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Abstract 

Inverse molecular design allows optimization of molecules in chemical space and is promising for 

accelerating the development of functional molecules and materials. To design realistic molecules, 

it is necessary to consider geometric stability during optimization. In this work, we introduce an 

inverse design method that optimizes molecular properties by changing the chemical composition 

in the equilibrium geometry. The optimization algorithm of our recently developed molecular 

design method has been modified to allow molecular design for general properties at a small 

computational cost. The proposed method is applicable to large chemical space based on quantum 

alchemy without empirical data. We demonstrate the applicability of the present method in the 

optimization of the electric dipole moment and atomization energy in chemical spaces for (BF, 

CO), (N2, CO), and BN-doped benzene derivatives. Moreover, we also investigate and discuss the 

applicability of quantum alchemy to the electric dipole moment. 
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Introduction 

Inverse molecular design proposes molecules with predefined properties and is a reverse 

process of traditional direct design processes.1-3 In the reverse design process, molecules are 

optimized for the properties. One approach is to explore chemical space, a set of candidate 

molecules, and functionality space mapped onto the chemical space. In contrast to early efforts 

toward inverse design,1, 4-5 exploration leads directly to chemical structures. Only the subspace of 

the chemical space is explored by using the information of the functionality space, and the 

exhaustive enumeration of the properties of all the candidate molecules is avoided. This efficiency 

is appealing because the chemical space combinatorially expands with molecular size.6 Thus, 

inverse design is a promising approach for accelerating the development of functional molecules 

and materials. Importantly, the choice of representation of molecules and their properties 

dramatically impacts the performance of molecular design. Electronic structure theories can map 

molecular structures onto various physical properties without experimental records and are a 

natural choice for inverse design. The inverse molecular design approaches based on electronic 

structure theories involve the variational particle approach,7 linear combination of atomic 

potentials (LCAP),8 and quantum algorithm-based alchemical optimization.9 

Considering the geometric stability of molecules in the design process is essential for designing 

functional molecules available in experiments under ambient conditions.3 Recently, we proposed 

an inverse molecular design method based on quantum alchemy to efficiently explore chemical 

space composed of molecules with equilibrium geometries.10 Hereafter, this method is referred to 

as MDM. Quantum alchemy models the change in composition ("alchemical" changes) from a 

reference molecule to a target molecule at the level of quantum mechanics.7, 11-15 MDM 

simultaneously predicts the molecular species, target properties, and equilibrium geometry of the 
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functional molecule without empirical data. In the design process, MDM gradually varies the 

molecular species and equilibrium geometry using the gradient of the target property with respect 

to the molecular species that accounts for the change in equilibrium structure. MDM was applied 

to various chemical spaces, one of which contains 3.1 × 105 BN-doped phenanthrene derivatives,16 

and its capabilities in the design of energy-related functionalities were demonstrated. MDM can 

target various molecular properties calculated by the quantum alchemy method. However, 

evaluating the property gradient other than for energy-related properties (e.g., energy, atomization 

energy, and reaction energy) is computationally expensive. This greatly limits the scope of 

applications. To overcome this problem, MDM applicable to the general properties with a small 

computational cost is needed. 

In this work, we have extended MDM for general functionalities by improving the optimization 

algorithm. The present MDM separates two coupled optimization problems for the molecular 

species and equilibrium geometry; MDM gradually and iteratively changes the molecular species 

and equilibrium geometry during the exploration of chemical space but avoids evaluating the 

contribution of the geometry change in the gradient. This allows for a dramatic reduction in the 

computational cost. This type of approach has been demonstrated in discrete optimization using 

semiempirical AM1-based LCAP.17 Moreover, we achieved rapid design by improving the 

constraint optimization method for updating molecular species. The proposed MDM was 

successfully applied to molecular design for electric dipole moment and atomization energy with 

small chemical spaces. The electric dipole moment is important for optical properties and 

intermolecular interactions. The atomization energy is related to the stability of molecules. We 

adopted alchemical perturbation density functional theory (APDFT)18 as the quantum alchemy 
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method. The electric dipole moment is less investigated in APDFT, and it is worth examining its 

accuracy. We have assessed the applicability of APDFT for estimating the electric dipole moment. 

 

Methods 

We describe the MDM algorithm introduced for general molecular properties. A conceptual 

illustration is shown in Figure 1(a). The present MDM searches for a functional molecule in the 

equilibrium geometry by optimizing the molecular species, as introduced in our previous MDM 

paper.10 However, the previous search algorithm is designed for energy-associated properties and 

is not necessarily appropriate for general properties. In this section, a common strategy of our 

MDM is first shown. Then, the algorithm of the present MDM algorithm is compared with that of 

Ref. 10. 

 

Figure 1. (a) Conceptual illustration and (b) simplified flowchart of the presently introduced MDM. 
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MDM begins by preparing candidate molecular species. Then, starting from a candidate 

molecule with initial nuclear coordinates, it searches for the candidate molecule with the desired 

functionality in the equilibrium geometry. To efficiently explore the chemical space using the 

gradient, we use continuous chemical space interpolated by introducing virtual alchemical 

molecules. The alchemical molecules have already been utilized in inverse design methods to 

facilitate exploration: LCAP8 and quantum algorithm-based alchemical optimization9 approaches 

represent alchemical molecules at the atomic level; in the design of molecular aggregates and 

plasmonic systems, alchemical molecules are described at the molecular level.19-20 MDM adopts 

the latter approach and represents the alchemical molecular species as a weighted average of 

candidate molecular species.10 The weights a ( ) are called participation coefficients. i is the 

index of the candidate molecular species. n is the total number of candidate molecular species. The 

candidate molecules are defined with . The alchemical molecules are defined 

with . Corresponding to the molecular species, the physical properties of the 

alchemical molecule specified by a and the nuclear coordinates R ( ) are represented as 

, where  are the corresponding properties of the candidate 

molecules with the geometry R. I is the index of the atomic nucleus. N is the total number of nuclei. 

MDM designs the molecule with the desired property by optimizing a using the property gradient 

while suitably changing the equilibrium geometry. The calculations of  and geometry 

optimization are performed using quantum alchemy during the design. The MDM algorithm 

introduced for general target properties is described in detail in the following. 

ai{ }i=1
n

ai = 1, aj≠i = 0, ∀i

0 < ai <1, ∀i

R I{ }I=1
N

f a,R( ) = ai fi R( )i

n∑ fi R( ){ }i=1
n

fi R( ){ }i=1
n
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We consider a computational procedure for molecular design as an optimization problem. The 

functional molecule is obtained by maximizing the target property f with respect to the molecular 

species represented by a in the chemical space. This is expressed by minimizing objective function 

p: 

 . (1) 

Since a are the weights for the weighted average, the constraints on a are expressed as 

 ,  (2) 

   (3) 

These constraints are necessary to limit the value of p. In addition, the equilibrium geometry is 

imposed on the molecule during the exploration of the chemical space. This criterion for geometric 

stability is employed in the gradient-driven molecular construction approach.21-23 In the 

equilibrium geometry, the derivatives of energy with respect to the nuclear coordinates are zero: 

   (4) 

This can be solved by using the (quasi-)Newton method with respect to R. For the full optimization 

problem consisting of Eqs. (1)–(4), we have two coupled optimization problems with respect to 

participation coefficients a and nuclear coordinates R. The former seeks a that maximizes the 

functionality p for a given fixed R. The latter searches for the equilibrium geometry with local 

energy minimization for a given a. 

Here, MDMs of this work and Ref. 10 are compared. It is possible to efficiently solve the full 

optimization problem using the gradient of p with respect to a, , taking into account the 

min
a

 p a,R( ) = min
a

 − f a,R( )

subject to g a( ) = ai
i

n

∑ −1= 0

subject to 0 ≤ ai ≤1,

i = 1, 2, !, n

subject to hI a,R( ) = ∂E a,R( )
∂R I

= ai
∂Ei R( )
∂R Ii

n

∑ = 0,

I = 1, 2, !, N

dp da
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change in the equilibrium geometry.10 Assuming the equilibrium geometry,  can be 

expressed as 

   (5) 

The first term on the right-hand side represents the gradient in the iso-geometric chemical space 

and contains the elements of . The second term  takes into 

account the displacement of the equilibrium geometry.  in the second term has the 

elements of .  is the Hessian matrix of energy with respect to the nuclear 

coordinates.  contains the elements of . While quantum alchemy can efficiently 

compute these derivatives as described later, the computational costs of  and  are 

still high. When p is the energy-related functionality, Eq. (5) becomes , and their 

evaluations are avoided.10 For the other functionalities,  must be 

evaluated. That is, the computational cost of MDM becomes significantly higher when targeting 

general properties. Therefore, in our previous study, MDM was only applied for optimizing 

energetic functionalities.10 For the design of general properties, the present MDM avoids 

evaluating  by separating the full optimization problem into two 

subproblems: Eqs. (1)–(3) and Eq. (4). MDM iterates updating a and optimizing R. First, geometry 

optimization is performed to solve constraint Eq. (4). Next, a are updated based on Eqs. (1)–(3). 

This procedure is repeated until the variation in a becomes sufficiently small (Figure 1(b)). The 

full optimization problem is solved under that condition since the equilibrium geometry change is 

dp da

dp a,R( )
da

=
∂p a,R( )

∂a

                   −
∂p a,R( )

∂R
∂h a,R( )

∂R
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
∂h a,R( )

∂a

− fi − ∂p ∂R( ) ∂h ∂R⎡⎣ ⎤⎦
−1

∂h ∂a( )

∂p ∂R

− fi R I ∂h ∂R

∂h ∂a ∂Ei ∂R I

∂p ∂R ∂h ∂a

dp da = ∂p ∂a

− ∂p ∂R( ) ∂h ∂R⎡⎣ ⎤⎦
−1

∂h ∂a( )

− ∂p ∂R( ) ∂h ∂R⎡⎣ ⎤⎦
−1

∂h ∂a( )
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caused by the update of a. When the full optimization problem is separated, the substantial update 

of a results in a large error due to the large equilibrium geometry change. Therefore, MDM 

gradually updates a in the continuous chemical space. It is expected that this also leads to the small 

displacement of the equilibrium geometry at each design step. Therefore, in practice, the geometry 

optimization that suitably changes R and approximately solves Eq. (4) is not performed at all 

design steps. As the update of a depends on the current equilibrium geometry R, their coupling 

persists through the iterations. The LCAP discrete optimization performs geometry optimization 

of nearby candidate molecules in discrete chemical space and subsequently computes the gradient 

by finite difference.24-25 This strategy is costly in our MDM since all the candidate molecules are 

located at equal distances in the chemical space. Moreover, the error in the discrete update of a 

should be large. 

a are updated using the optimality criteria method26 used in topology optimization for 

macroscopic material design. The similarities between this type of molecular design and topology 

optimization have already been pointed out in the context of LCAP.27 The use of the optimality 

criteria method in MDM is expected to lead to rapid optimization convergence. To obtain the 

update formula, we introduce the Lagrangian function with respect to constraint Eq. (2): 

   (6) 

where λ is the Lagrange multiplier. The optimality condition with respect to a is expressed as 

   (7) 

Based on this equation, we obtain the scale factors B for updating a: 

L a,R,λ( ) = p a,R( )+ λg a( )

∂L a,R,λ( )
∂ai

=
∂p a,R( )

∂ai
+ λ

∂g a( )
∂ai

= 0,

i = 1, 2, !, n
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   (8) 

Here,  are positive. The optimality condition is satisfied when Bi = 1. Increasing ai is effective 

in making p smaller when Bi > 1. When Bi < 1, the opposite is true. Multiplying a by B, a are 

gradually updated while satisfying Eq. (3). A heuristic updating scheme is as follows: 

   (9) 

Δa is a parameter for limiting each update. To gradually update the molecular species, Δa was set 

to 0.01 at each design step. λ is obtained by a bisection search to satisfy constraint Eq. (2). The 

effectiveness of the algorithm comes from the fact that each ai is updated independently of the 

others, except for the scaling that must take place to satisfy Eq. (2). To obtain the candidate 

molecular species ( ) as the numerical procedure, optimized a are rounded off 

and converted into integers. From Eq. (9), it is found that the candidate molecules are stationary 

points. Therefore, the candidate molecule can be obtained by MDM. When starting the exploration 

from the candidate molecule, a must be varied slightly. 

MDM requires the target properties  and energy derivatives  in the design 

process. Quantum alchemy can efficiently compute them. In particular, alchemical perturbation 

density functional theory (APDFT)18 can predict the properties of a combinatorially large number 

Bi = −
∂p a,R( ) ∂ai
λ ∂g a( ) ∂ai

=
fi R( )
λ

,

i = 1, 2, !, n

fi{ }

ai :=

max 0, ai − Δa( )
   if  Bi ai ≤ max 0, ai − Δa( ),
Bi ai

   if  max 0, ai − Δa( ) < Bi ai < min 1, ai + Δa( ),
min 1, ai + Δa( )
   if  min 1, ai + Δa( ) ≤ Bi ai

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

i = 1, 2, !, n

ai = 1, aj≠i = 0, ∀i

fi{ } ∂Ei ∂R I{ }
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of molecules from a combination of derivatives of the electron density of a reference molecule 

with respect to nuclear charges based on perturbation expansions. While the change in the number 

of electrons is allowed,28-29 this work considers isoelectronic chemical space. In the MDM 

procedure,  and  for all the candidate molecules with equivalent nuclear 

coordinates are calculated using APDFT. The accuracy of APDFT energy has been intensively 

investigated for the perturbation order and basis sets.30-31 In the iso-geometric chemical space, 

APDFT gives accurate predictions.18, 30, 32 An efficient analytical energy derivative has been 

proposed within the restricted Hartree–Fock theory.33 Because the accuracy of APDFT depends 

on the reference electronic structure theory,18 the direct derivative of the APDFT energy with 

respect to the nuclear coordinates33 was employed for MDM.10 The convergence of the 

perturbation expansion was confirmed for several atoms and molecules.18, 31, 33 Quantum alchemy 

has been widely applied to investigate catalysis,34-36 covalent bond energies,18, 37 non-covalent 

interactions,18 mixtures,12-13, 38 protonation and deprotonation energies,33, 39-40 and chemical 

reactions.41-42 Although APDFT can calculate various response properties, to the best of our 

knowledge, few studies18 have applied APDFT to the prediction of non-energetic properties. In 

this work, we investigate the accuracy of APDFT for the electric dipole moment for molecular 

design. 

The complexity of the functionality space explored by MDM depends on the chemical space. 

This means that the efficiency and results of MDM depend on the chemical space. To examine this 

issue, the chemical space containing two candidate molecules was linearly interpolated, and we 

investigated the corresponding atomization energy and electric dipole strength (EDS) (Supporting 

Information). EDS is the norm of the electric dipole moment. The adopted chemical spaces are 

(N2, CO)CS, (BF, CO)CS, and (N2, BF)CS for the atomization energy and (N2, CO)CS for EDS, where 

fi{ } ∂Ei ∂R I{ }
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“(X, Y, …)CS” denotes a chemical space including molecular species X, Y, and so on. The 

atomization energy and EDS smoothly and monotonically vary with the interpolation parameter 

in all cases (Figure S1). This result indicates that molecular design can be easily achieved by MDM. 

 

Computational details 

The energies of the candidate molecules and their derivatives with respect to the nuclear 

coordinates were calculated using APDFT with the second-order perturbation expansion 

(APDFT2). The reference electronic structure theory is coupled cluster singles and doubles 

(CCSD) or Kohn–Sham DFT with the PBE0 functional.43 We employed def2-TZVP44 as the basis 

set. All the molecules are assumed to be in the spin singlet state. APDFT/def2-TZVP accurately 

predicts energies and energy derivatives.18, 30, 33 The energy and equilibrium geometries at the 

adopted calculation level are reasonably accurate, as shown in our previous study.10 The electric 

dipole moment was calculated from the electron density derivatives for the APDFT2 energy 

according to the Hellmann–Feynman theorem (Supporting Information). Details of the 

atomization energy calculations are given in Ref. 10. MDM was performed using our original code. 

The implementation of the optimality criteria method follows the code for topology optimization.45 

For the APDFT calculations, we used a modified APDFT code46 combined with PySCF.47 

Geometry optimization was performed with ASE.48 Molecular structures were drawn with VMD.49 

Further details can be found in Supporting Information. 

 

Accuracy of the electric dipole moment in APDFT 

The MDM results depend on the adopted quantum alchemy method. We adopted APDFT in 

this work. Here, we have investigated the accuracy of APDFT EDS with respect to (N2, CO)CS and 
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(BN-doped benzene derivatives)CS. MDM for EDS will be demonstrated with these chemical 

spaces in the next section. APDFT is an approximation of the reference electronic structure theory. 

Therefore, we compared the results of APDFT with those of the reference theory. 

The APDFT calculations of electronic EDS of CO were performed using reference N2 

(Supporting Information). Although CCSD-based APDFT EDM for CO has already been 

calculated,18 we focus on the investigation of the dependence of EDS on the reference electronic 

structure theory. We adopted CCSD, Hartree–Fock, and PBE0 theories as the reference electronic 

structure theory. Regardless of the reference theory and perturbation expansion order, APDFT 

EDS is reasonably accurate (Table S1). As the perturbation order of APDFT increases, the error 

from the reference theory decreases. In particular, the first-order perturbation expansion 

considerably improves EDS. 

The calculation results for EDSs of BN-doped benzene derivatives 1–18 (Figure 2) at the 

APDFT and PBE0 levels are shown in Figure 3. PBE0-based APDFT is used. The reference 

molecule is benzene 1. The lower-order APDFT up to the third-order perturbation expansion fails 

to reproduce the PBE0 trend (see also Table S2). At the APDFT level, the derivative with the 

highest EDS is 16 (7.66 Debye), and 5 has the second-highest EDS (7.34 Debye). However, at the 

PBE0 level, the derivative with the highest EDS is 5 (7.80 Debye), and 16 has the second-highest 

EDS (6.74 Debye). APDFT underestimates EDS of 5 by 0.47 Debye but overestimates EDS of 16 

by 0.92 Debye. As a result, APDFT gives an incorrect trend. This result is independent of the 

reference theory, perturbation expansion order, basis sets, and geometry relaxation (Figures S5, 

S6, S9, and S11). Moreover, the change in the reference molecule from 1 to 17 or 18 worsens the 

overall trend (Figure S11). At the PBE0 level, the difference in EDSs between 5 and 16 is 1.07 

Debye. Accurate quantum alchemy predictions are required to search for more desirable molecules. 
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Figure 2. Candidate BN-doped benzene derivatives 1–18 in descending energy order. 

 

 

Figure 3. EDSs of BN-doped benzene derivatives 1–18 at the APDFT and PBE0 levels of theory. 

EDS was calculated in the equilibrium geometries of the derivatives. EDSs in ascending EDS order 

can be found in Figure S11. 

H
H

H
H

H

H
N

B
H

H

H
H

H

HB N

H
H

H
H

H

H

B
N

H
H

H
H

H

H

B
N

B
B
N

N
H

H

H
H

H

H
N
B
N

B
N

B
H

H

H
H

H

H

1

B
B

N
N
H

H

H
H

H

H

N
B

N
B
H

H

H
H

H

H

B
N

N
B
H

H

H
H

H

HN
B

B
N
H

H

H
H

H

H

B

B

N
N
H

H

H
H

H

H

N

B

N
B
H

H

H
H

H

H

B

N

N
B
H

H

H
H

H

H

B

N

B
N
H

H

H
H

H

H

B
B

N
N
H

H

H
H

H

H

N
B

N
B
H

H

H
H

H

H

B
N

N
B
H

H

H
H

H

H
N
B
B
B
N

N
H

H

H
H

H

H

2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18



 15 

We discuss possible improvements for precise molecular design. To improve the accuracy of 

APDFT, assuming convergence, the perturbation expansion order must be increased. Analytic 

derivatives of energy and electron density33, 50-52 allow numerically stable yet computationally 

efficient evaluations of higher-order APDFT. Finite differences are also useful for systematically 

increasing the expansion order.31, 50, 53 A hybrid approach of high- and low-level reference theories 

for the derivatives of the electron density is effective for reducing the computational cost of higher-

order APDFT calculations.40 A very recently developed alchemical integral transformation (AIT)54 

transforms the integral in APDFT, allowing the calculation of the target system from only the 

electron density of the reference system. We believe that advances in quantum alchemy will allow 

more precise molecular design by MDM. 

 

Results and discussion 

We apply MDM to search for functional molecules with equilibrium geometries in various 

chemical spaces. First, the search for a molecule with high atomization energy in simple (BF, 

CO)CS is performed to verify the performance of the optimality criteria method. The results are 

compared with those in Ref. 10. Second, we search for a molecule with high electric dipole strength 

(EDS) in simple (N2, CO)CS and realistic chemical space (BN-doped benzene derivatives 

BnNnC6−2nH6, n = 1–3)CS. This work focuses on the proof of concept and is limited to applications 

to small chemical spaces. Future work will address larger chemical space and candidate molecules 

with considerably different equilibrium geometries. For the APDFT reference molecules, we used 

N2, CO, and benzene for (N2, CO)CS, (BF, CO)CS, and (BN-doped benzene derivatives)CS, 

respectively. The reference electronic structure theory is CCSD for (N2, CO)CS and (BF, CO)CS 

and Kohn–Sham DFT with the PBE0 functional for (BN-doped benzene derivatives)CS. 



 16 

1. Atomization energy design for (BF, CO)CS 

We used MDM to search for a molecule with high atomization energy in (BF, CO)CS. The 

results are compared with our previous work10 (Figure 4). MDM started with BF and designed CO 

with higher atomization energy than BF. The atomization energy, participation coefficients  

representing the molecular species, and equilibrium bond length vary monotonically in the MDM 

procedure. The update of the molecular species accounts for the change in the equilibrium 

geometry in the optimization of the atomization energy (see Methods section). This design was 

also implemented in our previous study Ref. 10; the difference between this work and Ref. 10 is 

the algorithm for updating the molecular species. In Ref. 10, the constraints on the domain of 

definition for a (Eqs. (2) and (3)) are removed by the variable transformation, and a are updated 

according to the steepest descent formula. However, the present MDM uses the optimality criteria 

method (Eq. (9)). Both the steepest descent and optimality criteria methods require a few 

parameters. In addition, the convergence conditions for  are different. Nonetheless, we 

compared the design efficiencies. We obtained identical design results regardless of the 

optimization algorithm. On the other hand, there is an obvious difference in design efficiency. The 

linear changes in atomization energy, , and equilibrium bond length contrast with Ref. 10, 

where Sigmond-like changes are observed. As a result, the present MDM requires significantly 

fewer design steps (only 7% of steps in the previous algorithm). The bottleneck of MDM is 

geometry optimization, which requires APDFT calculations. The geometry optimization was 

performed only 33 times, which is 10 times less than in Ref. 10. Thus, the use of the optimality 

criteria method results in rapid convergence and small computational cost. 

 

ai{ }

ai{ }

ai{ }
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Figure 4. Results of the search for a molecule with high atomization energy in (BF, CO)CS. 

Changes in atomization energy, participation coefficients, and equilibrium bond length during the 

search process are shown in the upper, middle, and lower panels, respectively. The results of this 

work and Ref. 10 are shown. 

  

0.5(BF) + 0.5(CO)
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2. Electric dipole strength (EDS) design 

2.1. (N2, CO)CS 

MDM was applied to search for a molecule with high EDS in (N2, CO)CS. EDS of N2 is zero 

because of its symmetry. CO has nonzero EDS. Therefore, the answer to the design problem was 

set to CO. Initiating with N2, MDM successfully obtained CO. Figure 5 shows the variation of the 

EDS, , and equilibrium bond length during the optimization process. EDS becomes higher 

with the progress of the design, but the change is not monotonic. When geometry relaxation occurs, 

EDS can slightly decrease. As mentioned in the Methods section, geometry optimization does not 

occur at every design step due to the finite convergence criterion.  monotonically and linearly 

vary. The equilibrium bond distance monotonically and gradually varies from N2 to CO. 

 

ai{ }

ai{ }



 19 

 

Figure 5. Results of the search for a molecule with high EDS in (N2, CO)CS. Changes in EDS, 

participation coefficients, and equilibrium bond length during the search process are shown in the 

upper, middle, and lower panels, respectively. 

 

2.2. (BN-doped benzene derivatives)CS 

MDM was used to find a derivative with high EDS among 18 BN-doped benzene derivatives 

1–18 (Figure 2). The search started with benzene 1. EDS of 1 is zero due to its symmetry. Figure 

0.5(N2) + 0.5(CO)
N N C O
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6 shows the changes in EDS and  during the search process. As the design proceeds, ai of 1 

rapidly decreases, and ai of 16 rapidly increases. ai of 5 slowly increases. The other  remain 

almost unchanged. The optimized  values are 0.05 and 0.94 for 5 and 16, respectively, and 

are not fully localized, unlike the previous designs. This alchemical molecule shows EDS slightly 

higher than that of 16. MDM obtains the nearest neighbor 16 in the chemical space by rounding 

off  at the last design step. The results of the APDFT screening (Figure 3) show that MDM 

designs the derivative with the highest EDS. 16 has a six-membered ring with separated B and N 

moieties, and its EDS is 7.6 Debye higher than that of 1. 

  

ai{ }

ai{ }

ai{ }

ai{ }
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Figure 6. Results of the search for a molecule with high EDS in (BN-doped benzene derivatives)CS. 

Changes in EDS and participation coefficients during the search process are shown in the upper 

and lower panels. The gray lines represent the changes in the participation coefficients of the 

derivatives other than 1, 5, and 16. The initial and final molecular structures (pink, boron; gray, 

carbon; blue, nitrogen; white, hydrogen) are displayed. 

 

Conclusions 

A molecular design method (MDM) that explores chemical space accounting for geometric 

stability is demonstrated for general functionalities. We improved the optimization algorithm of 

MDM introduced in our previous work, which enables computationally efficient design targeting 
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general properties. MDM simultaneously predicts the molecular species, desired property, and 

equilibrium geometry of functional molecules without experimental records. MDM is based on 

quantum alchemy and is effective for large chemical space. APDFT was adopted as a quantum 

alchemy method. The electric dipole strength (EDS) and atomization energy are set to target 

properties for molecular design as examples. Few studies have applied APDFT to the electric 

dipole moment. Therefore, we investigated the accuracy with (N2, CO)CS and (BN-doped benzene 

derivatives)CS prior to molecular design. The accurate APDFT EDS of CO was obtained with 

reference N2. In (BN-doped benzene derivatives)CS, we showed that APDFT up to the third-order 

perturbation expansion cannot correctly reproduce the EDS trend of derivatives at the reference 

PBE0 level of theory, regardless of the reference electronic structure theory, perturbation order, 

and basis set. Higher-order APDFT calculations based on analytical and numerical differentiation 

or integral transformation are expected to enable more accurate molecular design by MDM. We 

applied MDM to search for molecules with high EDS and atomization energy in the chemical 

spaces (BF, CO)CS, (N2, CO)CS, and (BN-doped benzene derivatives)CS. In (BF, CO)CS, BF with 

high atomization energy was obtained. This result was compared with Ref. 10. It was found that 

the update of the molecular species by the optimality criteria method leads to rapid convergence 

of the optimization with small computational cost. In (N2, CO)CS, CO with high EDS was designed. 

In (BN-doped benzene derivatives)CS, MDM designed the derivative with the highest EDS at the 

lower-order APDFT level of theory. 
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