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Abstract

PM2.5 has been linked to numerous pollution-mediated adverse health effects and

their monitoring is key for taking preventative and mitigative measures. Accurate

measurements of PM2.5 concentrations are available at EPA sites, but such data lacks

spatial resolution due to a limited number of monitoring locations. In recent years the

deployment of low-cost sensor networks has opened up the possibility of acquiring air

quality data at a high spatio-temporal resolution. However, the sensitivity, noise, and

accuracy of data acquired by low-cost sensors remain a concern. Here, we studied PM2.5

measurements made from EPA and Purple Air (PA) sensor networks in the Chicago

area to understand the parameters influencing the performance characteristics of the

low-cost sensor network. Using time series decomposition of PM2.5 data into short-

term and baseline components using Kolmogorov–Zurbenko (KZ) filter and analysis of
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the extracted frequency signals, we determine that PA sensor data is more sensitive

to meteorological conditions than anthropogenic activities in both short-term, and

baseline components. We hypothesize that the low-cost sensor networks may have

different sensitivity to aerosol from different sources and hence care must be taken in

their calibrations and in their use for evaluating the impact of air quality mitigation

policies.

Introduction

Air pollution is one of the world’s leading risk factors for disease and premature death. An

estimated 16% of total global deaths in 2015 can be attributed to diseases caused by air pol-

lution.1 Of particular concern is the mass concentration of Particulate Matter (PM) smaller

than 2.5 µm, i.e. PM2.5, or fine particles. Exposure to PM2.5 has been directly correlated to

diseases such as respiratory diseases and even mortality.2–6 The high health impact of PM2.5

is because of their ability to penetrate deep into the lungs and because their composition

is often carcinogenic.7 The European Study of Cohorts for Air Pollution Effects (ESCAPE)

shows that exposure to high PM2.5 concentrations are linked with a risk of developing lung

cancer.8 In addition to chronic diseases, exposure to PM2.5 also impacts our response to

acute diseases such as COVID-19.9–12 Accurate knowledge of PM2.5 exposure and efforts to

mitigate it are critical to protecting public health.

In the United States, the Environmental Protection Agency (EPA) monitors air quality

by measuring regulated or criteria pollutants including ambient PM2.5 concentrations us-

ing Air Quality Monitoring Stations (AQMSs). The PM2.5 measurements are made using

a range of instruments classified as federal reference methods (FRMs) or federal equivalent

methods (FEMs).13 These methods ensure consistency and accuracy in measurements, but

are expensive, and difficult to operate, requiring trained personnel and significant infras-

tructure. The strict maintenance and calibration routines followed in these stations ensure

2



high-quality data and comparability between different locations.14 Even in the US, with over

5000 AQMSs, the geographic coverage of these monitoring sites is inadequate. The siting

of AQMS is often biased towards populated areas, disadvantaging smaller cities and under-

developed regions.15 Even in populated areas, the limited number of sites do not capture

the high spatial variation in PM2.5 concentrations that are likely, resulting in an incorrect

estimate of exposure and resultant health effects.16

For accurate exposure assessment, an air quality monitoring network providing measure-

ments at high spatio-temporal resolution is required. To address this need, researchers,

communities, organizations, and individuals have been deploying low-cost air quality sensors

that provide air quality data at a granular level not possible with the EPA AQMSs.17,18 One

of these networks is composed of sensors from Purple Air (PA). The PA sensing platform

incorporates a pair of Plantower PMS 5003 low-cost sensors, which use laser light scattering

techniques to determine ambient aerosol concentrations. The PMS5003 reports a variety of

particle concentration metrics including PM1, PM2.5, and PM10.
19–21 Using two sensors for

PM measurements allows for the robustness of data collection.22 While the low-cost sensors

have the advantage of deployment ease, their accuracy and precision are variable.23

The various PM sensors used in low-cost monitors are all subject to biases and calibration de-

pendencies, with some factors accounted for with moderate success (e.g. meteorology, age of

sensor) and others poorly (e.g. aerosol source, composition, refractive index).24 The PA sen-

sor measurements are often calibrated/corrected by co-location with a reference monitor at

a regulatory site.25–27 Additionally, researchers have developed correction models to account

for the impact of environmental conditions on sensor performance.15,28 The deployment of

PA sensors has resulted in expanding the availability of PM2.5 data and enabling a range of

studies, including, validation of high resolution, large-scale regional modeling efforts29 and

understanding of the impact of wildfire smoke on local and regional air quality.30
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Co-locating low-cost sensors with reference monitors provides a fast way for their cal-

ibration. Typically, this is done by co-locating the sensors for a period of time and then

determining a scaling factor or equation based on a regression analysis. The time period for

co-location is generally chosen to be around days to weeks and this allows for the calibration

to be independent of data noise. The selection of the calibration time period can, however,

bias the sensor data to be most sensitive to sources primarily responsible for pollutant con-

centration variability in that time period. Sources with shorter time periods, relative to the

calibration period, are averaged out and inadequately accounted for in the calibration. Thus

longer time scale events are completely lost in the calibration process.

Published studies on low-cost sensors have observed some of the above mentioned prob-

lems. The response characteristics of low-cost sensors are seen to be different from that

advertised by their manufacturers, possibly because the aerosol size distributions and com-

positions differ with location.31,32 As an example, low-cost sensor data are seen to be in better

agreement with reference monitors at locations with low traffic than those at high-traffic lo-

cations.14 To improve the quality of the reported data from low-cost sensor networks, we

need to establish ideal field calibration principles for these units. For this, frequency based

methods that have been previously used in air quality to find prominent temporal compo-

nents can be used.33–36 Time-series decomposition using low-pass filters can identify pollution

sources that account for most of the measurement variation.37,38 Here, using frequency-based

analysis, the dependence of low-cost sensor PM2.5 measurement accuracy on the calibration

period will be established.

For this work, we chose our study area as Cook county, IL which includes the City of

Chicago and a total population of nearly 10 million. Cook County is a major transportation

hub lying at the crossroads of the country’s rail, road, and air traffic, and an important

industrial center, thus, there are a number of emission sources within the area. Despite a

baseline long-term trend of improving air quality in Chicago, recent years show a worsening

trend. PM2.5 concentrations have nearly doubled since 2017, rising from 6.7 µg/m3 in 2017
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to 12.8 µg/m3 in 2019, exceeding US EPA air quality standards (12 µg/m3).39 The changing

air pollution levels have increased public interest in air quality monitoring, particularly using

low-cost sensor networks. For the time period starting May 2018, the purple air network in

Chicago and its surrounding neighborhoods have increased from a few sensors to more than

30 sensors now.

In this study, we used PM2.5 data from EPA sites and PA sensors located in Cook County,

IL to understand the differences in their data as a function of sensor location and time. Using

spectral theory to extract the temporal signatures of the EPA and PA data, we analyze the

short-term, and baseline components of air quality as measured by the two networks. The

spectral analysis is used to understand the sources of biases in the PA network and provides

guidance in improving the field calibration of these sensors.

Materials and Methods

Data Collection and Pre-processing

Monitoring Data

Cook County, IL, has 14 EPA air quality monitoring sites, providing data on criteria pollu-

tants, including ambient PM2.5 concentrations (https://aqs.epa.gov/aqsweb/documents/

data_api.html). Hourly PM2.5 measurements from EPA are available at 7 out of 14 mon-

itoring sites in Cook County, IL. The PA network in Cook County consists of more than

30 PA low-cost sensors, that currently provide PM2.5 data (https://map.purpleair.com/

1/mAQI/a10/p604800/cC0#11.44/41.8363/-87.6973). Our analysis was conducted using

data from a time period of October 2019 to September 2021. For this time period, hourly

PM2.5 data was only available at 10 out of 30 PA sensors. Further, after eliminating sites

with more than 20% missing data, our analysis could only use data from 5 EPA sites and 9

PA sensors, as shown in (Figure 1).
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It was observed that PA data included some outliers with very large PM2.5 concentra-

tions, which are likely erroneous data. To eliminate these outliers from our analysis, we chose

a data range of [1,70] ug/m3 as valid data.15 In (Figure 1a) the sampling locations of EPA

and PA are plotted on the map with the population density around the sampling locations

in (Figure 1b). The population density was calculated in the census blocks, as defined by

US Census Bureau,40 using ArcgisPro 2.8. From a cursory analysis of the siting of sen-

sors, it is clear that the PA sensors are located in urban areas where population densities on

average are higher than what they are at the EPA sites except few sensors i.e P1, P5, and P8.

Meteorological Data

The impact of meteorological variables on both EPA and PA data is important to assess.

In particular, it has been established that low-cost sensors are sensitive to meteorological

parameters, especially relative humidity.15,28 For this assessment, we collected meteorolog-

ical data from 5 nearby stations of the National Oceanic and Atmospheric Administration

(NOAA). The meteorological variables include temperature (T), relative humidity (RH),

wind speed, and wind direction. The meteorological variables are used to identify and quan-

tify the impact of weather on PM2.5 concentrations coming from PA and EPA sensors.

Monitoring Data Summary

This study uses 2 years of PM2.5 data from 5 EPA sites and 9 PA sensors. Sample time

series trend in PM2.5 from a set of EPA and PA sites (EPA site E2 and PA sensor P6)

that are in close vicinity (within 2 km) to each other are shown in (Figure 2a). High

temporal variations are seen in the data from both networks’ sensors, along with some

seasonal trends over longer timescales. Comparing such time series data from the EPA and

PA sites in close vicinity to each other (Figure 1) shows that the PA data overestimates

PM2.5 relative to EPA measurements at all locations (Figure 2b). The gap in the total time
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series of PM2.5 data around April of 2020 in E2 and September-October, 2021 in P6 is due

to missing observations in the time series in (Figure 2a). The major causes for missing air

pollutant data in reference monitor includes monitor malfunctions and errors, power outages,

computer system crashes, pollutant levels lower than detection limits, and filter changes.41,42

Whereas in low-cost sensors approximately 40 % of the data generated is missing, most likely

because of extreme weather events, battery failure, and disruption in internet accessibility

at sensors location.43,44 Looking at the graph of the original time series of both networks in

(Figure 2a), the peaks in July of both years show the effect of independence day fireworks,

the PM2.5 concentrations on July 4 and 5 are greater than on the two days in July before and

after, which are considered control days. On the national average, the increases are largest

(21 µg/m3) at 9–10 pm on July 4.45 The PM2.5 concentrations are lower in July 2020, as

compared to those of July 2021 in low-cost sensors, as well as reference monitors, which

maybe due to COVID-19 restrictions. In fact, overall air quality slightly improved in 2020 as

compared to 2021 maybe due to COVID-19 lockdowns. The PM2.5 concentrations are high

in winter in (Figure 2a) due to a combination of continuous temperature inversions and a

thin mixed boundary layer throughout the winter months made it difficult for pollutants to

scatter into the atmosphere. This led to an increase in anthropogenic emissions related to

the demand for heating46

The distribution of the PM2.5 data at each of the EPA and PA sites over the entire time

period of analysis is shown in (Figure 3). The median values of PM2.5 from the PA sites

are always higher than that from nearby EPA sites, again suggesting that the data from

the sensor network is an overestimation of the local PM2.5 values. Additionally, the overall

distribution of the PM2.5 data, irrespective of the sampling location, is narrower for the EPA

sites than for the PA sites.

There can be many reasons for the overestimation of PM2.5 by the PA sensors. The PA

PM2.5 values are obtained from the light scattering signal based on calibration using Beijing

air. As the size distribution of particles in Chicago is likely different from that in Beijing,
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the calibration may not be entirely valid. Also, temperature and relative humidity influence

particle size and optical properties, and, thus, PA measurements do not affect EPA measure-

ments due to thermal control in their measurements.27,47,48 Lastly, PA sensor measurements

are sensitive to particle composition and, thus, when there are a large number of particle

sources, and hence particle compositions, such as in an urban area like Chicago, then the

mass distributions reported by an optical sensor can be broader than that obtained gravi-

metrically. It must be noted that the differences in the measurement techniques affect not

just the reported magnitudes of PM2.5 concentrations, but also the overall average value.

The annual average of PM2.5 values from EPA show a reduction from 12.8 µg/m3 in 2019,

to 8.8µg/m3 in 2020, while the average PA PM2.5 values from PA is 12.97 µg/m3, more than

the NAAQS standard.

Recently a US-wide correction model for PA sensors that takes into account the contri-

bution of ambient conditions on sensor performance was introduced.28 The model was built

using data from 53 PA sensors, with data spanning the time period of September 2017 to

January 2020, at 39 distinct sites spread throughout 16 states. From an evaluation of several

models using temperature and relative humidity, they suggested a final model only consid-

ering the effect of relative humidity (RH) on PA sensor data. Using this US-wide correction

model and data from EPA sites in the vicinity of the sensors, we corrected the PA data of

our study location of Cook County, IL.

In (Figure 4), we show the weekly averages of corrected PA data from sensors P6 and

P1 in comparison with nearby EPA data from sites E2 and E1, respectively. The data is

split into weekdays and weekends for comparison. The time series trends seem to suggest

that the correction results in the EPA and PA data largely overlap with each other over the

period of study. However, a two sample t-test between the EPA and corrected PA data shows

that the difference between the two data sets is statistically significant (p-value < 0.05) on

weekdays but not on weekends. The better match of the two data sets on weekends could
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be because of the lower contribution of traffic to local air quality on weekends compared to

weekdays. Previous studies14 have shown that low-cost sensor measurements more closely

match reference monitors at locations with low traffic than at high traffic locations.49

To understand the underlying differences between two data sets and identify any drivers of

PA data inaccuracy, a frequency-based analysis proves to be helpful. As aerosol sources have

distinct time-period signatures, frequency analysis can help determine the relative response

of PA sensors to different emission sources.

Spectral Analysis: Methods

In meteorology and air quality studies, spectrum-based analysis has often been used to ex-

tract and examine different temporal components in the obtained data.33–36 Here, using

spectral analysis of the PA and EPA data, we identify similarities and differences among the

sources contributing to these data sets.

In general, a time series Xt of length N can be represented as a linear combination of

harmonic functions with frequencies fj and amplitudes Aj and Bj:

Xt = µ+

[N/2]∑
j=1

[
Aj cos(2πfjt) +Bj sin(2πfjt)

]
, t = 1, 2, ....N (1)

where µ is a constant, [N/2] is the greatest integer less than or equal to N/2, and the

frequencies fj are related to the sample size N by

fj = j/N, 1 ≤ j ≤ [N/2] (2)

Thus, for a measurement resolution of 1 hour, a wave with a period of 2 hours or more is

required (Nyquist theorem).

The discrete Fourier transform, X(k), of hourly time series Xt, can be calculated using
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the Fast Fourier transform (FFT) algorithm. The spectral density for a finite time series

can then be calculated as the squared magnitude of X(k):

Φ(vk) = |X(k)|2 =
∣∣∣∣ 1√

N

N−1∑
t=0

Xte
−2πivkt

∣∣∣∣2 (3)

where k = 0, 1, ..., (N − 1). N is the number of observations and vk =
k
N
.

FFT, which performs spectral analysis, needs successive, equal length sequences in order

to ensure that no data points are missed.50 Here we replace the missing data in all EPA

sites, and PA sensors using the ARIMA model with Kalman filter.51–54 The power spectral

density of each EPA and PA hourly time series of PM2.5 data was then calculated using the

stats package in R.

Spectral Analysis: Results and Discussions

The power spectral density (PSD) of PM2.5 data from each EPA site and PA sensor were

calculated and averaged in the same type of monitor in order to understand and quantify

the differences between the EPA and PA network measurements in various temporal periods,

as illustrated in (Figure 5). The PSD shows the distinct frequency peaks corresponding to

components that provide higher contributions to the total variance in PM2.5 data. These

peaks correlate to higher frequencies with corresponding time periods of 24 hours, to 4

hours, as well as low frequencies corresponding to 6-month, monthly, and weekly time peri-

ods for all monitoring stations of EPA as well as low-cost sensors. This pattern is related

to the frequency of emission sources, short-term weather patterns, and long-term seasonal

changes.34,36 It has been observed that the proportion of low frequency variance in relation

to the total variance is similar in low-cost sensor data compared to reference monitors. (Fig-

ure 5a). Conversely, the total variance in higher frequencies is greater in reference monitors

than in low-cost sensors. The difference in the proportion of variance in frequencies relative
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to the total variance between low-cost sensors and reference monitors may be due to low-cost

sensors overestimating observations at low frequencies. However, at higher frequencies < 24

hours, low-cost sensors’ observations and peaks are smaller than those of reference monitors,

which may be due to low-cost sensors’ lower sensitivity to local short-term changes such as

traffic. In general, if we compare the overall contribution of variance in specific frequencies

to the total variance of the two networks, we can hypothesize that either the PA sensors are

less responsive to short-term changes caused by anthropogenic activity or more sensitive to

weather variations.

To analyze the pattern of PSD in both networks, the average PSD ratio of the PA sensors

with the average PSD of EPA sites was calculated and plotted in (Figure 5b). For comparison

of PSD of data from the same network, We displayed the ratios of four PA sensors with four

other PA sensors and two EPA sites with two other EPA sites in (Figure A1). The PSD

ratio of PA sensors tends to be similar to that of other PA sensors, and the PSD ratio of

EPA sites tends to be similar to that of other EPA sites, with both hovering around 1. This

indicates that measurements taken from the same type of network tend to have relatively

similar PSD values. Whereas, for different networks in (Figure 5b), The average PSD ratio

decreases below 1 at frequencies below 24 hours, indicating that PA data and EPA data have

similar contributions to the baseline of PM2.5 concentrations at low frequencies but PSD of

PA is lower at high frequency such as below 24 hours. If the responses in both networks

were similar over the entire time series, the ratio would be closer to 1 at all frequencies

due to corrections. However, the pattern of the ratio declining at frequencies below 24

hours suggests that PA sensors are less able to capture short-term changes compared to

EPA instruments, but are more effective at capturing baseline changes due to weather. The

low-cost sensors in the PA network are highly correlated with each other, indicating that

the measurements and algorithms used by each device are consistent across all sensors.55 In

contrast, reference monitors in the EPA network are not highly correlated with each other.

(Table A4.

11



Time Series Decomposition: Methods

Recognizing that the correction models do not uniformly account for the contribution of all

sources to the PA data, particularly at higher frequencies. Therefore, we plan to investigate

the source components impacting both lower and higher frequencies. To further examine

this, we have separated the data into short-term and long-term/baseline components. The

short-term component includes high-frequency data that is influenced by local anthropogenic

sources such as traffic and short-term weather events. The baseline component, on the other

hand, includes low frequency data that are related to seasonal changes in weather and me-

teorology, and changes in emission rates over time.56–58

The time series data is separated into short-term and baseline components using the

Kolmogorov–Zurbenko (KZ) filter technique.56 Recent studies have applied the KZ filter to

determine the source component in short-term and baseline components of PM2.5.
37,38,59,60

The KZ filter is a low-pass filter produced through repeated iterations of a moving average

with parameters moving window (m), and iterations (p) also known as KZm,p:

Yt =
1

m

k∑
j=−k

Xt+j (4)

where Yt is a filtered time sequence; Xt is the input time series; k is the number of values

included on each side of the targeted value, m = 2k+1 is window length; t is the time index,

and j is the time point of sliding. The output of the first pass then becomes the input for

the next pass. Adjusting the window length and the number of iterations makes it possible

to control the filtering of different scales of motion.61,62 To filter a period of fewer than N

days, the following criterion is applied to determine the filter’s effective width:58

m·1/2≤ N (5)

12



Also, the filter can be used to remove frequencies below a desired cutoff frequency w0:
57

w0 ≈
√
6

π

√
1− (1/2)1/2p

m2 − (1/2)1/2p
(6)

The cutoff period can be obtained by 1
w0
. For our study, we have used KZ15,3, as it is de-

signed to remove short-term cycles of noisy data.38

The baseline PM2.5 (PM2.5,B) and meteorological (MB) components are obtained as:

PM2.5,B(t) = KZ15,3PM2.5(t) (7)

MB(t) = KZ15,3M(t) (8)

The short term PM2.5 (PM2.5,S) and meteorological (MS) components are defined as:

PM2.5,S(t) = PM2.5(t)−KZ15,3PM2.5(t) (9)

MS(t) = M(t)−KZ15,3M(t) (10)

Relative Contributions of Temporal Components

By separating the data into short-term and baseline components, we can analyze and examine

how each component contributes to the overall variance of the time series data for both EPA

and PA..63 The relative contributions of temporal components are obtained as:

Relative contribution (%) =
V ar(i(t))

V ar(X(t))
· 100 (11)
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where V ar(i(t)) is variance of short-term, or baseline component, and V ar(X(t)) is variance

of total PM2.5 time series.

PM2.5 Contributions from Meteorology and Anthropogenic Emis-

sions

The short-term and baseline components of PM2.5 can be combined with short-term and

baseline components of meteorology to quantify the effect of meteorology and relatively

estimate the effect of anthropogenic activities on PM2.5 data.38,64,65 The PM2.5 data can be

approximated as short-term and baseline PM2.5 measurements as:

PM2.5 = PM2.5,B(t) + PM2.5,S(t), (12)

The MLR models for short-term and baseline components of PM2.5 in relation to short-term

and baseline of meteorology and anthropogenic activities can be written as:

PM2.5 = PM2.5,B(t)+PM2.5,S(t) =
[
a0+

6∑
i=1

aiMSi(t)
]
+
[
b0+

6∑
i=1

biMBi(t)
]
+(ϵB+ϵS), (13)

where,

PM2.5,S(t) =
[
a0 +

6∑
i=1

aiMSi(t)
]
+ ϵS, and PM2.5,B(t) =

[
b0 +

6∑
i=1

biMBi(t)
]
+ ϵB. (14)

M2.5,Si(t), and M2.5,Bi(t) are time series of the ith meteorological variable for short-term

and base-line components, respectively, and a0, b0, ai, and bi are regression model parameters

to be estimated using a stepwise algorithm in MLR model. The residuals ϵS, ϵB represent

changes in PM2.5 concentrations that cannot be attributed to meteorological variables present

in the model and are mainly due to anthropological activities in the short-term and baseline

components, respectively.38,64,66 To estimate the impact of metrology and anthropogenic

impact on both short-term and baseline PM2.5, we built models considering PM2.5 data
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as the response variable and meteorological data from nearby NOAA site as the predictor

variable for each EPA site and PA sensor.

Relative Importance of Predictors

As a result of MLR models, we could quantify the overall impact of meteorology on PM2.5

measurements of both EPA and PA networks in short-term and baseline components. How-

ever, the question of which predictor is most influencing the data of both networks has no

trivial answer due to the presence of many predictors. Correlation analysis is often used to

examine the relationship between two variables. However, when there are many predictors,

correlation analysis is not the best method to use.” Here, we use the LMG measure pro-

posed by Lindeman, Merenda and Gold,67 and popularized by68 to determine the relative

importance of predictors.

The LMG measure uses sequential R2, but it accounts for the dependence on orderings

by averaging over all possible orderings. According to69,70 the variance decomposition for a

linear model with k predictors can be defined as:

E(Y |X) = Xβ, ϵ ∼ N (0, σ2), (15)

and

V (Y ) =

p∑
j=1

β2
j + 2

p−1∑
j=1

p∑
k=j+1

βjβk
√
νjνkρjk + σ2, (16)

where νj, and νk are variance of each predictor, ρjk =covariance of predictor , j = 1, 2, 3, ...., p,

k = j + 1, ...., p.

The R2 for a model with predictors in set S is given as,

R2(S) =
Model sum of square

Total sum of square
(17)
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The additional R2 adding set M to a model with the predictors in set S,

seqR2(M |S) = R2(M ∪ S)−R2(S), (18)

where S and M are disjoint sets of predictors.

seqR2(xk|Sk(r)) = R2(xk ∪ Sk(r))−R2(Sk(r)), (19)

where, r denotes permutations, r = 1, 2, ..., p!; seqR2(xk|r) denotes the sequential sum of

squares for the predictors xk in the ordering of the predictors in the r-th permutation.

The LMG measure for k-th predictor xk based on sequential sums of squares from all possible

(p!) orderings for p predictors;

LMG(xk) =
1

p!

∑
rpermutations

seqR2(xk|r) (20)

For example, for three explanatory variables (p=3), there are six different orderings (3!)

and six different estimations (sequential sum of squares) for each explanatory variable. The

relative importance of each explanatory variable is the mean of the six estimations. The

R package “relaimpo” developed by71 can be used to calculate the relative importance of

predictor variables in multiple regression using the LMG measure and bootstrap confidence

intervals.

Time Series Decomposition: Results and Discussions

To investigate the source components influencing the lower and higher frequencies of low-cost

sensor PM2.5 data and to compare the outcomes with PM2.5 data from reference monitors,

we used the KZ filtering approach to separate the short-term and baseline components of

the PM2.5 time series at each selected EPA site and PA sensor, as well as for meteorological
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variables from a nearby NOAA station, in accordance with (Equations (9) to (8)). For

one combination of EPA and PA data sets (EPA site E2 and nearby PA sensor P6), the

short-term and baseline components are shown in (Figure 6. The total PM2.5 time series in

(Figure 6a) for EPA site E2 has a range, from 0−30ug/m3, but raw data from PA sensor P6

has an almost double the range from 0 − 60ug/m3. Those high observations can be scaled

down after correcting PA data as shown in the P6 corrected graph in (Figure 6). The short-

term variations in PM2.5 concentrations (Figure 6b) are due to local temporal sources such

as traffic, and short-term weather variations and baseline component in (Figure 6c) shows

the effect of baseline emission and climate changes as described by.56–58

Relative Contributions of Temporal Components

Our analysis of the PSD revealed that the differences in the short-term (high frequency) and

baseline (low frequency) components in both networks, especially those below 24 hours, are

distinct even after corrections. By measuring the variation in each temporal component, we

can quantify the proportion of variation in each component to the total variation of the EPA

and PA PM2.5 time series data and compare the two networks to determine if the correction

method was only effective for baseline data.

The results of the relative contribution of short and baseline components to total data

are presented in (Figure 7). The short-term component is influenced by short-term emissions

due to local sources such as traffic, or other anthropogenic activities, and intraday weather

variations, the more fluctuations in the data due to such sources create more variability in

the data. The relative contribution in the short-term component to total variance is greater

in original PA data (Figure 7a), which are scaled down to EPA data in (Figure 7b). After

correcting the data, the short-term component of the PA sensor shows a greater number of

outliers and a narrow distribution, indicating that the short-term variance is largely uniform

in this sensor and may be due to the capture of a local source that is independent of the

sensor’s location as it was observed in (Table A4). On the other hand, the EPA sensor
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exhibits a broader variation in its short-term component, indicating that it captures local

sources based on its location. In the original data, the EPA sensor has a greater relative

contribution to the baseline compared to the PA sensor, but after correcting both distri-

butions, the gap between them narrows. This may be due to the influence of location on

the EPA sensor’s broader variations. Looking more closely into numbers in (Table A5), in

the short-term component, PA sensors which are located in urban areas near the lake i.e

PA sensors P2, P3, P7, P8, and P9 have more relative contribution than other PA sensors.

These higher values in the relative contribution of low-cost sensors to total variance at most

of the locations, specifically at highly populated areas near the lake can be due to the effect

of weather, as this pattern was not seen in the PSD of high frequency in (Figure 5), which

are mainly signals due to anthropogenic activities. Weather can influence low-cost sensors’

performance at these locations in capturing particle size and optical properties, which might

cause higher variations.27,47,48 In fig (Figure 7b), and (Table A6), significant weather de-

pendent corrections were observed in sensors located in areas with high population density,

near the lake in both the short-term and baseline components. Therefore analyzing the

impact of meteorological conditions on low-cost sensor performance in both short-term and

baseline components can better explain why low-cost sensors are missing high frequency sig-

nals, and identify the meteorological parameters that are most influential in affecting sensor

performance in both high and low frequencies.

PM2.5 Contributions from Meteorology and Anthropogenic Emis-

sions

To understand and quantify the effect of meteorological conditions on the original data from

PA, and to compare with the data from EPA, we used multiple linear regression models with

the stepwise forward selection algorithm. We included temperature (T), relative humidity

(RH), wind speed (WS), and wind direction (WD) as meteorological predictors, and short-

term and baseline PM2.5 data as response variables in our analysis. Short-term and baseline
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PM2.5 data were used as response variables, and meteorological parameters were used as the

predictors in the analysis. In the final model, only variables that were significant according

to the stepwise forward selection algorithm were included. This technique involves adding

variables one at a time based on their p-value and determines the optimal set of parameters

for the model. The model performance was compared using the R2 values. We noted from

the previous section of the relative contributions of short-term were higher in PA sensors in

(Figure 7) but looking at MLR models, the meteorology has a greater impact on PA sensors’

short-term variations in (Figure 8), which implies that higher variations were infact due to

weather in the short-term component of low-cost sensors. The short-term component of

the PA sensors in (Figure 8) have the highest R2 around 0.33 to 0.42, which is on average

11 % more R2 than EPA sites. Similarly, the baseline component of PM2.5 data of PA

sensors have a similar higher association with the meteorology in (Figure 8), despite its

lesser contributions in the baseline component. The baseline component of PA sensors in

(Figure 8) has higher R2 around 0.23 to 0.67 which is on average 18 % more R2 than EPA

sites. This shows that weather is a higher contributor to variation of PM2.5 in both short

and baseline components in low-cost sensors as compared to reference monitors.

The anthropogenic activities can be measured through residual term of (eq. (11)), where

the R2 not explained by meteorological conditions is mainly due to anthropogenic impact on

the variability of PM2.5.
38,64 The short-term, and baseline component of all of PA sensor’s

PM2.5 data has higher R2 with meteorological parameters, which implies the PA sensors are

more influenced by the weather but less responsive to anthropogenic emissions from traffic,

and other sources relative to EPA instruments. In general, the low-cost PA sensor was

revealed to be less responsive to local sources of pollution such as traffic, and more sensitive

to regional changes such as weather conditions from both PSD and KZ filtering analysis.
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Relative Importance of Predictors

We used MLR models to discover that low-cost sensors are more sensitive to weather param-

eters compared to reference monitors. However, we don’t have a way to quantify the specific

impact of each meteorological predictor using MLR because the meteorological predictors are

correlated with each other. Thus we used the LMG measure to find the relative importance

of each predictor, the output of LMG(xk) is partial R2 for the variable that adds up to 1

for all predictors xk, for k = 1, 2, ...., n. The LMG(xk) measure was calculated using 20,

and results of LMG(xk) measure for total time series, short-term, and baseline component is

presented in (Table A9), (Figure 9a), (Table A10), and (Figure 9b), (Table A11) respectively.

The results of the LMG measure suggest that wind speed is the most influential factor for

the time series of both PA and EPA before decomposing but if we remove wind speed, the

relative humidity is the most influential factor as discussed by.28 However, in the short-term

component of almost half of the PA sensors namely (P1, P4, P5, and P6), the wind speed is

the most influential factor. In the rest of the PA sensor’s short-term components, the wind

speed is the second most influential factor where the temperature is the first. On the other

hand, the temperature is the most important factor in the short-term component of all EPA

sites except E1. In baseline, the relative humidity is a consistently important factor of PA

sensors except for P6, and P8 but it is the second most important factor, Whereas, in more

than half of EPA sites, the WS is the most important factor. The impact of meteorological

factors varies in both networks. It is worth noting that the RH is the only useful factor for

baseline (low-frequency) components but not for high frequency components but corrections

have been done using RH in both frequency components. On the other hand, the weather

has been reported to have an impact on low-cost sensor concentrations by,15,28,72 but only

relative humidity and temperature were taken into account for corrections. Additionally,

the wind speed was not taken into account in previous studies, despite the fact that sensor

performance depends on the location it is deployed. The wind speed impact can be due to

the PA sensor’s inlet orientation 90◦ to the wind, upward flow, and the low inlet velocity

20



through the sampling holes that can result in significant aspiration losses of larger particles

as reported by.20,73 Aspiration losses are greater at higher wind speeds because it is more

difficult for the larger particles to follow the streamlines into the low-velocity PA sensor’s

inlet. This can result in a lower concentration of larger particles entering the PA sensor than

are in the ambient air. In summary, it is likely that the laser in the PA sensor is sampling

a lower concentration of particles ≥ 2 m diameter than in the ambient air. Based on the

literature and calculations, the dominant coarse aerosol loss mechanism maybe aspiration,

not internal losses.20

Conclusions

It is evident from a lot of studies that PA low-cost sensor data are comparatively less ac-

curate than gold standard EPA data, but these differences have not been categorized yet.

However, it is reported that the correction models of PA data have been constructed to

rectify and correct PA data using EPA data and environmental conditions.15,28,72 The PM2.5

time series of both EPA and PA air quality networks has been examined by applying two

different approaches i.e spectral theory, and time series decomposition using KZ filtering.

This study suggests that analysis of PM2.5 time series can be significant if time series are

decomposed and disintegrated into low and high-frequency components. This analysis has

also helped to determine that as compared to EPA, the relative contribution out of total

variance of short-term components of PA sensors is higher suggesting PA sensor is sensitive

to source components. However, if we look into the source components of these contribu-

tions to these variations, the PA is more sensitive to meteorological conditions. Similarly,

the relative contribution out of total variance in baseline components of PA sensors is overall

less than EPA, but if we look into source components of these contributions to variations,

the PA sensors are again more sensitive to meteorological conditions in baseline component.
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Considering these differences it can also be assumed that both networks can possibly have

a difference in sensitivity to aerosol from various sources specifically PA is more sensitive to

weather as compared to EPA but less efficient to capture anthropogenic emission. Our anal-

ysis used the LMG measure to find out important weather parameter influencing low-cost

sensor data, we found that more than half of the PA sensors data is influenced by wind speed

which is an additional finding to previous studies where relative humidity and temperature

was considered as influential factor. The influence of wind speed on PA sensors was recently

discussed by20 but no one has used frequency analysis to analyze the wind speed in temporal

components or suggested the wind speed as an important correction factor. Therefore, any

modeling and calibration should be incorporated based on local conditions in the surround-

ing after decomposing the time series into different frequency components. Wind speed must

be tested and included in the correction model for robust correction of low-cost sensor data.

Future studies will focus on building correction models in short-term and baseline compo-

nents using wind speed, temperature, and relative humidity, and traffic information.

Coding Language and Libraries

For the entire workflow (reading and organizing data, descriptive analysis, and data analyses)

we used the R software (R: A Language and Environment for Statistical Computing) (version

4.2.0), along with the following libraries in our coding: readxl, dplyr, tidyr, ggplot2, car,

qqplotr, kza, stats, relaimpo.

Data Availability Statement

The datasets used for this study are available at and can be accessed through the following

github repository.

https://github.com/IVijaykumar/Airquality-Spectral-Analysis.
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Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter

sensors. Atmospheric Measurement Techniques 2020, 13, 2413–2423.

(32) Tryner, J.; Mehaffy, J.; Miller-Lionberg, D.; Volckens, J. Effects of aerosol type and

simulated aging on performance of low-cost PM sensors. Journal of Aerosol Science

2020, 150, 105654.

27



(33) Hies, T.; Treffeisen, R.; Sebald, L.; Reimer, E. Spectral analysis of air pollutants. Part

1: elemental carbon time series. Atmospheric Environment 2000, 34, 3495–3502.

(34) Marr, L. C.; Harley, R. A. Spectral analysis of weekday–weekend differences in am-

bient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California.

Atmospheric Environment 2002, 36, 2327–2335.

(35) Choi, Y.-S.; Ho, C.-H.; Chen, D.; Noh, Y.-H.; Song, C.-K. Spectral analysis of weekly

variation in PM10 mass concentration and meteorological conditions over China. At-

mospheric Environment 2008, 42, 655–666.

(36) Tchepel, O.; Borrego, C. Frequency analysis of air quality time series for traffic related

pollutants. Journal of Environmental Monitoring 2010, 12, 544–550.

(37) Zhang, Z.; Kim, S.-J.; Ma, Z. Significant decrease of PM2. 5 in Beijing based on long-

term records and Kolmogorov-Zurbenko filter approach. 2018,

(38) Bai, H.; Gao, W.; Zhang, Y.; Wang, L. Assessment of health benefit of PM2. 5 reduction

during COVID-19 lockdown in China and separating contributions from anthropogenic

emissions and meteorology. Journal of Environmental Sciences 2022, 115, 422–431.

(39) IQAIR, Air quality in Chicago.: Public Database. https://www.iqair.com/us/usa/

illinois/chicago, 2020.

(40) Bureau, U. C. US Census Bureau: Public Database. https://www.census.gov/geo/

maps-data/data/tallies/tractblock.html, 2021.

(41) Imtiaz, S. A.; Shah, S. L. Treatment of missing values in process data analysis. The

Canadian Journal of Chemical Engineering 2008, 86, 838–858.

(42) Hirabayashi, S.; Kroll, C. N. Single imputation method of missing air quality data for

i-tree eco analyses in the conterminous united states. Retrieved January 2017, 1, 2021.

28

https://www.iqair.com/us/usa/illinois/chicago
https://www.iqair.com/us/usa/illinois/chicago
https://www.census.gov/geo/maps-data/data/tallies/tractblock.html
https://www.census.gov/geo/maps-data/data/tallies/tractblock.html


(43) Kim, T.; Kim, J.; Yang, W.; Lee, H.; Choo, J. Missing Value Imputation of Time-Series

Air-Quality Data via Deep Neural Networks. International Journal of Environmental

Research and Public Health 2021, 18, 12213.
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Figure 1: (a) EPA and PA sampling locations with (b) population density in the block
defined by US census bureau in Cook County IL
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Figure 2: (a) Time series plot of hourly PM2.5 measurements from EPA site E2 and PA
sensor P6, (b) the scatter plot of hourly PM2.5 measurements from several neighboring pairs
of EPA and PA sites
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Figure 3: Box plots representing hourly PM2.5 measurements from EPA sites and PA sensors
located in Cook County IL
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Weekday **

Weekday ***

Weekend NS

Weekend NS

*** p-value<0.001, ** p-value<-0.05, * p-value <0.1, NS p-value>0.1

Figure 4: Corrected PA sensor PM2.5 measurements in weekdays and weekends in with
nearby located EPA sites (a) E2, P6, and (b) E5, P1 with t-test statistic
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Figure 5: (a) Average PSD of PM2.5 data from all EPA sites, and all PA sensors with baseline
peaks of one week to 6 months, and short-term peaks of 24 hours to 4 hours, (b) average
ratio of PA PSD to EPA PSD
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Figure 6: (a) Measured PM2.5 time series data from EPA site E2, and corrected PM2.5 time
series data from PA sensor P6 (b) Extracted short-term component for the two data sets (c)
Extracted baseline component for the two data sets
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Figure 7: Relative contribution of temporal components to total variations of PM2.5; (a)
short-term, and baseline components of original PA data with EPA data (b) short-term, and
baseline components of corrected PA data with EPA data
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Figure 8: Impact of meteorological conditions in short-term and baseline component on both
EPA and PA PM2.5 data

a b

Figure 9: Relative Importance of meteorological variables for PA sensor P6 in (b) short-term
and (b) baseline component of PM2.5 data
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