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Abstract 

Peptide-based therapeutics are increasingly coming to the forefront of biomedicine with their promise 

of high specificity and low toxicity. Although noncanonical residues can always be used, employing 

only the natural 20 residues restricts the chemical space to a finite dimension allowing for 

comprehensive in silico screening. Towards this goal, the dataset comprising all possible di, tri, and 

tetrapeptide combinations of the canonical residues has been previously reported. However, with 

increasing computational power, the comprehensive set of pentapeptides are now also feasible for 

screening as are the comprehensive set of cyclic peptides comprising four or five residues. Here, we 

provide both the complete and prefiltered libraries of all di, tri, tetra, and pentapeptide sequences from 

20 canonical amino acids and their homodetic (N-to-C-terminal) cyclic homologues. The libraries in 

the FASTA, SMILES, and SDF-3D formats can be readily used for screening against protein targets. 

Access to this dataset will accelerate small peptide screening workflows and encourage their use in 

drug discovery campaigns. As a case study, the developed library was screened against SARS-CoV-2 

Mpro to identify potential small peptide inhibitors.  

Keywords: Dipeptide, tripeptdies, tetrapeptides, pentapeptides, N-to-C-terminal, cyclicpeptides, 

peptide library. 
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 Introduction 

With few exceptions including insulin, therapeutic peptides have only recently become increasingly 

prevalent. Approximately 10% of the drugs approved between 2009 and 2013 were peptide-derived, 

and most of these compounds are first-in-class drugs, e.g., bivalirudin, desmopressin, octreotide, etc. 

[1].  As of this writing, more than 80 unique peptide drugs have been approved worldwide, while over 

150 are in development [2, 3]. 

Most drugs work by interfering, strengthening, or modifying protein-ligand interactions. This implies 

ligand in the broadest possible definition: small molecules, ions, proteins, nucleic acids, lipid 

membranes, or peptides. In fact, over 40% of all intracellular interactions involve peptide-protein 

interactions, and many more involve protein-protein interactions. In both cases, peptides and 

peptidomimetics are ideal interfering agents [4]. Cyclic peptides show exceptional promise in 

specifically targeting “undruggable” “blank wall” surfaces of proteins involved in protein-protein 

interactions. A second factor underlying their utility is their perceived niche between small molecules 

and biologic therapeutics [5].  

Biologics comprise a broad range of polysaccharides, proteins, nucleic acids or their conjugates, e.g., 

vaccines, blood components, somatic cells, and recombinant proteins. They are usually produced in 

living organisms (animals, microorganisms, or even humans) and then processed ex vivo. They often 

offer treatment options for disorders with no available treatments [5, 6]. However, biologics are often 

complex mixtures, difficult to characterize. Furthermore, they are generally high-cost, low stability, 

heat sensitive, susceptible to microbial contamination, and immunogenic [7, 8] (Figure 1). Due to 

their low membrane permeability, susceptibility to digestion, and first-pass metabolism, they are also 

usually administrated parenterally, resulting in challenges for patient compliance [9].  

In contrast, small molecules (usually < 1000 Da) offer an enormous amount of chemical diversity to 

interact with their targets. Inherent advantages typically associated with small molecules include low 

cost, high stability, good bioavailability, and easy administration [5]. They often effectively bind to 

small binding pockets in target proteins but have limited application in blocking protein-protein 

interactions due to their small surface area [10]. However, this small size means they can often 

interact with other proteins, and many exhibit off-target effects and toxicity. Their non-endogenous 

metabolites can also induce undesired physiological responses [11]. 

Small peptides lie between both classes of therapeutics (Figure 1). They are often better tolerated, 

more specific than small molecules, lower cost, and more stable than biologics. They share the single 

characterizable entity benefit of small molecules but can present specificity similar to biologics [12, 

13]. Tetra and pentapeptides offer an optimum size to occupy catalytic or molecular recognition sites 

often occupied by small molecule metabolites or the termini of endogenous peptides or proteins [14]. 



Larger peptides can imitate proteins to block surfaces. Together these opportunities have driven the 

rise of peptides [3, 15-17].  

 

Figure 1: Comparison of small molecules, peptides, and biologics for their benefits and drawbacks as 

drugs.  

One advantage of working with peptides is that they occupy a very large, but finite chemical space, 

with the caveat that one considers only the canonical residues. This means that it can be 

comprehensively explored in vitro or, theoretically, in vivo. These are still largely cost-prohibitive, but 

a preliminary  comprehensive, in silico screenis becoming feasible. 

Many docking algorithms are available for protein-protein and peptide-protein docking that can 

accommodate the conformational restrictions on the inherently flexible nature of peptides and specific 

amino acids. Various benchmark studies have been reported assessing the precision of these 

algorithms, and they are constantly improving [18, 19]. Despite this progress, high throughput screens 

of small peptides in computer-aided drug discovery (CADD) campaigns are still not frequently 

performed, possibly due to the large number of calculations required, difficulties in handling the 

conformational complexities of peptides, and a more computationally expensive workflow compared 

to small molecules. But a primary limitation is that comprehensive machine-readable peptide libraries 

of dockable peptides with all possible sequences are unavailable.  

To address these challenges, we have developed, and here make available, the comprehensive library 

of all possible di, tri, tetra, and pentapeptides sequences from 20 canonical amino acids. We have also 

provided a library of N-to-C-terminal cyclic analogues of these peptides. To demonstrate the potential 

of this tool, as part of our broader effort in CADD, we provide a case study screening this tool against 

the target-du-jour, the main protease of SARS-CoV-2 ( SARS-CoV-2 Mpro or 3CLpro), a cysteine 

protease [20].  

Although the novel coronavirus has a unique Mpro, it is still very similar to that of the original SARS-

CoV-1 and was a well-understood enzyme and a well-investigated drug target [21]. This, of course, 

accelerated with the emergence of SARS-CoV-2 in late 2019 and early 2020, and the crystal structure 

of the SARS-CoV2 was solved extremely quickly and by multiple efforts nearly simultaneously [22-

24] as part of what is the most accelerated drug discovery effort in human history. Mpro cleaves 



polypeptides after a glutamine residue, making it a promising drug target because no human proteases 

share this substrate specificity, meaning off-target effects can be expected to be minimal [24, 25]. The 

active site of Mpro consists of a catalytic dyad of Cys145 and His41. Other anchoring residues 

important in ligand interactions in cocrystallized structures include Thr25, Thr26, Asn142, Gly143, 

Ser144, Met165, Glu166, and Gln189 [26]. 

Inhibiting this protein would prevent the virus from processing the polypeptide properly and would 

consequently prevent capsid formation and release from the infected cell; this would halt infection 

[27]; however, despite very significant effort, there are no drugs in advanced clinical trials that are 

highly effective, and despite the efforts from many academic groups suggesting drug repurposing 

might prove helpful, it would be incredibly naïve to consider that all relevant extant drugs were not 

investigated immediately by major players within weeks and months of the emergence of the disease. 

Furthermore, the various efforts, 61 independent reports evaluated by Macip and coworkers, do not 

agree or converge around a common series [28]: repurposed drugs have been thoroughly screened in 

vitro[29]. Although some are initially promising [30-33], none are effective, including those that were 

developed to target the main proteases of other related viruses: the active site is significantly different, 

even from closely related SARS-CoV-1[34], and the entire protein is highly dynamic for a globular 

enzyme that makes small molecule drugs difficult to design. New chemical material is required. 

The protein’s active site needs to be dynamic as it must cleave the polypeptide at various different 

points along its sequence. The natural ligand is a peptide. One molecule that has shown some activity 

is a peptidomimetic arising from a high-throughput screen of Ugi reaction products [35]. Although no 

natural peptide is likely to be a useful drug in itself [36], they might prove to be useful starting points 

for structure-activity relationships through both incorporating unnatural residues and modifying the 

backbone to increase the stability of the peptide (both physiologically and to avoid peptidase activity 

in the binding site) and affinity for the target [37]. But for this to be viable, we require a method to 

identify promising peptides to be validated in vitro as potential inhibitors. This makes SARS-CoV-2 

Mpro a potentially useful subject for our peptide screening library to be deployed against. 

2. Methods 

2.1 Preparation of peptide library 

Single letter codes of all 20 canonical amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, 

V, W, and Y) were used to make all possible sequences of di, tri-, tetra-, and pentapeptides based on 

the relation 20n (n = 2, 3, 4, and 5) using MS Excel. These peptides were either filtered for their 

physico-chemical properties (solubility, stability, and ease of synthesis, see next section) based on 

their amino acid sequence or linked via N-to-C-terminal amide linkage to get cyclicpeptides. 

2.1.1 Peptide filtration based on physico-chemical properties 



The interplay between the constituent amino acids of a peptide is responsible for its solubility, 

stability, and ease of synthesis, A set of seven filters was carefully selected based on stability, 

solubility, and ease of synthesis. Although there are many complex tools that could be used to conduct 

these filtrations, the digital nature of the peptide sequences (consisting of only 20 values), makes them 

extremely easy to manipulate in Excel, which also lowers the barrier to use for others. Excel also 

makes it simple to modify the filters we applied, either expanding them should the user believe we 

were insufficiently restrictive in our selection process or reducing them should the user believe we 

were overly zealous in our elimination of sequences. This can be accomplished through simple 

manipulation of the provided formulae. However, in the case of a reduction of the filters, we caution 

that the user will need to optimize additional peptide conformations. In all cases, we have provided 

examples of the process in the supporting information that can be applied to the full dataset. 

Filter 1: Peptides that can form gels in an aqueous solution  

Peptides having a very high ratio (>75%) of amino acids that can form intermolecular hydrogen bonds 

(D, E, H, K, N, Q, R, S, T or Y) reliably result in gel formation in water, rendering them water-

insoluble. We removed these peptides through simply eliminating the entries in the Excel file. This 

was accomplished by copying the column containing all sequences (Column A) to Column B. Using 

the “replace” function on Column B only, substitute “X” for all of D, E, H, K, N, Q, R, S, T, and Y. 

To remove peptides that are comprised of >75% of above stated resides, cells in column B containing 

>75% X were deleted. This is achieved by using replace option of Excel for the column: for a 

pentapeptide, put *X*X*X*X* in the “find” field, leaving the “replace” field blank. All cells 

containing four or five Xs (4 Xs is 80%) will become blank. Sort the entire worksheet by Column B. 

This will put the blank cells at the top. Remove all rows that have no entry in column B. Column B 

can then be deleted. This removes all of these peptides from the list, and this new list can then be 

applied to the next filter.  

Filter 2: Peptides with 50% or more hydrophobic residues are insoluble or partly soluble in 

water 

We can employ an analogous method to remove entries with >50% hydrophobic residues (A, I, L, M, 

F, W, Y, and V). Again, duplicate column A to column B, convert the hydrophobic residues to X, and 

replace *X*X*X* with a blank for pentapeptides with blank cell. Once the empty rows are sorted and 

deleted, these sequences are removed. 

Filter 3: Multiple cystines and methionines in a peptide are prone to oxidation. Multiple cystines 

can also form a disulfide bridge.   

This filter should be run at the discretion of the user. As the peptides examined here are so small, 

intramolecular disulfide bridges are unlikely, and free cysteines could be more likely to form 

intermolecular bridges. So any in vitro test of these peptides might provide data about complex 



mixtures of oligomers rather than the planned peptide. Although these peptides might be valid, the 

complexities they could introduce into both synthesis and screening merits, in our opinion, their 

exclusion. The filter was applied as above by replacing any strings containing *C*C* and *M*M* 

with blank cells to remove entries having two or more cystines or methionines.  

Filter 4: Multiple prolines or serines in a small peptide can readily cause deletions during 

synthesis. Multiple prolines can also experience cis/trans isomerization. 

Again, this filter may or may not be appropriate for a given application. We are employing it to ensure 

a higher hit-rate for our peptides in any in vitro test. To employ this filter, replace *S*S* and *P*P* 

with blank cells to remove entries having two or more serine or proline residues.  

Filter 5: Aspartic acid next to glycine, serine, or proline can readily undergo hydrolytic peptide 

cleavage in an acidic solution.  

Again, this filter may not always be appropriate, and with sufficient care in synthesis, this 

complication can be evaded. However, for a simple screen, this challenge could introduce challenges. 

To employ this filter, removing aspartic acid glycine pairs, remove *GD* and *DG* with blank cells. 

Similarly, use *PD* and *DP* to remove aspartic acid and proline pairs and *SD* and *DS* to 

remove aspartic acid serine pairs. 

Filter 6: N-terminal glutamine can form pyroglutamate in an acidic solution. 

This could even be desirable under specific conditions. But it can be simpler to simply exclude these 

examples. To execute this filter, put the FASTA data in column A and put : in all cells of column B. 

Use formula “=B1&A1” to get : at the start of every entry (left-hand side, i.e., N terminal). Paste the 

formula-generated column to column C as text to avoid the formula. Remove columns A and B. Put 

:Q* in find and leave replace field blank to remove sequences starting with Q. This same syntax can 

be used to remove any other problematic N-terminal sequence.  

Filter 7: Protecting group on N-terminal asparagine are difficult to remove.  

This filter was employed simply to ease synthesis. Again, this is solvable, but does require specialist 

peptide synthesis knowledge and may not be appropriate for all groups looking to screen and prepare 

peptides. This filter can be avoided. It was implemented using the protocol used in Filter 6, bu 

employing :N*.  

Note: These filters were only performed on pentapeptides. Filtered pentapeptides and all tri and 

tetrapeptides were placed in text files in FASTA format along with their FASTA identifiers. The files 

were loaded in MarvinView [38], and the structures were saved as SMILES (simplified molecular-

input line-entry system) [39] and SDF (structure-data file) files along with their FASTA [40] 

identifiers for later use in docking.  



2.1.2 Preparation of cyclic peptides 

All possible combinations of di-, tri-, tetra- and pentapeptides were used without any prefiltration to 

generate head-to-tail cyclic amide-linked peptides. To generate this library, the peptides in FASTA 

format were placed in Excel in column A. Column B was populated with X (the FASTA notation for a 

general amino acid with an arbitrary sidechain). The formula “=B1&A1&B1” was applied in column 

C to get X at the start and end of each peptide (i.e., XpeptideX). These peptides were copied in a .txt 

file, and the file opened in MarvinView. The structures were saved in SMILES format. The resulting 

SMILES file was opened in notepad++, and the following replacements were made: 

For N terminal: ([H])C(=O)[C@]([H])([*])N([H]) to 9, and (C(=O)[C@]([H])([*])N([H])[H]) to 

9. 

For C Terminal: [H]OC(=O)[C@]([H])([*])N([H])C to C9, and 

C(=O)N([H])[C@@]([H])([*])C(=O)O[H] to C9(=O). 

The FASTA identifiers were placed next to the SMILES separated by a space. The resulting SMILES 

were filtered for duplicates using Open Babel [41, 42] through the option “remove duplicates with 

descriptor” InChI (the IUPAC international chemical identifier). After the removal of the duplicate 

entries, the structures were exporting as SMILES files. The SMILES files were loaded in MarvinView 

and the structures were saved as an SDF file for docking. 

2.2 Virtual screening 

2.2.1 Ligand preparation 

The ligands in the SDF file were imported into Maestro, and the 3D structures of the compounds were 

batch prepared using the LigPrep utility of Maestro (Schrödinger Release 2020-4: Maestro, LigPrep, 

Schrödinger, LLC, New York, NY, 2020) [43]. The possible tautomers of the compounds were 

produced using Epik [44] at the target pH of 7±2. Only one structure was produced for each ligand. 

2.2.2 Protein preparation 

The crystal structure of SARS-CoV-2 Mpro protease was downloaded from the Protein Data Bank 

(PDB ID 6XR3, resolution 1.45 Å) [45]. The Protein Preparation Wizard of the Maestro molecular 

modeling software (Schrödinger Release 2020-4: Protein Preparation Wizard, Schrödinger, LLC, New 

York, NY, 2020) was used to optimize the protein for docking. The preparation steps used are 

standard: addition of hydrogens, optimization of the hydrogen bond networks, and assignment of 

protonation states of histidine residues. Water molecules were removed, followed by a restrained 

minimization step using the OPLS4 force field, which uses an implicit water model, generally useful 

for globular proteins [44]. The Receptor Grid Generation utility of Maestro was then employed to 

specify the docking site by generating a cubical grid box with the centre at (9.11, 27.14, 22.64) and 23 



Å length. This is the centre of the active site, so we are avoiding an examination of allosteric 

inhibitors or peptides that might be useful in preventing dimerization. 

2.2.3 Docking  

Glide 

In the first step of virtual screening, the docking was performed using the Glide docking tool of 

Maestro with HTVS (high throughput virtual screening) mode giving one output pose for each ligand 

[46]. Due to the sheer size of the ligand library, the top 600,000 (~30%) hits were selected for a robust 

screening step using Glide SP-peptide (standard precision-peptide) docking mode. The top 60,000 

(10%) hits were subjected to Glide XP (extra precision) docking.  

Gold 

The peptide library was also screened using the Gold ChemPLP scoring function. The top 600,000 

(~30%) hits were subjected to the Gold fitness score with 10% search efficiency (Goldscore 10%). 

The top 60,000 (10%) hits were selected for a vigorous screening using a 200% search efficiency of 

Gold fitness score (Goldscore 200%).  

MMGBSA 

The top 6000 (10%) hits from Glide XP and the top 6000 (10%) hits from Gold docking were selected 

for the MMGBSA analysis. The estimated binding free energy of the top hits was calculated with the 

Prime/MMGBSA (molecular mechanics generalized Born surface area) module using the VSGB 

solvation model and the OPLS4 force field [46]. 

Molecular dynamics simulation 

The Maestro System Builder utility was employed to prepare docked protein-ligand complexes for 

molecular dynamics (MD) simulation. The simple point-charge (SPC) water model was used with an 

orthorhombic box extending 10 Å from protein. The placement of ions was excluded within 20 Å of 

the ligand. Sodium chloride was added to make the concentration 0.15 M, and extra sodium or 

chloride ions were added to neutralize the system. The OPLS4 force field was used for simulation. 

Initially, the NPT ensemble was used at 300 K and 1.01325 bar, and the system was relaxed for 100 

ps before simulation. The simulation was recorded for 12 ns with a 3 ps recording interval. The 

complexes presenting reasonable stability for 12 ns were selected for 100 ns simulation with 

recording interval of 4 ps (Schrödinger Release 2020-4: Desmond Molecular Dynamics System, D. E. 

Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New 

York, NY, 2020).  

3. Results  



The overall scheme to build the peptide library is displayed in Figure 2. All possible combinations of 

the twenty canonical amino acids provided 400 dipeptides, 8,000 tripeptides, 160,000 tetrapeptides, 

and 3.2 million pentapeptides according to the relation 20n, where n is 2, 3, 4, and 5 for tripeptide, 

tetrapeptide, and pentapeptide, respectively. Di, tri and tetrapeptides were not subjected to filters due 

to their smaller size and relative ease of synthesis compared to pentapeptides—they can be reasonably 

made in the solution phase, and the synthetic challenges associated with solid-phase synthesis can be 

evaded. Based on aqueous solubility, stability, and ease of synthesis, pentapeptides were passed 

through a set of seven filters (see methods section above), giving 1,169,013 pentapeptides.  

 

Figure 2: Process diagram displaying the key steps in building the peptide dataset in SMILES and 

SDF format after applying peptide filters.  

 

Homodetic cyclicpeptides were prepared using 400 dipeptides, 8,000 tripeptides, 160,000 

tetrapeptides, and the 3.2 million pentapeptides. N-to-C-terminal amide cyclization of all possible 

sequences generates substantial number of duplicate peptides. The removal of duplicate entries 

yielded 210 cyclicdipeptides, 2680 cyclictripeptides, 40,110 cyclictetrapeptides, and 640,016 

cyclicpentapeptides.  



Collectively, a total of 2,019,819 peptides (aliphatic and cyclic) were generated (Table 1). The 

datasets of aliphatic and cyclicpeptides are available in FASTA and SMILES format in separate files. 

These files can be readily converted into any desired format (PDB, MOL2, etc.) for molecular 

docking.  

 

Table 1: Number of peptides generated during dataset construction. The three datasets are available in 

FASTA, SMILES and SDF formats.  

  Dipeptide Tripeptide Tetrapeptide Pentapeptide Total 

Linear 400 8,000 160,000 3,200,000 3,368,400 

Cyclic 210 2,680 40,110 640,016 683,016 

Linear 

Filtered 
(400) (8,000) (160,000) (1,169,013)  1,337,413 

Total 610 10,680 200,110 3,840,016 4,051,416 

 

A total of 2,020,429 peptides (di, tri, tetra and pentapeptides in their linear and cyclic forms) were 

used for docking against SARS-CoV-2 main protease as a case study to implement the peptide 

dataset. For computational simplicity, multiple conformations of each peptide were not generated due 

to the large number of input compounds and the proof-of-principle nature of this work; instead, only 

one most suitable conformation for each peptide was selected for docking. A more rigorous effort 

would want to generate 20 low lying conformations per peptide to ensure the conformational space is 

being sampled. 

3.1 Virtual screening of peptide dataset on SARS-CoV-2 main protease 

3.1.1 Glide 

A quick docking screen of the library using Glide HTVS provided binding energy as low as -10.9 

kcal/mol. The top 600,000 hits (~30% of the dataset, -10.9 to -5.1 kcal/mol) were subjected to Glide 

SP peptide docking, and the top 60,000 hits from this screen (10%, -12.1 to -5.2 kcal/mol) were 

docked using Glide extra precision (XP) mode. Following this, the top 6000 hits (10%, -13.7 to -8.8 

kcal/mol) were subjected to Prime MMGBSA calculations. The MMGBSA data of these “binders” 

ranged between -90.2 to -9.1 kcal/mol (Figure 2, 3). 

3.1.2 Gold 



An initial screen of the library was performed with the ChemPLP score in Gold. The top 600,000 hits 

(~30%, 113.5 to 46 ChemPLP score) were docked using Goldscore with 10% efficiency. The top 

60,000 hits from this assay (top 10% with 112.6 to 52.2 Goldscore 10% efficiency) were further 

docked using Goldscore 200% efficiency. The Goldscore 200% values of these hits ranged from 

117.3 to 50.1. The top 6000 hits from this step (top 10%, 117.3 to 89.6 Goldscore 200% efficiency) 

were subjected to Prime MMGBSA. The results from this MMGBSA calculation ranged between -

89.3 to -12.4 kcal/mol (Figure 3, 4). 

 

Figure 3: The schematic block diagram of the in silico workflow followed in the study to screen 

peptides against SARS-CoV-2 Main protease. Lighter to darker colour represents the process of a 

workflow. 

 



 

Figure 4: Peptide screening results from two independent workflows. (A) Top 6000 (10%) hits 

obtained from Glide HTVS > SP > XP score, distributed in Glide XP docking score slabs. (B) Top 

6000 (10%) hits obtained from Gold ChemPLP > Goldscore 10% efficiency > Goldscore 200% 

efficiency, distributed in Goldscore 200% efficiency slabs. (C) Scatter plot of Glide XP docking score 

vs Goldscore 200% efficiency of the 547 common top hits found from both top 6000 hits from each 

study taken from corresponding top-ranked datasets. (D) Docked conformations of the top hits 

identified from workflow 1 (Glide HTVS > SP-peptide > XP > Prime-MMGBSA) and (E) workflow 

2 (Gold ChemPLP score > Goldscore 10% > Goldscore 200% > Prime-MMGBSA) inside the binding 

pocket of SARS-CoV-2 main protease.  

3.1.3 Molecular dynamics simulations 

With this integrated parallel virtual screening pipeline, the top hits were selected for MD 

simulation after careful consideration, completed in 3 steps, 1) top 25 hits from Glide HTVS 

> Glide SP peptide > Glide XP > Prime MMGBSA workflow; 2) top 25 hits from Gold 

ChemPLP > Goldscore 10% > Goldscore 200% > Prime MMGBSA workflow, and 3) top 25 

common hits that displayed consensus binding poses after both workflows (Figure 4). The 

latter was selected extensively through visual inspection, i.e., peptides that revealed 

consensus binding conformation by both docking approaches and displayed significant 

molecular interactions with the critical binding pocket residues, excluding peptides that 

showed unrealistic docking conformations. These might not be the top hits arising from either 

algorithm, but a major drawback of single tool-docking studies is their poor correlation to 

experimental data [19, 28, 47, 48]. Correlation is always improved when molecules are 



identified using multiple different workflows, and we consider 2 methods the absolute 

minimum acceptable. We suggest at least four mutually independent methods for any planned 

CADD campaign. 

These 75 hits were subjected to 12 ns MD simulations to analyse the stability of the complex, 

interaction energetics, and the conservation of specific intermolecular interactions. After 

MDs, the following parameters were taken into consideration to select the best hits, 1) a 

favorable binding affinity (kcal/mol) in terms of MMGBSA calculations; 2) minimum 

fluctuations of peptide inside the binding pocket (RMSD <3.5 Å); 3) favorable interactions as 

determined from per-residue decomposition analysis, and 4) having at least one stable H-

bond (highest occupancy) with one of the residues of the catalytic dyad over the 12 ns 

simulation.  

The initial poses of all the selected 75 peptides fitted pretty well in the Mpro binding pocket, 

predominantly interacting with the catalytic dyad. This is to be expected: only the best-fitting 

peptides would occupy the active site, and a strong hydrogen bond with a member of the 

catalytic dyad that is already primed to be nucleophilic and acidic was almost going to be a 

certainty. As the MD simulation progressed, some of the peptides migrated significantly and 

decreased their interaction with the catalytic dyad. This resulted in an unstable binding 

conformation; therefore, they could be excluded from further studies. The least disrupted 20 

peptides were selected for further analysis and were subjected to a moderate 100 ns MD 

simulation. Of these, ten protein-peptide complexes displayed a stable RMSD over the 

simulation period, with the peptides staying in the binding pocket and interacting tightly with 

the protein’s residues. All these peptides displayed significant interactions, including H-bond 

with His41 and Cys145 of the catalytic dyad (occupancy, >30%; average distance, <3 Å). We 

discuss the two best-binding peptides (HLFNT and GQYWH); the remainder (GHYFH, 

FKQH, IKRDM, CHQLN, GQRFL, AQRFS, AQQFN, and EEYCM) is discussed in the 

supplementary information.  

3.1.3.1 HLFNT and GQYWH as high affinity binders for Mpro 

An analyses of HLFNT and GQYWH’s interactions with Mpro was conducted on the MD 

simulation data (Figures 5, 6, and 7). The final frame of the 12 ns production run was used as 

the initial frame for the extended 100 ns simulation. The RMSD of the Cα-backbone atoms of 

Mpro with bound peptide was examined and provided information about the overall stability 



of the system. For both of these peptides, the Mpro remained stable in the presence of the 

peptide and the peptide also rapidly converged. RMSD values.  

 

Figure 5: The binding conformation of (A) GQYWH and (B) HLFNT inside the binding 

pocket of SARS-CoV-2 Mpro. The binding pocket residues are labelled and displayed in 

stick representation, while catalytic dyad residues are colored red. 

 

Figure 6: Post-MD simulation analysis of HLFNT@Mpro. (A) The Root Mean Square 

Deviation (RMSD) of Mpro Cα-backbone bound to HLFNT over the simulation period. (B)  

Ligand-Root Mean Square Fluctuation of HLFNT for characterizing changes in the peptide 

atom positions during MD simulations. (C) SARS-CoV-2 Mpro interactions with the peptide 

were monitored throughout the MD simulations. (D) A schematic plot of detailed ligand atom 

interactions with the protein residues; interactions that occur more than 30% during the 

simulation period are displayed. 



 

 

Figure 7: Post MD simulation analysis of GQYWH@Mpro. (A) The Root Mean Square Deviation 

(RMSD) of Mpro Cα-backbone bound to GQYWH over the simulation period. (B)  Ligand-Root 

Mean Square Fluctuation of GQYWH for characterizing changes in the peptide atom positions during 

MD simulations. (C) SARS-CoV-2 Mpro interactions with the peptide were monitored throughout the 

MD simulations. (D) A schematic plot of detailed ligand atom interactions with the protein residues; 

interactions that occur more than 30% during the simulation period are displayed.   

In HLFNT@Mpro complex, the RMSD values of Mpro initially (for the first ~50ns) displayed slight 

fluctuation but then stabilized and shifted around 1Å for the rest of ~50 ns, indicating a tight and 

conserved interaction mode of HLFNT (Figure 6A). The GQYWH@Mpro complex remained stable 

throughout the simulation period, and RMSD values rapidly converged. In HLFNT@Mpro, the initial 

fluctuations of Cα-backbone atoms of Mpro were evident from the ligand-root-mean-square-

fluctuations (L-RMSF) values of HLFNT (~3Å) compared to the stable conformation of GQYWH 

(<3Å) inside Mpro binding site throughout the simulation period. The presence of more aromatic 

residues in GQYWH added stability due to the presence of significant π-stacking interactions. Both 

peptides bind near the catalytic dyad. Besides their H-bond interactions with the catalytic dyad, both 

peptides formed H-bonds with adjacent binding site residues: Thr25, Asn119, Gly143, Glu166 and 

Gln189. Glu166 established a well-populated H-bond (occupancy, >90%) with backbone atoms of 

both peptides. In comparison, all other interactions were supported with more than 30% occupation 

(average distance, <3Å). The tryptophan in GQYWH establishes a well-populated π–π stacking 

interaction (occupancy, 97%) with the catalytic His41. The stable GQYWH@Mpro complex 



formation over the simulation period was possibly due to the formation of this consistent stacking 

interaction. 

4. Discussion 

A dataset of all sequences of linear di, tri, and tetra peptides has been previously published by others 

to help CADD [49]. This or in-house libraries have been used, and there are reports of efforts to 

comprehensively screen all possible di or tripeptides against a target protein [50, 51]; however, to the 

best of our knowledge, no machine-readable database is available with all possible pentapeptides or 

the N-to-C-terminal cyclic tri, tetra, and pentapeptides. This manuscript is accompanied by the 

publication of this library for use by others. We also provide a simple method for conducting 

prefiltration on these peptides. These libraries are provided in FASTA and SMILES formats that can 

be easily converted to dock-able formats, e.g. PDB, MOL2, etc. We also provide the SDF file with the 

prefiltered library we used in this study. 

We also chose to prefilter the dataset. It would not take significantly more computational time to 

screen all possible pentapeptides, but it is important to have a method for arbitrarily reducing the 

number of simulations to be run according to a research team’s whims. The filtrations we conducted 

here are reasonable to eliminate problematic sequences, but it would also be reasonable for a 

researcher to not use these filters on a small dataset. The filters were selected in this case so that all 

peptides arising from the screen would be trivial to synthesize using automated solid phase peptide 

synthesis [52]. The method of filtration and this filtered data set are provided for ease of use by others 

should they so desire. 

Most small peptides (di, tri, tetra and pentapeptides) have suitable physicochemical properties and are 

easy to synthesize. The natural zwitterion assists with solubility. However this charge density 

decreases as the peptide grow in length so some would be sparingly soluble, while other sequences 

can prove to be unstable.  

The chosen filters fall into three categories: solubility, stability, and ease of synthesis. In terms of 

solubility, we filtered out sequences liable for gel formation (>75% D, E, H, K, N, Q, R, S, T or Y, 

Filter 1). These would not likely be soluble as distinct species and would likely give false positives on 

many binding assays. We also removed sequences with a preponderance of aliphatic hydrophobic 

residues (Filter 2), again the concern is the solubility of these peptides providing false positives in 

assays due to precipitation and non-specific binding [53]. We then removed a series of notoriously 

unstable sequences. Cysteine and methionine are liable to rapid oxidation and cleavage of protecting 

groups during synthesis, making subsequent purification complicated; peptides containing multiple of 

either sulfur-containing residues were removed (Filter 3). The final category is synthetically 

challenging sequences that might have reduced purity coming off a bead. A typical pentapeptide 

needs only a simple precipitation followed by solid phase extraction to render a sufficiently pure 



material for evaluation. Some combinations of residues are known to be problematic and could 

interfere with this workflow. Short peptides containing two or more serines or prolines have a higher 

probability of leading to deletions during synthesis and were removed (Filter 4). Similarly, aspartic 

acid residues adjacent to glycine, serine, or proline are susceptible to hydrolysis during acidic 

cleavage conditions, typically used in solid-phase peptide synthesis (Filter 5). Finally, N-terminal 

glutamines readily cyclize to pyroglutamate and N-terminal asparagines are irritating to deprotect 

without decomposition. Peptides with either motif were removed (Filters 6 and 7). As this is a virtual 

study, these filters could have been omitted, but were included to show the ease of use of the 

technique and the library manipulation. Even then, we didn’t prefilter the tetra-, tri-, or dipeptides in 

any way (Figure 3). 

To understand the challenges associated with screening these peptides in a CADD workflow, we 

selected SARS-CoV-2 Mpro as a potential target due to its compact and flexible catalytic site [54]. 

Precise binding affinity and peptide conformational prediction of the protein-peptide complex is 

challenging [47, 55]. We established an integrated peptide virtual screening pipeline to overcome this 

by incorporating two state-of-the-art molecular docking suits (Figure 3). The benchmark studies have 

reported that the Goldscore is the most efficient for small peptide docking among different scoring 

functions available in the Gold docking suite [19]. Goldscore can predict near-native conformations of 

top-scoring peptides (having more than 9 residues) with an accuracy higher than 30% [19]. The Glide 

SP-peptide has been proven to be 53% accurate in predicting peptide poses. The accuracy could be 

improved to 58% when SP-peptide is preceded by Prime MMGBSA [56, 57].  

The binding pocket of SARS-CoV-2 Mpro is not deep, and most of it is solvent-exposed. The binding 

pocket of SARS-CoV-2 Mpro in two apo structures, 7ALH and 6M2Q, interact with 12 and 10 water 

molecules, respectively [58, 59]. The part of the inhibitors sitting in this solvent-accessible region 

could interact with the solvent, thereby reducing the strength of the protein-ligand interaction. Under 

these conditions, most docking protocols do not account for the role of water molecules, and docking 

accuracy can be very poor in highly solvent-accessible binding pockets. The MMGBSA and, 

especially the MD simulation, becomes very important due to the involvement of water molecules.  

Neither of our top hits were previously identified in the literature, nor have they been evaluated 

against Mpro. Some custom small peptides (1-8) analogous to our selected top hits (GQYWH and 

HLFNT) tested as SARS-CoV Mpro inhibitors are presented in Figure 8. The peptides 1, 2, 3, and 4 

have been tested to inhibit Mpro at 100 μM with percentage inhibition values of 72%, 23%, ˂10%, 

and ˂10%, respectively  [60]. The peptide 5 is a potent inhibitor of SARS-CoV Mpro with Ki of 58 

nM [61]. Peptides 6, 7, and 8 have been cocrystallized with Mpro of SARS-CoV. The Ki value of 6 

was 10.7 μM [62], and the IC50 of 7 was 80 μM [63]. The Kinact/Ki value of 8 against Mpro of SARS-

CoV was 1900 M-1s-1 [64]. 



Peptide 8 has a strong structural analogy with our identified hit, HLFNT. The N-terminal histidine of 

HLFNT is replaced with benzyl hydrogen carbonate in 8 and the following two amino acids, leucine 

and phenylalanine, are identical in both peptides. The fourth asparagine residue of HLFNT is replaced 

with glutamine type of residue having N in place of α-carbon in 8, having only one extra methylene 

residue. The C-terminal threonine of HLFNT is substituted with ethyl ester of 2-hydroxypropanoic 

acid in 8, both having hydroxyl groups. This close analogy validates the use of the prepared library 

and authenticates our in silico screening workflow.  



 



Figure 8: Structures of small peptidomimetics reported as SARS-CoV Mpro inhibitors. Structures of 

two top hits (GQYWH and HLFNT) identified in this study. The hydroxyl group of threonine (T) in 

entries 1, 3, 4, and 5 is in the ether form with benzyl or tert-butyl groups.  

Conclusion 

Among the marketed therapeutics used today, peptides have proved a valuable niche in the drug 

development spectrum substituting small molecules and large biological therapeutics. The study 

provides a library of small aliphatic peptides and their N-to-C-terminal cyclized analogues using all 

possible sequences of 20 canonical amino acids. We have also devised a comprehensive strategy to 

handle such large peptide datasets utilizing an appropriate array of tools to extract desirable outcomes. 

The given library could be screened against any desired target protein to identify small peptide hits. 

These hits could go through the peptidomimetic approaches, e.g., attachment of amino acids on the C 

or N-terminal to extend the length, use of noncanonical amino acids, etc., for improved activity. This 

work would profoundly impact the small peptide-based drug discovery domain.  
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