

Large Scale Docking in the Cloud

Benjamin Tingle and John J Irwin*

University of California San Francisco, Department of Pharmaceutical Chemistry, 1700 4th St,

MC 2550, San Francisco CA 94158-2330

Corresponding author jji@cgl.ucsf.edu

 2

Abstract

Molecular docking is a pragmatic approach to exploit protein structure for new ligand

discovery, but the growing size of available chemical space is increasingly challenging to screen

on in-house computer clusters. We have therefore developed AWS-DOCK, a protocol for

running UCSF DOCK in the AWS cloud. Our approach leverages the low cost and scalability of

cloud resources combined with a low-molecule-cost docking engine to screen billions of

molecules efficiently. We benchmarked our system by screening 50 million HAC 22 molecules

against the DRD4 receptor. We saw up to 3-fold variations in cost between AWS availability

zones. Docking 4.5 billion lead-like molecules, a 7-week calculation on our 1000-core lab

cluster, runs in less than a week in AWS for around $25,000, less than the cost of two new

nodes. The cloud docking protocol is described in easy-to-follow steps and may be sufficiently

general to be used for other docking programs. All the tools to enable AWS-DOCK are

available free to everyone, while DOCK 3.8 is free for academic research.

 3

Introduction

Molecular docking is a pragmatic approach to leverage structure for ligand discovery.

The technique screens large libraries, rapidly scoring molecules for fit, ranking the database

from best to worst for purchase and testing. Since 2015, the number of commercially

accessible compounds has grown by over three orders of magnitude, leading to new

opportunities to discover new chemistry for new biology. Ultra large scale docking has now

been applied to over a dozen targets1-11 and has discovered new compounds with activities

often in the nM and occasionally in the sub-nM range1, 3, 6, 12, often leading to molecules with

interesting in vivo activities3, 6, 12, 13. A challenge to making this approach widely accessible has

been the very size of the new libraries, where over 40 billion tangible molecules have been

enumerated, and over 4.5 billion of these have structures calculated that are suitable for

docking.

The cost of docking calculations for any target is roughly linear in the number of

molecules docked, and is embarrassingly parallel, in that it can be spread across multiple

processors without meaningful loss in efficiency. Still, whereas a screen of 138 million

molecules against the DRD4 receptor1 took less than 2 days on our 1000-core cluster, a screen

of 4.5 billion molecules would take over two months; to finish in under two weeks would demand

more resources than can often be mustered locally. As the database scales to 10 billion and

beyond in the coming years, this capacity problem to obtain timely results will become only

more pressing.

Amazon Web Services (AWS) is one of several cloud providers with the capacity to bring

enormous resources to bear on docking screens, if it can be done economically and if the

system can be mastered. Though in principle AWS, and related systems, are simply enormous

fee-for-use clusters accessible to all (Figure 1), there are intricacies with their efficient use that

 4

are barriers to entry for the general user, and it was not certain to us that even used efficiently

these off-site resources could compete with an on-site academic or industrial cluster or that a

protocol suitable for occasional users and non-experts could be developed.

Figure 1. Docking in the Cloud. Though conceptually simple, cloud docking presents

operational complexities that must be overcome. A. Upload receptor and software. The

dockable database is pre-loaded. B. Large Scale Docking Jobs are run, potentially at immense

scale, and the results merged to Top Hit Collections within cloud storage. C. The T.H.C. results

are downloaded for prioritization and purchase.

Regarding cloud-based docking, there have been several studies that were encouraging.

For instance, some groups have published docking pipelines suitable for running in the cloud 4, 7,

14-16. Although available as open source, these generally lack a step-by-step protocol suitable

for non-experts. Commercial solutions to docking in the cloud are also available, such as Orion

(OpenEye, Santa Fe NM). This platform is currently made available at-cost to the academic

community.

Jobs
Jobs

Jobs

>A. Upload dockfiles
>B1. Run L.S.D.
>B2. Merge results
>C. Download

Data Storage

Jobs
Jobs

Jobs

ZINC-22
. . .

. . .
. . .

A.

B.

C.

 5

Here we report on a study that investigates efficient use of AWS for docking, with a step-

by-step protocol for community use. The approach is tailored to our own software but is

sufficiently general that it should be easily adaptable to any docking software and perhaps even

other workflows.

 6

Results

In principle, a cloud system like AWS provides almost unlimited resources for virtual

screens that would otherwise be compute-bound, as we now find with ultra-large library docking.

In practice, these calculations can be unaffordable versus in-house screens, unless optimized

for cost and throughput. We investigated three variables that impact the speed and cost of a

large library calculation: the availability zone where the calculation is run, the resource allocation

strategy, and the bid percentage, i.e. how much we are prepared to pay to avoid temporarily

surrendering cores to others willing to pay more for them. We examined the impact of each of

these variables on the cost of a screen of a set of 50 million mid-sized (HAC 22), lead-like

molecules against the DRDRD4 receptor. The results of the experiments are summarized

below (Table 1).

Zone Cost (esd) Variant Observation
us-east-2 $94(5) Lowest cost
us-east-1 $186(6) 200%
us-west-1 $170(5) 181%
us-west-2 $220(7) 230%
eu-north-1 $152(5) 162%
sa-east-1 $280(10) 300%
us-east-2 $127(23) Bid=20% Worse than bid=100
us-east-2 $115(12) Bid=50% Worse than bid=100
us-east-2 $103(10) Strategy=SCO Not significant
us-east-2 $103(10) Strategy=BFP Not significant

Table 1. Cost to dock 50 million molecules, HAC 22, to the DRD4 receptor, standard protocol.

(see Methods). Variant describes the variable that changes in addition to Zone where the job is

run. Cost is USD, esd is the estimated standard deviation in the cost based on three runs.

We wondered whether docking in different availability zone regions would help with

throughput, by adding more CPUs, and what the impact on total cost would be. AWS currently

supports over 17 availability zone regions worldwide with more in development, many with

multiple data centers. To consider the best one for docking, the prospective user should

 7

consider both the differential cost of the CPUs in different zones and the cost of data transport

between regions. We began by considering the relative on-demand and spot prices of two

representative instance types in six representative zones (Table 2). On-demand means a

machine is reserved exclusively for our use until we surrender it, while spot means we are

willing to be interrupted at any time, with a 2-minute warning. To support this use, DOCK 3.8

was modified to be interruptible and restartable to and be compatible with the AWS conventions

for doing this. This data suggests that us-east-2 should be the cheapest zone to run spot

calculations in, and that the next cheapest should be eu-north-1, perhaps somewhere between

20 and 40% more expensive than us-east-2.

Zone C5.18xlarge
On-demand

C5.18xlarge
Spot

C5.large
On-demand

C5.large
Spot

us-east-1 306 117 (+44%) 8.5 3.54 (+82%)
us-east-2 306 81.2 8.5 1.95
us-west-1 382 (+25%) 111 (+36%) 10.6 (+25%) 3.08 (+60%)
us-west-2 306 116 (+43%) 8.5 3.26 (+67%)

eu-north-1 328 (+7%) 98.3 (+21%) 9.1 (+7%) 2.73 (+40%)
sa-east-1 472 (+54%) 179 (+220%) 13.1 (+54%) 4.7 (+241%)

Table 2. Cost of on-demand and spot instances on AWS for two representative compute-

optimized instance types. US cents (¢) per hour. C5.18xlarge has 72 cores and C5.large has

2 cores.

We performed our standard docking calculation (DRD4 receptor, HAC 22, 50 million

molecules) in six zones to test price sensitivity. Each experiment was run three times at

randomly selected times over a period of two weeks to assess variability as the jobs compete

with the background of all other jobs. Consistent with the spot pricing we were quoted, us-east-

2 was clearly the cheapest to run docking calculations. Eu-north-1 came in second, costing a

50% premium, us-west-1 at a 70% premium, and us-east-1 at twice the cost of the baseline us-

east-2 pricing. The most expensive zones, as predicted by the spot prices we selected, were

 8

sa-east-1 at 300% and us-west-2 at 230% of us-east-2. While the spot price estimates captured

much of this, the estimates derived from quoted prices were optimistic in our hands, making us-

east-2 even more competitive than we had predicted.

In dollar terms the numbers are sobering. Thus, whereas it costs 94 dollars to dock our

50 million molecule test database in our test conditions, implying a cost of $8,460 to dock 4.5

billion. Eu-north-1 and us-west-1 are tied for second place among the zones we tested with a

cost of $160-$170, thus about 70% to 80% more than the cheapest us-east-2. Us-east-1 comes

in fourth place and costs about twice as much as us-east-2, even though us-east-1 is where

ZINC-22 is hosted in S3 and is where our S3 bucket of results resides. Us-west-2 comes in fifth

at $220, thus about 2.3X the cost of running in us-east-2. Finally, sa-east-1, with $280 or about

3X the cost of us-east-2.

Data transport costs, while generally minor, could be surprising for some zones. Notably,

transporting results back from sa-east-1 to us-east-1 where our S3 bucket lives cost about 15c

per GB, for 50 million molecules about $20. Not a lot, $20, but at 4.5 billion scale that would be

$1800 in data transfer costs alone. Other zones we tested are considerably cheaper to

transport back from, about 1/10th as much, or $180 for a full screen. This cost could be reduced

by merging results locally within the remote zone, and only transporting the final top 100,000

scoring molecules of each 50 million set back to us-east-1.

Spot instances use spare compute capacity that is available for less than the price of a

fixed reservation. A lower (“spot”) price is available, with the proviso that we may have to give

up the CPU on short notice if another user is prepared to pay more. We figured that if we

capped our bid at less than the recommended 100% of the CPU cost, we might save some

money, but perhaps at the expense of being evicted more frequently, possibly incurring

 9

additional cost. We tested this tradeoff by docking using the following maximum bid levels:

100% (default), 50%, and 20%. Because of the random element of contention with other jobs in

real time, we performed each run 5 times to obtain mean and standard deviation value

estimates (esd). Surprisingly to us, we found (Table 1) that bidding less than 100% was almost

always more expensive than bidding 100%. We saw a savings of 20% in a single run at 50%

bid, but for most runs, lower maximum bids, whether of 20%, 50%, or even 90%, were generally

20-30% more expensive. This appears to be due to more frequent evictions, which add to the

cost. As a result, bidding 100% (the default) was the best choice, on average, and is used in

our protocol.

Another choice we explored is the resource allocation strategy. We wondered how it

affected the price, and the speed of scheduling jobs. The three choices are BEST_FIT,

BEST_FIT_PROGRESSIVE, and SPOT_CAPACITY_OPTIMIZED. These different options

affect how machines are selected for running jobs, and use different strategies that explore the

tradeoff between cost and throughput in response to current usage on the system17. Our

experimental results (Table 1) failed to distinguish these three methods despite repeated

attempts. We decided to use BEST_FIT_PROGRESSIVE as our default allocation strategy.

We were curious to compare the cost and speed of running in AWS with the use of our

own departmental cluster (Table 3). By assuming some values, we could estimate costs of

various idealized configurations. We considered three configurations as follows: a small cluster

(128 cores in a single machine) corresponding to a small lab, a medium sized cluster, 10 units

of 128 cores each, similar to our own lab cluster, and a bigger cluster, 40 units of 128 cores,

similar in magnitude to our shared cluster at UCSF. We assumed 128 cores cost $15,000, a

reasonable estimate given recent experience and current market conditions. It is easy to re-do

the calculations with your own costs. We assumed the all-in cost to keep one server running is

 10

2/3 of its cost per year, thus we budget $10,000 annually for electricity, cooling, rack space, and

system administration time. Within the university obtaining such values can be challenging. In

each configuration we buy 1 PB of disk storage to hold 4.5 billion molecules of ZINC-22 in

db2.tgz format with some additional storage for docking results. We assumed three scenarios

using AWS: a) one large scale docking job per year, b) 10 LSD runs per year, and c) 38 LSD

runs per year, corresponding to the largest cluster we considered.

We looked at the dollar cost per docking job, the wall clock time to execute a single

large-scale screen, and the number of docking jobs that can be executed per year.

The time to execute a large-scale docking screen (4.5 billion molecules. 1s/mol) varied

considerably between our various models. On a single 128-core machine, it takes more than a

year to run. On ten times as many (1280 cores) it takes 41 days, almost six weeks. On 4 times

as many again, 5120 cores, a full screen takes under 11 days. Compare these figures with

AWS, where an average of 4000 cores gets a 4.5 billion molecule docking job run in 13 days.

The cost to execute a large-scale docking screen also varied. Thus, a single machine

with 128 cores costs $25.5K for a single screen. This is high partly because of the upfront cost

of the disk required to hold ZINC-22. Increasing this cluster 10-fold so 1280 cores reduced the

cost to only $15.6K per large scale screen, albeit with a higher upfront investment of $300K in

year 1 (all in, including space and expert/sysadmin). Quadrupling this cluster to 5120 cores

does not decrease the cost per job. On AWS, we are able to access about 4000 cores in

varying price categories, ranging from about $10,000 to over $30,000. We have set a price of

$25K per 4.5 billion molecules, which allows running in several higher priced zones. Running in

the most economical zones can reduce this cost by half or more, but at correspondingly slower

throughput. In short, investing in a sufficiently larger in-house cluster, with its associated

 11

support costs, may often be more cost-efficient than AWS, but it does come with a substantial

investment, while AWS may be spun up or down at will, on a job-by-job basis, without affecting

per-job costs.

Table 3. Comparison of the cost of running docking jobs in AWS vs on an in-house

cluster.

Equipped with the results of these experimental tests to optimize our protocol, we

compiled a step-by-step procedure in five stages to run jobs efficiently in AWS, as follows (Box

1):

Stage 1. Assessment of the cost and difficulty of setting up a cloud account for

running large scale docking. Setting up an AWS account for the first time and preparing all

the settings manually is a complex task with many steps, and numerous pitfalls. We

investigated ways to simplify this process and solved it by writing a script and a protocol that

reduces the hundreds of steps needed to just seven. As a result, it now takes only 10 minutes

Item Local 128
cores

Local 1280
cores

Local 5120
cores

AWS

Initial cost $65K $200K $650K $0
Annual cost $10K $100K $400K $0
Cost/dockjob $0 $0 $0 $25K
Dockjobs/yr 0.9 9 36 28*
Days/dockjob 407 41 10.5 13

Config. Year 1 Year 2 Years 1-5 #jobs/5yrs Cost/dockjob
local 128 $75K $10K $115K 4.5 $25.6K
Local 1280 $300K $100K $700K 45 $15.6K
Local 5120 $1050K $400K $2650K 180 $15.6K
AWS 1/yr $25K $25K $125K 5 $25K
AWS 10/yr $250K $250K $1250K 50 $25K
AWS 28/yr $700K $700K $3500K 140 $25K

 12

to set up an AWS account that is fully ready to run large scale docking. The step-by-step

procedure is given in the Supporting Information S1 and online18. Setting up an account

requires setting up a payment method but incurs only minor charges. This step includes creating

an S3 “bucket” to contain the project files and creating a docker image to run the calculations.

Stage 2. Assessment of the cost and difficulty of preparing a job for large scale

docking. Preparing to run a large-scale docking calculation has three steps. The docking model

must be prepared and parameterized, the part of chemical space to be screened must be

selected, and the data must be uploaded to AWS. Docking model preparation can be done

automatically using TLDR (tldr.docking.org, free but registration required), using the dockopt

module on any of the DUDEZ targets (dudez2022.docking.org). Chemical space may be

selected and downloaded using the 3D Tranche Browser in ZINC-22

(cartblanche22.docking.org). And all the relevant files can be uploaded to AWS using the aws

command line tool. All of these steps are described in the Supporting Information S2.

Stage 3. Assessment of the cost and difficulty of running a large-scale docking

screen. Once all of the required inputs are ready, launching a docking calculation is relatively

simple. We have developed some recommended best practices that help to keep the calculation

organized and allow late-stage decisions about how to organize the results. A script and a

protocol describing this step is given in the Supporting Information S3. This step is where

almost all of the cost of Large Scale Docking is incurred. Our protocol recommends starting

with a fraction of the database to dock to test that the calculation is producing desired results. In

this way, $50 can be spent early to produce final results, which can be checked before more

funds are committed. If the results are not satisfactory, refinements may be made until the

results are as sought. Then a full screen, costing perhaps tens of thousands of dollars, can be

launched knowing that the calculation is working correctly in situ.

 13

Stage 4. Assessment of the cost and difficulty of merging the final results and

preparing the result for manual review and prioritization for purchase. When docking is

complete, the user may combine the docking results to yield one or a few lists of top scoring

ligands for clustering and review. (See Supporting Information S4.)

 Stage 5. Assessment of the difficulty of cleaning up the AWS account when the

calculation is complete. When the compounds have been ordered, the user may wish to

reduce the disk space usages in AWS to reduce or avoid monthly charges. We propose several

strategies, each with advantages and disadvantages. See Supporting Information S5.

A step-by-step protocol emerging from these studies is summarized in Box 1. While we

exemplify use of AWS with DOCK 3.8, we believe that many of the steps described may be

applied to other docking software and perhaps even software other than docking.

Box 1. Steps to run Large Scale Docking in the Cloud

Stage of Large-Scale
Docking

Supporting
Info

Online at
https://wiki.docking.org/index.php/...

Set up Account S1 AWS:Set_up_account
Upload files for docking S2 AWS:Upload_files _for_docking
Submit docking job S3 AWS:Submit_docking_job
Merge and download results S4 AWS:Merge_and_download_results
Cleanup S5 AWS:Cleanup

We have tested this protocol using the DUDEZ benchmark19. Ready-to-use inputs

together with sample outputs are publicly accessible on our website, dudez2022.docking.org.

Using these data, the user may test whether our protocol has been followed correctly.

 14

Discussion

Three themes emerge from this work. First, large-scale docking at multi-billion molecule

scale is now possible in the AWS cloud with UCSF DOCK 3.8—we suspect these procedures

could be readily adapted to many docking programs. The calculation requires no commercial

licenses for academics. Billions of commercially available molecules can be screened, typically

for around twenty-five thousand dollars or less. No upfront investment in infrastructure and

personnel to maintain it is required. Second, we have explored some of the cloud parameter

choices for their effect on cost and speed of jobs. The best parameters we could find have

been incorporated into our standard pipeline and best practices. Third new software tools and a

detailed protocol are freely available to simplify all aspects of docking in the cloud, from

configuring a cloud account, to prosecuting the screen, to merging and downloading the final

results. We take up each of these points in turn.

Docking multiple billions of molecules is no longer limited to experts with large computer

clusters and having expertise in cloud computing. Using the approach described here, any

investigator can run large scale docking screens without assembling an expensive computer

lab, without engaging costly consultants in cloud computing and without entangling alliances

with commercial software vendors. Our approach does not use any graphical user interfaces,

does not require any licenses other than to DOCK itself, and does not require licensing any

third-party software not already included in DOCK. We focused on using tools that are native to

AWS, adapting UCSF DOCK 3.8 to play within the constraints of that ecosystem. DOCK is now

interruptable and restartable allowing the use of cheaper instances with spot pricing. Our

protocol is intrinsically conservative, allowing a calculation to be tested at small scale at each

step to avoid wasting money. There is scope for both improvisation and adaptation in our

protocol because our approach is simple, modular and open.

 15

There are numerous parameter choices to be made in the cloud that govern how the

calculation is scheduled, where the data are stored, and how much the user is willing to pay to

run jobs. We have examined three sets of choices empirically and have repeated the

calculations to explore the variability of cost of using the shared, interruptible resource that the

cloud is. By far the most important consideration is the availability zone, where we found

variations of 300% in cost among zones. The best choices have been incorporated as defaults

in our scripts and protocols. Surprisingly, writing data back to us-east-2 from eu-north-1 was

both fast and economical, and storing the data in a single bucket in a single zone simplified the

merging of the results at the end.

Our calculation of costs and times comparing different configurations of lab cluster with

the cloud shows there are interesting tradeoffs to be had. It seems that buying and maintaining

a home cluster of sufficient size (here, 1280 cores) is cheaper than renting (AWS), at least

amortized over a 5-year period, if the machines are kept saturated (over the first year it is far

more expensive, unamortized). An under-utilized on-premises cluster could easily become

more expensive than AWS per job if not used efficiently. In short, investing in a sufficiently

larger in-house cluster, with its associated support costs, may often be more cost-efficient than

AWS, but it does come with a substantial investment, while AWS may be spun up or down at

will, on a job-by-job basis, without affecting per-job costs. For occasional or uneven use, AWS

provides tremendous flexibility to run jobs with no upfront cost, no long-term commitment, and

reasonable cost.

Software tools and a protocol that use them have been developed and are freely

available and ready to use. The software (other than DOCK itself) is available open source in

github (see Methods). Our approach is not a black-box but a series of simplified steps, the

results of which may be inspected and tested at each stage, and corrected if necessary. Parts

 16

of the protocol are highly tailored to AWS while others are general and could be used for other

cloud providers. Although the scripts all use DOCK 3.8 as the docking engine, they could be

easily adapted to other docking software and perhaps even other approaches. The software is

written to be used either interactively or non-interactively, allowing for a range of experience by

the target user. As much as possible, the protocol is outlined in both general, schematic terms

as well as detailed step-by-step instructions. In this way, we hope the protocol will be useful for

both beginners as well as for adaptation and improvisation by experts. We have provided test

data for 40 DUDEZ systems with which our protocol can be used. We also provide some

sample output data allowing users to test that they have followed our protocol correctly before

embarking on their own research.

Our approach has limitations. Careful controls, when possible, including the DUDEZ

benchmark, are an important way to assess a docking model and its likelihood for prospective

screening success. Our automatic preparation of docking parameters currently requires actives

and decoys to help optimize it, and even with these controls will not work well on every target.

Some docking calculations can take substantially longer than others, based on the size of the

binding site, degree of sampling, size of database screened, among other factors. This can

result in widely varying costs of a large-scale docking calculation, including unexpectedly high

costs. In this work we have estimated costs based on a throughput of 1 second per library

molecule, which is typical for DOCK3.8, but can certainly vary. We recommend small-scale

calculations to estimate total cost before attempting a run at scale. Suboptimal parameter

choices can easily double the length (and cost!) of the calculation. Our protocol has been

tested in six availability zones and should work in any AWS zone, but we have not been able to

test it everywhere yet.

 17

Notwithstanding these caveats, a new protocol for docking at scale in the cloud is now

available. The step-by-step, detailed protocol requires no specialist expertise and in particular

no prior experience with AWS. Their adoption should lower barriers to entry to large library

docking in the community, bringing the large chemical space they represent to ever more

interesting biological targets.

 18

Acknowledgements

Supported by NIH GM133836 (to JJI). We thank OpenEye Scientific Software for a

license to Omega and OEChem. We thank Chemaxon for a license to Jchem, and thank B.

Shoichet for reading this manuscript.

The ORICID of J.J.I. is 0000-0002-1195-6417.

Conflict of Interest Statement

J.J.I. is a co-founder of Blue Dolphin Lead Discovery LLC, a contract research

organization for molecular docking screens. He is also a co-founder of Deep Apple

Therapuetics, Inc.

Software availability statement

All software for using DOCK in the cloud is freely available via github.com/docking-

org/awsdock-scripts.

 19

Methods

Scripts are written in Python 3.8. We used the docking protocol previously outlined20

and our benchmark used the successful docking parameters developed in an earlier study for

the DRD4 receptor1. We use the DockBlaster2.0 software for automated receptor preparation.

All software for using DOCK in the cloud is freely available via github.com/docking-org/awsdock-

scripts. This software may be forked.

Aws-setup tool: The aws-setup tool can be generalized to configure all sorts of cluster-

based computation environments in the cloud. Our aws-setup container image by default

comes with configuration for creating a docking environment, as well as a script to submit jobs

to that environment (similar to our traditional SLURM submission script, subdock.bash).

License UCSF DOCK 3.8. We used UCSF DOCK 3.8.0 for all docking in this

work. DOCK is free to academics at dock.compbio.ucsf.edu. For for-profit outfits, DOCK 3.8 is

modestly priced (write to dock_industry@googlegroups.com for more information).

Select a database subset. We used ZINC-22 21 as of September 2022 (4.5 billion lead-

like molecules). To select a database subset, browse to cartblanche22.docking.org and select

Tranches>3D. Then use the selection tool to select the desired region of chemical space.

When you are ready, download the selection for db2.tgz format and select for the AWS

platform.

Obtain sample data for DUDEZ for docking. Browse to dudez2022.docking.org and

download either the tarball for each target, or all targets together.

 20

Prepare docking parameters. Browse to tldr.docking.org/start/dockopt and upload the

target information. Click “Go” and wait about an hour to be informed that the receptor

preparation job is complete and that the results are ready for download. Sample data are

available at dudez2022.docking.org.

Benchmarking calculations. We docked a database of around 50 million commercially

available small molecules with heavy atom count of 22 for benchmarking. The actual molecules

docked may be found at dudez2022.docking.org. The docking model used for the benchmarking

was taken exactly from our previous work on dopmanine DRD4 1 and is available for reference

at dudez2022.docking.org.

AWS Pricing. The current spot pricing in each zone can viewed at

https://aws.amazon.com/ec2/spot/pricing/ and compared with the full price of a reservation here

https://aws.amazon.com/ec2/pricing/on-demand/. While these enable an estimate of the upper

and lower bounds of a calculation, we found the actual price varied a lot, often unpredictably

(Table 2).

 21

Literature Cited

1. Lyu, J.; Wang, S.; Balius, T. E.; Singh, I.; Levit, A.; Moroz, Y. S.; O'Meara, M. J.; Che, T.;

Algaa, E.; Tolmachova, K.; Tolmachev, A. A.; Shoichet, B. K.; Roth, B. L.; Irwin, J. J., Ultra-Large

Library Docking for Discovering New Chemotypes. Nature 2019, 566, 224-229.

2. Gentile, F.; Yaacoub, J. C.; Gleave, J.; Fernandez, M.; Ton, A. T.; Ban, F.; Stern, A.;

Cherkasov, A., Artificial Intelligence-Enabled Virtual Screening of Ultra-Large Chemical Libraries

with Deep Docking. Nat Protoc 2022, 17, 672-697.

3. Stein, R. M.; Kang, H. J.; McCorvy, J. D.; Glatfelter, G. C.; Jones, A. J.; Che, T.; Slocum,

S.; Huang, X. P.; Savych, O.; Moroz, Y. S.; Stauch, B.; Johansson, L. C.; Cherezov, V.; Kenakin,

T.; Irwin, J. J.; Shoichet, B. K.; Roth, B. L.; Dubocovich, M. L., Virtual Discovery of Melatonin

Receptor Ligands to Modulate Circadian Rhythms. Nature 2020, 579, 609-614.

4. Gorgulla, C.; Boeszoermenyi, A.; Wang, Z. F.; Fischer, P. D.; Coote, P. W.; Padmanabha

Das, K. M.; Malets, Y. S.; Radchenko, D. S.; Moroz, Y. S.; Scott, D. A.; Fackeldey, K.; Hoffmann,

M.; Iavniuk, I.; Wagner, G.; Arthanari, H., An Open-Source Drug Discovery Platform Enables

Ultra-Large Virtual Screens. Nature 2020, 580, 663-668.

5. Sadybekov, A. A.; Brouillette, R. L.; Marin, E.; Sadybekov, A. V.; Luginina, A.; Gusach, A.;

Mishin, A.; Besserer-Offroy, E.; Longpre, J. M.; Borshchevskiy, V.; Cherezov, V.; Sarret, P.;

Katritch, V., Structure-Based Virtual Screening of Ultra-Large Library Yields Potent Antagonists

for a Lipid Gpcr. Biomolecules 2020, 10.

6. Alon, A.; Lyu, J.; Braz, J. M.; Tummino, T. A.; Craik, V.; O'Meara, M. J.; Webb, C. M.;

Radchenko, D. S.; Moroz, Y. S.; Huang, X. P.; Liu, Y.; Roth, B. L.; Irwin, J. J.; Basbaum, A. I.;

Shoichet, B. K.; Kruse, A. C., Structures of the Sigma2 Receptor Enable Docking for Bioactive

Ligand Discovery. Nature 2021, 600, 759-764.

7. Lu, H.; Wei, Z.; Wang, C.; Guo, J.; Zhou, Y.; Wang, Z.; Liu, H., Redesigning Vina@Qnlm

for Ultra-Large-Scale Molecular Docking and Screening on a Sunway Supercomputer. Front

Chem 2021, 9, 750325.

 22

8. Gorgulla, C.; Cinaroglu, S. S.; Fischer, P. D.; Fackeldey, K.; Wagner, G.; Arthanari, H.,

Virtualflow Ants-Ultra-Large Virtual Screenings with Artificial Intelligence Driven Docking

Algorithm Based on Ant Colony Optimization. Int J Mol Sci 2021, 22.

9. Gorgulla, C.; Padmanabha Das, K. M.; Leigh, K. E.; Cespugli, M.; Fischer, P. D.; Wang,

Z. F.; Tesseyre, G.; Pandita, S.; Shnapir, A.; Calderaio, A.; Gechev, M.; Rose, A.; Lewis, N.;

Hutcheson, C.; Yaffe, E.; Luxenburg, R.; Herce, H. D.; Durmaz, V.; Halazonetis, T. D.;

Fackeldey, K.; Patten, J. J.; Chuprina, A.; Dziuba, I.; Plekhova, A.; Moroz, Y.; Radchenko, D.;

Tarkhanova, O.; Yavnyuk, I.; Gruber, C.; Yust, R.; Payne, D.; Naar, A. M.; Namchuk, M. N.;

Davey, R. A.; Wagner, G.; Kinney, J.; Arthanari, H., A Multi-Pronged Approach Targeting Sars-

Cov-2 Proteins Using Ultra-Large Virtual Screening. iScience 2021, 24, 102021.

10. Sadybekov, A. A.; Sadybekov, A. V.; Liu, Y.; Iliopoulos-Tsoutsouvas, C.; Huang, X. P.;

Pickett, J.; Houser, B.; Patel, N.; Tran, N. K.; Tong, F.; Zvonok, N.; Jain, M. K.; Savych, O.;

Radchenko, D. S.; Nikas, S. P.; Petasis, N. A.; Moroz, Y. S.; Roth, B. L.; Makriyannis, A.;

Katritch, V., Synthon-Based Ligand Discovery in Virtual Libraries of over 11 Billion Compounds.

Nature 2022, 601, 452-459.

11. Fresnais, L.; Ballester, P. J., The Impact of Compound Library Size on the Performance

of Scoring Functions for Structure-Based Virtual Screening. Briefings in bioinformatics 2021, 22.

12. Fink, E. A.; Xu, J.; Hubner, H.; Braz, J. M.; Seemann, P.; Avet, C.; Craik, V.; Weikert, D.;

Schmidt, M. F.; Webb, C. M.; Tolmachova, N. A.; Moroz, Y. S.; Huang, X. P.; Kalyanaraman, C.;

Gahbauer, S.; Chen, G.; Liu, Z.; Jacobson, M. P.; Irwin, J. J.; Bouvier, M.; Du, Y.; Shoichet, B.

K.; Basbaum, A. I.; Gmeiner, P., Structure-Based Discovery of Nonopioid Analgesics Acting

through the Alpha(2a)-Adrenergic Receptor. Science 2022, 377, eabn7065.

13. Kaplan, A. L.; Confair, D. N.; Kim, K.; Barros-Alvarez, X.; Rodriguiz, R. M.; Yang, Y.;

Kweon, O. S.; Che, T.; McCorvy, J. D.; Kamber, D. N.; Phelan, J. P.; Martins, L. C.; Pogorelov, V.

M.; DiBerto, J. F.; Slocum, S. T.; Huang, X. P.; Kumar, J. M.; Robertson, M. J.; Panova, O.;

Seven, A. B.; Wetsel, A. Q.; Wetsel, W. C.; Irwin, J. J.; Skiniotis, G.; Shoichet, B. K.; Roth, B. L.;

 23

Ellman, J. A., Bespoke Library Docking for 5-Ht(2a) Receptor Agonists with Antidepressant

Activity. Nature 2022, 610, 582-591.

14. Venkatraman, V.; Colligan, T. H.; Lesica, G. T.; Olson, D. R.; Gaiser, J.; Copeland, C. J.;

Wheeler, T. J.; Roy, A., Drugsniffer: An Open Source Workflow for Virtually Screening Billions of

Molecules for Binding Affinity to Protein Targets. Front Pharmacol 2022, 13, 874746.

15. Ochoa, R.; Palacio-Rodriguez, K.; Clemente, C. M.; Adler, N. S., Dockecr: Open

Consensus Docking and Ranking Protocol for Virtual Screening of Small Molecules. J Mol

Graph Model 2021, 109, 108023.

16. Labbe, C. M.; Rey, J.; Lagorce, D.; Vavrusa, M.; Becot, J.; Sperandio, O.; Villoutreix, B.

O.; Tuffery, P.; Miteva, M. A., Mtiopenscreen: A Web Server for Structure-Based Virtual

Screening. Nucleic Acids Res 2015, 43, W448-54.

17. AWS Aws Allocation Strategies.

https://docs.aws.amazon.com/batch/latest/userguide/allocation-strategies.html

18. Aws Dock Enviroment Setup. https://wiki.docking.org/index.php/AWS:Set_up_account

19. Stein, R. M.; Yang, Y.; Balius, T. E.; O'Meara, M. J.; Lyu, J.; Young, J.; Tang, K.;

Shoichet, B. K.; Irwin, J. J., Property-Unmatched Decoys in Docking Benchmarks. J. Chem. Inf.

Model 2021, 61, 699-714.

20. Bender, B. J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C. M.; Stein, R. M.; Fink, E. A.;

Balius, T. E.; Carlsson, J.; Irwin, J. J.; Shoichet, B. K., A Practical Guide to Large-Scale Docking.

Nat Protoc 2021, 16, 4799-4832.

21. Tingle, B.; Tang, K.; Castanon, J.; Gutierrez, J.; Khurelbaatar, M.; Dandarchuluun, C.;

Moroz, Y. S.; Irwin, J. J., Zinc-22 - a Free Multi-Billion-Scale Database of Tangible Compounds

for Ligand Discovery. . ChemRxiv 2022.

 24

TOC Figure

Jobs
Jobs

Jobs

>A. Upload dockfiles
>B1. Run L.S.D.
>B2. Merge results
>C. Download

Data Storage

Jobs
Jobs

Jobs

ZINC-22
. . .

. . .
. . .

A.

B.

C.

