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Abstract 

Molecular docking is a pragmatic approach to exploit protein structure for new ligand 

discovery, but the growing size of available chemical space is increasingly challenging to screen 

on in-house computer clusters.  We have therefore developed AWS-DOCK, a protocol for 

running UCSF DOCK in the AWS cloud.  Our approach leverages the low cost and scalability of 

cloud resources combined with a low-molecule-cost docking engine to screen billions of 

molecules efficiently.  We benchmarked our system by screening 50 million HAC 22 molecules 

against the DRD4 receptor.  We saw up to 3-fold variations in cost between AWS availability 

zones.  Docking 4.5 billion lead-like molecules, a 7-week calculation on our 1000-core lab 

cluster, runs in less than a week in AWS for around $25,000, less than the cost of two new 

nodes.  The cloud docking protocol is described in easy-to-follow steps and may be sufficiently 

general to be used for other docking programs.  All the tools to enable AWS-DOCK are 

available free to everyone, while DOCK 3.8 is free for academic research. 
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Introduction 

Molecular docking is a pragmatic approach to leverage structure for ligand discovery. 

The technique screens large libraries, rapidly scoring molecules for fit, ranking the database 

from best to worst for purchase and testing.  Since 2015, the number of commercially 

accessible compounds has grown by over three orders of magnitude, leading to new 

opportunities to discover new chemistry for new biology.  Ultra large scale docking has now 

been applied to over a dozen targets1-11 and has discovered new compounds with activities 

often in the nM and occasionally in the sub-nM range1, 3, 6, 12, often leading to molecules with 

interesting in vivo activities3, 6, 12, 13.  A challenge to making this approach widely accessible has 

been the very size of the new libraries, where over 40 billion tangible molecules have been 

enumerated, and over 4.5 billion of these have structures calculated that are suitable for 

docking. 

 

The cost of docking calculations for any target is roughly linear in the number of 

molecules docked, and is embarrassingly parallel, in that it can be spread across multiple 

processors without meaningful loss in efficiency. Still, whereas a screen of 138 million 

molecules against the DRD4 receptor1 took less than 2 days on our 1000-core cluster, a screen 

of 4.5 billion molecules would take over two months; to finish in under two weeks would demand 

more resources than can often be mustered locally.  As the database scales to 10 billion and 

beyond in the coming years, this capacity problem to obtain timely results will become only 

more pressing. 

 

Amazon Web Services (AWS) is one of several cloud providers with the capacity to bring 

enormous resources to bear on docking screens, if it can be done economically and if the 

system can be mastered.  Though in principle AWS, and related systems, are simply enormous 

fee-for-use clusters accessible to all (Figure 1), there are intricacies with their efficient use that 
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are barriers to entry for the general user, and it was not certain to us that even used efficiently 

these off-site resources could compete with an on-site academic or industrial cluster or that a 

protocol suitable for occasional users and non-experts could be developed. 

 

Figure 1. Docking in the Cloud. Though conceptually simple, cloud docking presents 

operational complexities that must be overcome.  A. Upload receptor and software. The 

dockable database is pre-loaded. B. Large Scale Docking Jobs are run, potentially at immense 

scale, and the results merged to Top Hit Collections within cloud storage. C. The T.H.C. results 

are downloaded for prioritization and purchase. 

 

Regarding cloud-based docking, there have been several studies that were encouraging.  

For instance, some groups have published docking pipelines suitable for running in the cloud 4, 7, 

14-16.  Although available as open source, these generally lack a step-by-step protocol suitable 

for non-experts.  Commercial solutions to docking in the cloud are also available, such as Orion 

(OpenEye, Santa Fe NM). This platform is currently made available at-cost to the academic 

community. 
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Here we report on a study that investigates efficient use of AWS for docking, with a step-

by-step protocol for community use.  The approach is tailored to our own software but is 

sufficiently general that it should be easily adaptable to any docking software and perhaps even 

other workflows. 
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Results 

In principle, a cloud system like AWS provides almost unlimited resources for virtual 

screens that would otherwise be compute-bound, as we now find with ultra-large library docking.  

In practice, these calculations can be unaffordable versus in-house screens, unless optimized 

for cost and throughput.  We investigated three variables that impact the speed and cost of a 

large library calculation: the availability zone where the calculation is run, the resource allocation 

strategy, and the bid percentage, i.e. how much we are prepared to pay to avoid temporarily 

surrendering cores to others willing to pay more for them.  We examined the impact of each of 

these variables on the cost of a screen of a set of 50 million mid-sized (HAC 22), lead-like 

molecules against the DRDRD4 receptor.  The results of the experiments are summarized 

below (Table 1).  

Zone Cost (esd) Variant Observation 
us-east-2 $94(5)  Lowest cost 
us-east-1 $186(6)  200% 
us-west-1 $170(5)  181% 
us-west-2 $220(7)  230% 
eu-north-1 $152(5)  162% 
sa-east-1 $280(10)  300% 
us-east-2 $127(23) Bid=20% Worse than bid=100 
us-east-2 $115(12) Bid=50% Worse than bid=100 
us-east-2 $103(10) Strategy=SCO Not significant 
us-east-2 $103(10) Strategy=BFP Not significant 

Table 1.  Cost to dock 50 million molecules, HAC 22, to the DRD4 receptor, standard protocol. 

(see Methods). Variant describes the variable that changes in addition to Zone where the job is 

run. Cost is USD, esd is the estimated standard deviation in the cost based on three runs. 

 

We wondered whether docking in different availability zone regions would help with 

throughput, by adding more CPUs, and what the impact on total cost would be. AWS currently 

supports over 17 availability zone regions worldwide with more in development, many with 

multiple data centers.  To consider the best one for docking, the prospective user should 
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consider both the differential cost of the CPUs in different zones and the cost of data transport 

between regions.  We began by considering the relative on-demand and spot prices of two 

representative instance types in six representative zones (Table 2).  On-demand means a 

machine is reserved exclusively for our use until we surrender it, while spot means we are 

willing to be interrupted at any time, with a 2-minute warning. To support this use, DOCK 3.8 

was modified to be interruptible and restartable to and be compatible with the AWS conventions 

for doing this. This data suggests that us-east-2 should be the cheapest zone to run spot 

calculations in, and that the next cheapest should be eu-north-1, perhaps somewhere between 

20 and 40% more expensive than us-east-2.  

 

Zone C5.18xlarge 
On-demand 

C5.18xlarge 
Spot 

C5.large 
On-demand 

C5.large 
Spot 

us-east-1 306 117 (+44%) 8.5 3.54 (+82%) 
us-east-2 306 81.2 8.5 1.95 
us-west-1 382 (+25%) 111 (+36%) 10.6 (+25%) 3.08 (+60%) 
us-west-2 306 116 (+43%) 8.5 3.26 (+67%) 

eu-north-1 328 (+7%) 98.3 (+21%) 9.1 (+7%) 2.73 (+40%) 
sa-east-1 472 (+54%) 179 (+220%) 13.1 (+54%) 4.7 (+241%) 

Table 2.  Cost of on-demand and spot instances on AWS for two representative compute-

optimized instance types. US cents (¢) per hour. C5.18xlarge has 72 cores and C5.large has 

2 cores. 

 

We performed our standard docking calculation (DRD4 receptor, HAC 22, 50 million 

molecules) in six zones to test price sensitivity. Each experiment was run three times at 

randomly selected times over a period of two weeks to assess variability as the jobs compete 

with the background of all other jobs.  Consistent with the spot pricing we were quoted, us-east-

2 was clearly the cheapest to run docking calculations.  Eu-north-1 came in second, costing a 

50% premium, us-west-1 at a 70% premium, and us-east-1 at twice the cost of the baseline us-

east-2 pricing.  The most expensive zones, as predicted by the spot prices we selected, were 
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sa-east-1 at 300% and us-west-2 at 230% of us-east-2.  While the spot price estimates captured 

much of this, the estimates derived from quoted prices were optimistic in our hands, making us-

east-2 even more competitive than we had predicted. 

 

In dollar terms the numbers are sobering. Thus, whereas it costs 94 dollars to dock our 

50 million molecule test database in our test conditions, implying a cost of $8,460 to dock 4.5 

billion.  Eu-north-1 and us-west-1 are tied for second place among the zones we tested with a 

cost of $160-$170, thus about 70% to 80% more than the cheapest us-east-2.  Us-east-1 comes 

in fourth place and costs about twice as much as us-east-2, even though us-east-1 is where 

ZINC-22 is hosted in S3 and is where our S3 bucket of results resides.  Us-west-2 comes in fifth 

at $220, thus about 2.3X the cost of running in us-east-2.  Finally, sa-east-1, with $280 or about 

3X the cost of us-east-2. 

 

Data transport costs, while generally minor, could be surprising for some zones. Notably, 

transporting results back from sa-east-1 to us-east-1 where our S3 bucket lives cost about 15c 

per GB, for 50 million molecules about $20.  Not a lot, $20, but at 4.5 billion scale that would be 

$1800 in data transfer costs alone.  Other zones we tested are considerably cheaper to 

transport back from, about 1/10th as much, or $180 for a full screen.  This cost could be reduced 

by merging results locally within the remote zone, and only transporting the final top 100,000 

scoring molecules of each 50 million set back to us-east-1. 

 

Spot instances use spare compute capacity that is available for less than the price of a 

fixed reservation. A lower (“spot”) price is available, with the proviso that we may have to give 

up the CPU on short notice if another user is prepared to pay more. We figured that if we 

capped our bid at less than the recommended 100% of the CPU cost, we might save some 

money, but perhaps at the expense of being evicted more frequently, possibly incurring 
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additional cost.  We tested this tradeoff by docking using the following maximum bid levels: 

100% (default), 50%, and 20%.  Because of the random element of contention with other jobs in 

real time, we performed each run 5 times to obtain mean and standard deviation value 

estimates (esd).  Surprisingly to us, we found (Table 1) that bidding less than 100% was almost 

always more expensive than bidding 100%.  We saw a savings of 20% in a single run at 50% 

bid, but for most runs, lower maximum bids, whether of 20%, 50%, or even 90%, were generally 

20-30% more expensive.  This appears to be due to more frequent evictions, which add to the 

cost.  As a result, bidding 100% (the default) was the best choice, on average, and is used in 

our protocol. 

 

Another choice we explored is the resource allocation strategy. We wondered how it 

affected the price, and the speed of scheduling jobs. The three choices are BEST_FIT, 

BEST_FIT_PROGRESSIVE, and SPOT_CAPACITY_OPTIMIZED.  These different options 

affect how machines are selected for running jobs, and use different strategies that explore the 

tradeoff between cost and throughput in response to current usage on the system17.  Our 

experimental results (Table 1) failed to distinguish these three methods despite repeated 

attempts.  We decided to use BEST_FIT_PROGRESSIVE as our default allocation strategy.  

 

We were curious to compare the cost and speed of running in AWS with the use of our 

own departmental cluster (Table 3).  By assuming some values, we could estimate costs of 

various idealized configurations.  We considered three configurations as follows: a small cluster 

(128 cores in a single machine) corresponding to a small lab, a medium sized cluster, 10 units 

of 128 cores each, similar to our own lab cluster, and a bigger cluster, 40 units of 128 cores, 

similar in magnitude to our shared cluster at UCSF.  We assumed 128 cores cost $15,000, a 

reasonable estimate given recent experience and current market conditions.  It is easy to re-do 

the calculations with your own costs.  We assumed the all-in cost to keep one server running is 
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2/3 of its cost per year, thus we budget $10,000 annually for electricity, cooling, rack space, and 

system administration time. Within the university obtaining such values can be challenging.  In 

each configuration we buy 1 PB of disk storage to hold 4.5 billion molecules of ZINC-22 in 

db2.tgz format with some additional storage for docking results.  We assumed three scenarios 

using AWS:  a) one large scale docking job per year, b) 10 LSD runs per year, and c) 38 LSD 

runs per year, corresponding to the largest cluster we considered.  

 

We looked at the dollar cost per docking job, the wall clock time to execute a single 

large-scale screen, and the number of docking jobs that can be executed per year. 

 

The time to execute a large-scale docking screen (4.5 billion molecules. 1s/mol) varied 

considerably between our various models.  On a single 128-core machine, it takes more than a 

year to run.  On ten times as many (1280 cores) it takes 41 days, almost six weeks.  On 4 times 

as many again, 5120 cores, a full screen takes under 11 days. Compare these figures with 

AWS, where an average of 4000 cores gets a 4.5 billion molecule docking job run in 13 days. 

 

The cost to execute a large-scale docking screen also varied.  Thus, a single machine 

with 128 cores costs $25.5K for a single screen. This is high partly because of the upfront cost 

of the disk required to hold ZINC-22.  Increasing this cluster 10-fold so 1280 cores reduced the 

cost to only $15.6K per large scale screen, albeit with a higher upfront investment of $300K in 

year 1 (all in, including space and expert/sysadmin).  Quadrupling this cluster to 5120 cores 

does not decrease the cost per job. On AWS, we are able to access about 4000 cores in 

varying price categories, ranging from about $10,000 to over $30,000. We have set a price of 

$25K per 4.5 billion molecules, which allows running in several higher priced zones.  Running in 

the most economical zones can reduce this cost by half or more, but at correspondingly slower 

throughput.  In short, investing in a sufficiently larger in-house cluster, with its associated 
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support costs, may often be more cost-efficient than AWS, but it does come with a substantial 

investment, while AWS may be spun up or down at will, on a job-by-job basis, without affecting 

per-job costs. 

 

 

 

Table 3. Comparison of the cost of running docking jobs in AWS vs on an in-house 

cluster. 

 

Equipped with the results of these experimental tests to optimize our protocol, we 

compiled a step-by-step procedure in five stages to run jobs efficiently in AWS, as follows (Box 

1): 

 

Stage 1. Assessment of the cost and difficulty of setting up a cloud account for 

running large scale docking.  Setting up an AWS account for the first time and preparing all 

the settings manually is a complex task with many steps, and numerous pitfalls.  We 

investigated ways to simplify this process and solved it by writing a script and a protocol that 

reduces the hundreds of steps needed to just seven.  As a result, it now takes only 10 minutes 

Item Local 128 
cores

Local 1280 
cores

Local 5120 
cores

AWS

Initial cost $65K $200K $650K $0
Annual cost $10K $100K $400K $0
Cost/dockjob $0 $0 $0 $25K
Dockjobs/yr 0.9 9 36 28*
Days/dockjob 407 41 10.5 13

Config. Year 1 Year 2 Years 1-5 #jobs/5yrs Cost/dockjob
local 128 $75K $10K $115K 4.5 $25.6K
Local 1280 $300K $100K $700K 45 $15.6K
Local 5120 $1050K $400K $2650K 180 $15.6K
AWS 1/yr $25K $25K $125K 5 $25K
AWS 10/yr $250K $250K $1250K 50 $25K
AWS 28/yr $700K $700K $3500K 140 $25K



 12 

to set up an AWS account that is fully ready to run large scale docking.  The step-by-step 

procedure is given in the Supporting Information S1 and online18. Setting up an account 

requires setting up a payment method but incurs only minor charges. This step includes creating 

an S3 “bucket” to contain the project files and creating a docker image to run the calculations.  

 

Stage 2. Assessment of the cost and difficulty of preparing a job for large scale 

docking. Preparing to run a large-scale docking calculation has three steps. The docking model 

must be prepared and parameterized, the part of chemical space to be screened must be 

selected, and the data must be uploaded to AWS.  Docking model preparation can be done 

automatically using TLDR (tldr.docking.org, free but registration required), using the dockopt 

module on any of the DUDEZ targets (dudez2022.docking.org).   Chemical space may be 

selected and downloaded using the 3D Tranche Browser in ZINC-22 

(cartblanche22.docking.org).  And all the relevant files can be uploaded to AWS using the aws 

command line tool. All of these steps are described in the Supporting Information S2. 

 

Stage 3. Assessment of the cost and difficulty of running a large-scale docking 

screen.  Once all of the required inputs are ready, launching a docking calculation is relatively 

simple. We have developed some recommended best practices that help to keep the calculation 

organized and allow late-stage decisions about how to organize the results.  A script and a 

protocol describing this step is given in the Supporting Information S3. This step is where 

almost all of the cost of Large Scale Docking is incurred.  Our protocol recommends starting 

with a fraction of the database to dock to test that the calculation is producing desired results. In 

this way, $50 can be spent early to produce final results, which can be checked before more 

funds are committed. If the results are not satisfactory, refinements may be made until the 

results are as sought.  Then a full screen, costing perhaps tens of thousands of dollars, can be 

launched knowing that the calculation is working correctly in situ. 
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Stage 4. Assessment of the cost and difficulty of merging the final results and 

preparing the result for manual review and prioritization for purchase.   When docking is 

complete, the user may combine the docking results to yield one or a few lists of top scoring 

ligands for clustering and review.  (See Supporting Information S4.) 

 

 Stage 5. Assessment of the difficulty of cleaning up the AWS account when the 

calculation is complete.  When the compounds have been ordered, the user may wish to 

reduce the disk space usages in AWS to reduce or avoid monthly charges.  We propose several 

strategies, each with advantages and disadvantages.  See Supporting Information S5.  

 

A step-by-step protocol emerging from these studies is summarized in Box 1.  While we 

exemplify use of AWS with DOCK 3.8, we believe that many of the steps described may be 

applied to other docking software and perhaps even software other than docking.   

 

Box 1. Steps to run Large Scale Docking in the Cloud 

Stage of Large-Scale 
Docking 

Supporting 
Info 

Online at 
https://wiki.docking.org/index.php/... 

Set up Account S1 AWS:Set_up_account 
Upload files for docking S2 AWS:Upload_files _for_docking 
Submit docking job S3 AWS:Submit_docking_job 
Merge and download results S4 AWS:Merge_and_download_results 
Cleanup S5 AWS:Cleanup 

 

We have tested this protocol using the DUDEZ benchmark19.  Ready-to-use inputs 

together with sample outputs are publicly accessible on our website, dudez2022.docking.org.  

Using these data, the user may test whether our protocol has been followed correctly.   
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Discussion 

Three themes emerge from this work. First, large-scale docking at multi-billion molecule 

scale is now possible in the AWS cloud with UCSF DOCK 3.8—we suspect these procedures 

could be readily adapted to many docking programs.  The calculation requires no commercial 

licenses for academics.  Billions of commercially available molecules can be screened, typically 

for around twenty-five thousand dollars or less. No upfront investment in infrastructure and 

personnel to maintain it is required.  Second, we have explored some of the cloud parameter 

choices for their effect on cost and speed of jobs.  The best parameters we could find have 

been incorporated into our standard pipeline and best practices.  Third new software tools and a 

detailed protocol are freely available to simplify all aspects of docking in the cloud, from 

configuring a cloud account, to prosecuting the screen, to merging and downloading the final 

results.  We take up each of these points in turn. 

 

Docking multiple billions of molecules is no longer limited to experts with large computer 

clusters and having expertise in cloud computing.  Using the approach described here, any 

investigator can run large scale docking screens without assembling an expensive computer 

lab, without engaging costly consultants in cloud computing and without entangling alliances 

with commercial software vendors.  Our approach does not use any graphical user interfaces, 

does not require any licenses other than to DOCK itself, and does not require licensing any 

third-party software not already included in DOCK.  We focused on using tools that are native to 

AWS, adapting UCSF DOCK 3.8 to play within the constraints of that ecosystem.  DOCK is now 

interruptable and restartable allowing the use of cheaper instances with spot pricing.  Our 

protocol is intrinsically conservative, allowing a calculation to be tested at small scale at each 

step to avoid wasting money.  There is scope for both improvisation and adaptation in our 

protocol because our approach is simple, modular and open. 
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There are numerous parameter choices to be made in the cloud that govern how the 

calculation is scheduled, where the data are stored, and how much the user is willing to pay to 

run jobs.  We have examined three sets of choices empirically and have repeated the 

calculations to explore the variability of cost of using the shared, interruptible resource that the 

cloud is.  By far the most important consideration is the availability zone, where we found 

variations of 300% in cost among zones.  The best choices have been incorporated as defaults 

in our scripts and protocols.  Surprisingly, writing data back to us-east-2 from eu-north-1 was 

both fast and economical, and storing the data in a single bucket in a single zone simplified the 

merging of the results at the end. 

 

Our calculation of costs and times comparing different configurations of lab cluster with 

the cloud shows there are interesting tradeoffs to be had.  It seems that buying and maintaining 

a home cluster of sufficient size (here, 1280 cores) is cheaper than renting (AWS), at least 

amortized over a 5-year period, if the machines are kept saturated (over the first year it is far 

more expensive, unamortized).  An under-utilized on-premises cluster could easily become 

more expensive than AWS per job if not used efficiently.  In short, investing in a sufficiently 

larger in-house cluster, with its associated support costs, may often be more cost-efficient than 

AWS, but it does come with a substantial investment, while AWS may be spun up or down at 

will, on a job-by-job basis, without affecting per-job costs.  For occasional or uneven use, AWS 

provides tremendous flexibility to run jobs with no upfront cost, no long-term commitment, and 

reasonable cost. 

 

Software tools and a protocol that use them have been developed and are freely 

available and ready to use.  The software (other than DOCK itself) is available open source in 

github (see Methods). Our approach is not a black-box but a series of simplified steps, the 

results of which may be inspected and tested at each stage, and corrected if necessary.  Parts 



 16 

of the protocol are highly tailored to AWS while others are general and could be used for other 

cloud providers.  Although the scripts all use DOCK 3.8 as the docking engine, they could be 

easily adapted to other docking software and perhaps even other approaches.  The software is 

written to be used either interactively or non-interactively, allowing for a range of experience by 

the target user.  As much as possible, the protocol is outlined in both general, schematic terms 

as well as detailed step-by-step instructions. In this way, we hope the protocol will be useful for 

both beginners as well as for adaptation and improvisation by experts.  We have provided test 

data for 40 DUDEZ systems with which our protocol can be used.  We also provide some 

sample output data allowing users to test that they have followed our protocol correctly before 

embarking on their own research.  

 

Our approach has limitations.  Careful controls, when possible, including the DUDEZ 

benchmark, are an important way to assess a docking model and its likelihood for prospective 

screening success.  Our automatic preparation of docking parameters currently requires actives 

and decoys to help optimize it, and even with these controls will not work well on every target.  

Some docking calculations can take substantially longer than others, based on the size of the 

binding site, degree of sampling, size of database screened, among other factors. This can 

result in widely varying costs of a large-scale docking calculation, including unexpectedly high 

costs. In this work we have estimated costs based on a throughput of 1 second per library 

molecule, which is typical for DOCK3.8, but can certainly vary. We recommend small-scale 

calculations to estimate total cost before attempting a run at scale. Suboptimal parameter 

choices can easily double the length (and cost!) of the calculation.  Our protocol has been 

tested in six availability zones and should work in any AWS zone, but we have not been able to 

test it everywhere yet.  
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Notwithstanding these caveats, a new protocol for docking at scale in the cloud is now 

available. The step-by-step, detailed protocol requires no specialist expertise and in particular 

no prior experience with AWS. Their adoption should lower barriers to entry to large library 

docking in the community, bringing the large chemical space they represent to ever more 

interesting biological targets. 
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Methods 

Scripts are written in Python 3.8.  We used the docking protocol previously outlined20 

and our benchmark used the successful docking parameters developed in an earlier study for 

the DRD4 receptor1.  We use the DockBlaster2.0 software for automated receptor preparation.  

All software for using DOCK in the cloud is freely available via github.com/docking-org/awsdock-

scripts.  This software may be forked. 

 

Aws-setup tool: The aws-setup tool can be generalized to configure all sorts of cluster-

based computation environments in the cloud.  Our aws-setup container image by default 

comes with configuration for creating a docking environment, as well as a script to submit jobs 

to that environment (similar to our traditional SLURM submission script, subdock.bash). 

 

License UCSF DOCK 3.8.  We used UCSF DOCK 3.8.0 for all docking in this 

work.  DOCK is free to academics at dock.compbio.ucsf.edu.  For for-profit outfits, DOCK 3.8 is 

modestly priced (write to dock_industry@googlegroups.com for more information). 

 

Select a database subset.  We used ZINC-22 21 as of September 2022 (4.5 billion lead-

like molecules). To select a database subset, browse to cartblanche22.docking.org and select 

Tranches>3D.  Then use the selection tool to select the desired region of chemical space. 

When you are ready, download the selection for db2.tgz format and select for the AWS 

platform.  

 

Obtain sample data for DUDEZ for docking.  Browse to dudez2022.docking.org and 

download either the tarball for each target, or all targets together.  
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Prepare docking parameters. Browse to tldr.docking.org/start/dockopt and upload the 

target information.  Click “Go” and wait about an hour to be informed that the receptor 

preparation job is complete and that the results are ready for download.  Sample data are 

available at dudez2022.docking.org. 

 

Benchmarking calculations. We docked a database of around 50 million commercially 

available small molecules with heavy atom count of 22 for benchmarking. The actual molecules 

docked may be found at dudez2022.docking.org. The docking model used for the benchmarking 

was taken exactly from our previous work on dopmanine DRD4 1 and is available for reference 

at dudez2022.docking.org. 

 

AWS Pricing. The current spot pricing in each zone can viewed at 

https://aws.amazon.com/ec2/spot/pricing/ and compared with the full price of a reservation here 

https://aws.amazon.com/ec2/pricing/on-demand/. While these enable an estimate of the upper 

and lower bounds of a calculation, we found the actual price varied a lot, often unpredictably 

(Table 2). 
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