to manual targeted processing or untar-

geted approaches (Fig. 1E). Indeed, TaPEx removes the need 

for manual processing of all compounds per sample by the ana-

lyst and is also suited for larger cohorts, as we then confirmed 

by its application on the FGFP cohort (n = 292). Following the 

analysis of 292 FGFP stool samples using our novel dual metab-

olomics-lipidomics analytical methodology, including manual 

prospection of the 58 QC samples run throughout both metabo-

lomics and lipidomics batches, TaPEx was applied, and 

351/360 metabolites and 103/132 lipids were reliably detectable 

in QC’s and retrieved successfully in samples (intensities in Ta-

ble S20 and S21). Interestingly, a larger number of targeted me-

tabolites and lipids were detected in this cohort as compared to 

our validation QC and LLD cohort batch. We believe this is due 

the amount of different QC sample runs being evaluated. Since 

the analysis of the FGFP cohort was run over five days, multiple 

QC sample runs were evaluated to check if compounds were 

detected consistently over the different days. Since compound 

peak shape can differ between different QC sample runs, it is 

possible that some peaks were judged to be reliable because 

they were present in most of the runs. However, when the 

amount of evaluated QC runs is lower (as in the LLD cohort), 

the chance that these less consistent peaks are present in these 

runs and thus are judged unreliable is higher. Future develop-

ment of our TaPEx approach includes elevated user-friendliness 

(e.g. GUI), implementation of automatic quality control pro-

spection, parallelization of processing, and possibly publication 

as an open-source software package.  

 

 

CONCLUSION 
In 2015 and 2017, we optimized and successfully validated par-

allel extraction protocols and UHPLC-HRMS-based analysis 

methods for metabolomics5,6 and lipidomics7, respectively. To 

meet the current needs regarding fast, high-throughput metabo-

lomics analysis, the metabolomics and lipidomics extraction 

protocols were optimized to establish a dual approach. The new 

combined (metabolomics and lipidomics) fecal extraction and 

analysis methods were validated in an untargeted and targeted 

fashion, the latter on 360 metabolites and 132 lipids. Validation 

demonstrated a large fecal metabolome and lipidome coverage 

with a high level of precision and good linearity for a wide va-

riety of physicochemically diverse metabolites. Furthermore, 

we present the use of a novel targeted peak extraction approach, 

called TaPEx, as a robust and semi-automated method for tar-

geted data processing, which relies on method-specific data-

bases, and can also be expanded to other multi-small molecule 

analysis methods in adjacent fields. Our novel analytical and 

data analysis workflow encompasses a total time reduction from 

sample-to-result of up to ~60%. As such this work answers 

challenges in both the analytical and bioinformatic part of the 

field by presenting a validated and benchmarked, holistic and 

semi-automated workflow for gut phenotyping.  
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