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We present a graph neural network modeling approach that fully automates the prediction of the DFT-relaxed vacancy formation
enthalpy of any crystallographic site from its DFT-relaxed host structure. Applicable to arbitrary structures with an accuracy limited
principally by the amount/diversity of the data on which it is trained, this model accelerates the screening of vacancy defects by many
orders of magnitude by replacing the DFT supercell relaxations required for each symmetrically unique crystal site. It can thus be used
off-the-shelf to rapidly screen 10,000s of crystal structures (which can contain millions of unique defects) from existing databases of
DFT-relaxed crystal structures. This modeling approach therefore provides a significant screening and discovery capability for a plethora
of applications in which vacancy defects are the primary driver of a material’s utility. For example, by high-throughput screening the
Materials Project’s metal oxides, we rapidly “re-discover" and identify new high potential candidate materials for hydrogen generation
via solar thermochemical water splitting and energy storage, for CO2 conversion via reverse water gas shift chemical looping, and for
cathodes in solid oxide fuel cells. Thermodynamic modeling on the basis of the high-throughput screening results allows us to connect
the predicted defect energies to high temperature process conditions relevant to the different application areas, and we extract the
reduction entropies as an additional selection criterion for high-performance materials. Further model development and accumulation
of additional training data will only serve to expand the significant utility of this generalizable defect model to solving materials
discovery problems in clean energy applications and beyond.

1

1 Introduction2

High-accuracy calculations of vacancy defect formation en-3

thalpies elucidate the primary and critical figure of merit needed4

to assess a material’s utility across a large variety of applications.5

These can range anywhere from catalysis (e.g., oxides for water6

splitting1–3), to degradation resistance in extreme environments7

(e.g., radiation hardness of transition metal dichalcogenides4,5),8

to neuromorphic computing (e.g., tuning metal-to-insulator tran-9

sition with oxygen vacancy formation6,7), to multiferroics (e.g.,10

oxygen vacancy induced magnetic phase transitions8).11

Density functional theory (DFT) is the method of choice to12

compute these vacancy formation enthalpies in a high through-13

put fashion. However, given the need for supercell construc-14

tion, atomic force relaxation, and the general presence of mul-15

tiple non-equivalent atomic sites, the computational effort of16

defect calculations far exceeds that of the computation of the17

ideal defect-free material in the primitive cell. Thus, explicit18

DFT defect calculations exist so far only for a small frac-19

tion of the O(100) compounds contained in existing computa-20

tional databases like the Materials Project (MP),9,10 Open Quan-21

tum Materials Database (OQMD),11 NREL Materials Database22

(NRELMatDB),12–14 Joint Automated Repository for Various In-23

tegrated Simulations (JARVIS),15 and the Quantum Point Defect24

database (QPOD).16 Additional, potentially combinatorial, com-25

plexity arises from the desire to predict defect behavior in non-26

ideal materials, e.g., in the presence of atomic site disorder. A27
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successful surrogate modeling approach that avoids the cost re- 28

quirements of DFT is therefore critical in order to efficiently facil- 29

itate materials discovery efforts in these applications. 30

Previous efforts to predict vacancy formation enthalpies span 31

various methods and material classes within which the models 32

are applicable. Notable examples include modeling vacancy for- 33

mation enthalpy using a simple hand-derived or machine learn- 34

ing (ML) model based on hypothesized important features17–21 35

and descriptor derived properties to train ML regression models 36

for defect property prediction in semiconductors.22,23 For 2D ma- 37

terials consisting of TMDs, hexagonal boron nitride, and other 38

selected wide band gap 2D materials, similar utilization of hand- 39

engineered features and random forests predicted vacancy de- 40

fect formation enthalpies.24 These examples provide highly use- 41

ful models in specific situations by capitalizing on physical intu- 42

ition regarding important material descriptors. But they do not 43

provide a generalized solution that (1) automatically predicts the 44

vacancy formation enthalpy of any crystal site in any material 45

class and (2) negates the need for manual feature-engineering of 46

material descriptors. 47

Various deep learning techniques, such as graph or convolu- 48

tional neural networks, can circumvent such limitations. Rather 49

than requiring the hand-crafting of an input feature vector to 50

describe a training example, the model directly learns a feature 51

representation from iterative convolutions and non-linear trans- 52

formations of the input data, i.e. a graph representation of the 53

crystal structure. The general success of graph neural networks 54

at performing property prediction on crystal structures is evident 55

from their recent explosion in popularity across a host of materi- 56

als science applications.25–36 In this work, we extend the graph 57

neural network concept for directly predicting vacancy defect for- 58

mation enthalpies (abbreviated dGNN for short). The only re- 59
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quired input is the non-defected, DFT-relaxed host structure, and60

the model output is the predicted relaxed vacancy formation en-61

thalpy of any site in the structure. The surrogate model therefore62

replaces the need to do an expensive DFT supercell relaxation63

for each symmetrically nonequivalent atomic site in the host, of64

which there can be a sizable number (up to about 100 in the65

present work) in compositionally and structurally complex mate-66

rials. Other quantities typically derived from a DFT-relaxed struc-67

ture like band gap (Eg), effective electron mass (m∗), compound68

formation enthalpy (∆H f ), and oxidation state (s) can readily be69

encoded into the material’s graph if available to further improve70

prediction accuracy. Existing computational databases contain-71

ing 10,000s of compounds with potentially up to millions of non-72

equivalent defect sites can be screened in an automated fashion73

using desktop computational resources with a prediction accuracy74

limited mainly by the amount and diversity of the vacancy defect75

training data.76

As a specific use case, we first focus on the discovery of new so-77

lar thermochemical (STCH) water splitting oxides, widely consid-78

ered a promising route for renewable hydrogen production.37–3979

DFT investigations play a critical role in understanding these ma-80

terials and helping to guide experiments,40–45 but can only be ac-81

complished on a limited scale. Due to the complexity of the asso-82

ciated vacancy defect calculations using DFT, approximately one83

year’s work was required to build our training database (∼ 20084

host oxide compounds consisting of ∼1500 unique defects). Our85

highly generalizable dGNN model then extends upon capabilities86

of previous work that requires carefully hand-engineered features87

in specific crystal systems (e.g., perovskites)21,46 and obtains a88

similar expected mean absolute error in oxygen vacancy forma-89

tion enthalpy (MAE < 450 meV) in unseen compounds (assum-90

ing its cations are represented in the training data). Depending91

on the model’s defect predictions, oxide stability, and the strin-92

gency of these down-selection criteria, we then narrow down a93

small number of priority candidates for experimental efforts from94

10,000s of possible MP oxides (among which are known STCH95

oxides we “re-discover" through our screening procedure).96

Finally, optimal candidates for other clean energy applications97

are highlighted where target ranges for oxygen vacancy formation98

enthalpies have been proposed as a primary metric for material99

down-selection, such as catalysts for CO2 conversion and cath-100

odes for solid oxide fuel cells.47,48 We even extend our analysis101

to predict defect density for all materials at finite temperatures,102

a capability that can only be achieved due to our method’s abil-103

ity to rapidly predict vacancy formation enthalpies of all sites in104

the crystal structure (i.e., account for configurational entropy).105

Thus materials can be assessed beyond the static picture of single106

vacancy defect calculations at 0K for a limited set of materials.107

With continued accumulation of training data, this success paves108

the way for automated materials discovery in other vacancy de-109

fect dependent applications and lays the groundwork for more110

complicated machine learning tasks such as correlated vacancy111

formation enthalpy or vacancy mobility predictions. All data,112

code, and scripts needed to reproduce this study are provided113

open source.49114

2 Results and Discussion 115

2.1 Developing a diverse database of vacancy defects 116

We developed an automated workflow for DFT vacancy defect 117

calculations (Figure 1) as follows: (1) import the stoichiomet- 118

ric host oxide crystal structures from the ICSD50 that are avail- 119

able in NRELMatDB; (2) relax the host supercell in ferromagnetic 120

and different possible anti-ferromagnetic spin configurations; (3) 121

choose the minimum energy host atomic and magnetic structure; 122

and (4) perform point defect calculations on the supercell using 123

the automated defect framework.51 In the data acquisition step, 124

we extract host properties (from step 3) and calculate vacancy 125

formation energies (after step 4), which then supplies input and 126

target properties, respectively, for training the machine learning 127

model. Further details on the DFT settings are provided in Sec- 128

tion S1.14,44,52–58 DFT is currently the preferred method for high- 129

throughput supercell defect calculations. True benchmark calcu- 130

lations require total-energy methods beyond DFT, such as quan- 131

tum Monte Carlo or the random phase approximation, which are 132

currently available only for few defect systems and with restric- 133

tions in cell size and atomic relaxations.44,59,60. Given the DFT- 134

relaxed crystal structure, Ch, of the host oxide with total energy 135

Eh and the DFT-relaxed defected structure, Cd , with total energy 136

Ed (calculated using the standard supercell approach of Ref. 61), 137

we compute the enthalpy of defect formation via 138

∆Hd = Ed −Eh +∑
i

niµ
ref
i . (1)

Here the reference chemical potential of added or removed atoms 139

(ni = −1 and +1, respectively) are taken as the fitted elemental 140

reference energies (FERE)14,57, µ ref
i = µFERE

i , which improve the 141

description of thermochemical properties in DFT calculations62. 142

For an oxygen vacancy, Equation (1), simplifies to ∆HVO = EVO − 143

Eh +µ ref
O . 144

Our final DFT training database consists of ∼1500 unique de- 145

fect sites from ∼200 parent oxides, which span 15 cations (Mg, 146

Al, Ca, Ti, Mn, Fe, Co, Ni, Sr, Y, Nb, In, Ba, La, Ce), 63 space 147

groups, and 51 unique stoichiometries. The choice of chemi- 148

cal space (Figure 2) is motivated by previous literature,58,63–65 149

which provides guidance on cations that form stable oxides and 150

play an active role in tuning oxygen vacancy formation energy 151

via their redox activity. Previous STCH material searches have 152

targeted perovskite (ABO3) stoichiometry and related structures 153

systems (cubic, orthorhombic, tetragonal). Our training data is 154

more diverse and spreads across all seven crystal structure sys- 155

tems and includes a wide range of stoichiometries to cover dif- 156

ferent coordination environments and metal ion oxidation states 157

varying from 2+ to 5+. 158

2.2 A graph neural network model for vacancy defects 159

We create a vacancy defect graph neural network (dGNN) sur- 160

rogate model fdGNN, parameterized by weights θ , of the general 161

form 162

∆Ĥd = fdGNN
(
Ch, i

′,vvvg,sss;θ
)
, (2)
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Fig. 1 The automated DFT vacancy defect calculation workflow combined with the data acquisition and curation necessary to develop the training
dataset for a machine learning model.

Fig. 2 The chemical and structural search space (cations in binary and
ternary oxides and the number of unique space groups in each of the
seven crystal systems) explored via DFT defect calculations. Cations
considered in training are shown in green, along with ones that should
eventually be considered for screening in yellow.

that will drastically reduce the computational cost associated with163

Equation (1) when performing high-throughput materials screen-164

ing. Here, vvvg = {Eg,m∗,∆H f } refers to a set of global input fea-165

tures as derived from the host compound (e.g., the band gap, ef-166

fective electron mass, and compound formation enthalpy, respec-167

tively) while sss = {s1,s2, ...} refers to site specific input features for168

each atom, (e.g., s1 is the oxidation state of atom 1 in the host169

structure). Intuitively, for example, we expect oxides with cations170

in high oxidation states to form O vacancies (i.e., to reduce) more171

easily than when cations are in lower oxidation states, hence mo-172

tivating the inclusion of these properties derived from the relaxed173

host structure.174

Requiring only Ch and the index of the atom to be defected, i′, 175

as an input, the model negates the cost of a DFT supercell relax- 176

ation for each unique symmetry site when predicting ∆Ĥd , and ex- 177

ecuting the ML screening is of negligible computational cost when 178

querying Ch from existing repositories like MP or NRELMatDB. 179

The inputs for model training (the host’s relaxed POSCAR file, for- 180

mation enthalpy, bandgap, effective electron mass, and oxidation 181

states) and neutral vacancy formation energies (for both oxygen 182

and cations) are provided in our open-source data repository.49 183

Our dGNN closely follows the original Crystal Graph Convolu- 184

tional Neural Network (CGCNN) method of Ref. 31, for which we 185

highlight the necessary modifications to predict defect formation 186

enthalpies. The deep learning framework is composed of three 187

major steps. 188

Crystal embedding. First, Ch is embedded as a graph with 189

nodes, V = {v0,v1, ...}, corresponding to each atom and edges 190

B = {bi j} corresponding to bonds that are defined between atoms 191

i and j below a cutoff radius and up to a maximum number of 192

nearest neighbors. CGCNN One-Hot encodes66 and concatenates 193

a node’s elemental solid properties, vvve = One-Hot(Mendeleev 194

number, atomic weight, melting temperature, covalent radius, 195

electronegativity, ground state volume per atom, ground state 196

band gap, ground state magnetic moment, and space group num- 197

ber) as the initial feature vector, vvv(0)i = vvve. We additionally con- 198

catenate a One-Hot encoding of the site’s oxidation state, as cal- 199

culated in our DFT defect database, to increase model accuracy 200

vvv(0)i = vvve⊕OneHot(si) . (3)

Two atoms of the same element type are no longer guaran- 201

teed to share an identical encoding due to their dependence on 202

si since various elements can assume different oxidation states 203

depending on their local environment. Since One-Hot encod- 204

ing increases sparsity and dimensionality of the initial node fea- 205

ture vectors and removes any quantitative ordering of a phys- 206

ical property, we also investigate whether a purely continu- 207

ous encoding strategy can improve performance. This alter- 208
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native approach involves the scaling of each elemental prop-209

erty between [0,1], which can be combined with the ele-210

ment’s ground state electron configuration and valence elec-211

trons (e.g.,
{

1s
2
,

2s
2
,

2p
6
, . . . ,

5d
10

,
6p
6
,

vs

2
,

vp

6
,

vd

10
,

v f

14

}
),35 to yield a212

continuously-scaled elemental representation, vvv′e. This vector can213

further be concatenated with s′i, scaled between [0,1], to produce214

a vvv(0)i that is lower dimensionality, less sparse, and preserves or-215

dering of physical quantities.216

CGCNN31 also utilized a discretized Gaussian filter applied to217

the distance between two atoms, ri j, to generate the initial edge218

features, bbbi j, but this representation can be sparse and sensitive to219

an arbitrary choice of the filter’s standard deviation. A more sys-220

tematic approach is to use a radial basis set expansion (e.g., sim-221

ilar Behler and Parinello’s GII functions67) to generate the initial222

feature vector according to a set of gaussian widths (η), centers223

(Rs), and a cutoff radius (rc):224

bbbi j = {exp
[
−η(ri j−Rs)

2/r2
c

]
}. (4)

This simultaneously reduces the sparsity and dimensionality225

of bbbi j for a moderate basis set size (η = {0.5,1.0,1.5}, Rc =226

{1.0,2.0,3.0,4.0,5.0}). Such modifications facilitate distinguish-227

ing between very similar crystal structures.228

Convolutions. Automated feature extraction is then performed,229

whereby the feature vector for each node is iteratively updated230

via convolutions with its neighboring nodes and edges. Mathe-231

matically, the output of the t th convolutional layer can be written232

as31233

vvv(t+1)
i = g

(
vvv(t)i +∑

j
σ

(
zzz(t)i j WWW (t)

1 +bbb(t)1

)
�g
(

zzz(t)i j WWW (t)
2 +bbb(t)2

))
. (5)

Here zzzi j = vvvi⊕ vvv j ⊕ bbbi j is the concatenation of information from234

connected nodes in the graph, WWW 1,bbb1 and WWW 2,bbb2 represent235

weights and biases of different learnable weight matrices (i.e.,236

fully connected neural network layers), σ denotes a sigmoid ac-237

tivation function, g denotes a softplus activation, and � denotes238

element-wise multiplication. This step remains unaffected for the239

dGNN.240

Property prediction. Following T total convolutions, the origi-241

nal CGCNN method acquires an overall feature vector represent-242

ing the crystal by pooling all nodes in the structure243

vvvc = Pool
(

vvv(T )0 ,vvv(T )1 , ...,vvv(T )N

)
, (6)

which, for example, consists of a summation operation. Thus244

crystals of arbitrary size are described by a vector of the same245

dimensionality. The model predicts some final global property by246

applying one (or more) fully connected layers to vvvc.247

However, we are interested in the defect formation enthalpy248

and therefore isolate the information contained only on the host249

node/atom to be defected (specified at index i′) following the T250

total convolutions. We therefore replace eq. (6) with251

vvvd = g
(
(vvv(T )i′ ⊕ vvvg) ·WWW +bbb

)
. (7)

We incorporate the global compound features at this step, vvvg = 252

{Eg,m∗,∆H f }, before applying the subsequent fully connected 253

layer. Additional feed-forward layers may be applied before the 254

final property prediction of ∆Ĥd is then computed through one fi- 255

nal output layer. Equation (7) is specifically designed for predict- 256

ing defect formation enthalpies for the limit of infinite dilution 257

in this work, but could be changed to, for example, expand its 258

applicability to correlated vacancy defects. 259

All training data, model structures, and hyperparameters used 260

in this study can be found in our Zenodo repository, from which 261

all results can be reproduced when used in conjunction with 262

the dGNN implementation built in Pytorch68 provided at https: 263

//github.com/mwitman1/cgcnndefect/tree/Paper1 (modified 264

from Ref. 31). In brief, due to the small size of our training 265

data set, a dGNN model of minimal complexity is required to 266

facilitate training. In practice the number of trainable param- 267

eters often exceeds the number of training examples in deep 268

learning applications and explicit regularization isn’t even always 269

needed to achieve low generalization error.69 Nonetheless, our 270

minimal complexity architecture consists of T = 2 convolution 271

steps, vvvi ∈ R8, and vvvd ∈ R16, leading to a GNN with only ∼ 2,000 272

learnable parameters. After fixing the architecture, the learning 273

rate was adjusted to minimize K-fold test set performance (next 274

section), and over-fitting was minimized via early-stopping using 275

the mean absolute error on a 10% validation set within each train 276

fold. 277

2.3 Defect GNN validation and performance 278

We executed three different cross-validation (CV) strategies, 279

demonstrated by the toy examples in Figure 3a, to gauge model 280

performance. For defect-wise and compound-wise CV, we uti- 281

lize K = 10-fold cross validation. For each k-fold, 10% of the 282

training data is held as a validation set for early stopping, and 283

the mean absolute error over all n defects in the test set is com- 284

puted, MAEY
k = (1/n)∑n |∆ĤY

d,n − ∆HY
d,n|. The model’s expected 285

prediction error is then estimated across all folds, 〈MAEY 〉K = 286

(1/K)∑
K
k=1 MAEY

k . Here Y = O or Y = Other filters evaluation of 287

the MAE by a defect’s specific element type to delineate model 288

performance between oxygen and non-oxygen vacancy predic- 289

tions. The standard deviation in MAE across all K models, 290

σK(MAEY ), should be small once sufficient data has been col- 291

lected, i.e., the sampled distribution of training data no longer 292

changes significantly between each fold. 293

Validating the dGNN with defect-wise CV is a less challenging 294

task, since train and test sets may contain defects from the same 295

material in similar chemical environments (i.e., just above the 296

symmetry tolerance). Validating with compound-wise CV is more 297

challenging, since the test set contains all the defects from a given 298

material (none of which may appear in the training set). This bet- 299

ter reflects the practical performance for materials discovery, be- 300

cause one is usually interested predicting for materials for which 301

no DFT vacancy calculations have been performed and thus not a 302

single defect site could exist in training set. Finally, element-wise, 303

leave-one-out CV proves the hardest challenge, where all defects 304

for a compound containing the held-out element are placed in the 305
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Fig. 3 (a) Demonstration of different CV strategies in a toy dataset. In defect-wise CV, different defects from the same compound can appear in both
train/validation and test splits, whereas in compound-wise CV, the train/validation and test stratification is performed such that all of compound’s
defects can only appear in either train/validation or test splits. The number of compounds is kept constant between folds, leading to small variations
in the number of unique defects contained per K-fold test set. In element-wise, leave-one-out CV, all defects in any compound containing the test
element, X , are placed in the test set. (b) Summary of expected prediction errors and a heuristic uncertainty metric (mean MAE and standard
deviation of MAE across K-fold test sets) for different cross-validation (rows) and graph encoding strategies (columns). (c) MAE averaged across
the CV test sets (K = 10) models as a function of training data size and the parity plots of the test set predictions with DFT for the “Full" encoding
strategy. (d) MAEY=O for the element-wise, leave-one-out CV, separated by test element and encoding strategy. (e) Test set predictions for the
X ={Y},{La},{Fe},{Al},{Co},{Ti},{Nb} models.
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test set (thus there are X = 15 models and test sets, corresponding306

to the number of cation types in the training data). At inference307

time, the ML model is supplied with a graph encoding containing308

node features that may not be represented by the training data.309

Figure 3b shows the evaluation metrics for each CV strategy,310

with the MAE separated by predictions on oxygen and all other311

vacancy types. Cation vacancies tend to have higher enthalpies,312

but the mean relative errors between O and non-O defects are313

quite similar. This CV analysis was repeated for four different314

encoding strategies. “Element-only" encoding uses vvve, while sssi315

and vvvg are empty. Conversely, “DFT-only" encoding keeps sssi and316

vvvg but vvve is empty. The “Full" encoding strategy incorporates all317

information, while the “Continuous" encoding replaces the one-318

hot encoding of elemental properties and oxidation state with vvv′e319

and s′i. Three key observations arise from the defect-wise and320

compound-wise CV. First, our strategy to encode both elemental321

and DFT data via the “Full" and “Continuous" models provides im-322

proved accuracy; nonetheless, “Element-only" and “DFT-only" en-323

coding strategies both lead to reasonable accuracy on their own.324

Second, the best accuracy for compound-wise CV is obtained with325

the “Full" model with a 〈MAE〉OK < 0.45 eV. Third, the ability of the326

model to predict ∆HOther
d validates the generality of this approach327

and its usefulness in other applications requiring predictive mod-328

eling beyond oxygen vacancies.329

Figure 3c demonstrates the continued decrease in the CV MAE330

as more defects are added to the training data. While the MAE de-331

crease with defect-wise CV starts to plateau, the compound-wise332

CV still benefits from a log-linear decrease in MAE with increasing333

data, highlighting the model can still be significantly improved334

as more training data is acquired. This highlights the need for335

continued, high-quality DFT defect calculations with automated336

workflows51 (see Section S1 for recommended settings to build337

a larger training dataset consistent with this work). The parity338

plots correspond to the test set results concatenated across all CV339

models, with good performance between both oxygen and non-340

oxygen vacancy defect predictions.341

Figure 3d shows the results of the element-wise, leave-one-out342

CV for each of the four different encoding strategies. While this343

is not a task that one might expect a deep learning approach to344

succeed at, several elements are well predicted and close to the345

target error of 0.5 eV, regardless of encoding type. Yet other ele-346

ments are poorly predicted for all encoding types. Without any a347

priori knowledge of which held-out elements are well-predicted,348

it is not possible to assume that predictions on materials with349

unseen cation types can achieve 〈MAE〉OK < 0.97 eV (Figure 3).350

We therefore recommend this current generation of models only351

be used on compounds containing the fifteen cations spanned by352

the training database. Nonetheless, Figure 3e demonstrates how353

the continuous encoding strategy significantly improves property354

prediction across selected element types. This could be due to355

the continuous encoding’s preservation of quantitative periodic356

trends (e.g., electronegativity, mean volume per atom, etc.). In357

order to expand the quantitative applicability of the model for358

materials discovery outside of the current cation set, we plan to359

include a larger chemistry space in the future.360

2.4 Comparison with previous modeling efforts 361

Our cross-validation performance with the current training 362

dataset is comparable to the performance of linear models derived 363

via careful feature engineering to predict neutral oxygen vacancy 364

formation enthalpies. Deml et al. trained a model on 45 binary 365

and ternary oxides and achieved around 0.4 eV MAE on a small 366

test set of 18 oxides that had not been included in model devel- 367

opment.17 Wexler et al. computed SCAN+U vacancy formation 368

enthalpies of 341 ABO3 perovskites and derived a linear model 369

that globally achieved an MAE of 0.7 eV and an MAE of 0.45 eV 370

for the subset (142 materials) with hull energies less than 0.025 371

eV/atom. Another in depth validation of these studies with ours 372

is presented in Section S3. These linear models are more inter- 373

pretable than our approach due to the small number of manually 374

derived features, but are less generalizable. For example, they are 375

not capable of predicting neutral cation vacancies, whereas our 376

trained model predicts either. Our model architecture was not 377

designed specific to oxides and could be applied to any material 378

class since it operates generally on any crystal structure, whereas 379

the linear models contain features that can only be calculated if 380

the structure contains O. Figure 3c also demonstrates strong ev- 381

idence for continued significant model improvement with more 382

training data, which is unclear for the linear models. This pat- 383

tern of comparable accuracy but increased generalizability also 384

holds true for our method relative to other machine learning ef- 385

forts for defect predictions, e.g., Frey et al.’s model for transition 386

metal dichalcogenides24 with MAE=0.67 eV and Cheng et al.’s 387

model for amorphous GeTe.70 Finally, in a concurrent preprint 388

with ours,71,72 Choudary et al. used graph neural networks mod- 389

els to predict total energy of a host structure and with an atom re- 390

moved to estimate vacancy formation enthalpies, but this neglects 391

the relaxation of the host upon vacancy formation and yields an 392

MAE prediction of 1.5 eV for a single test set, including 2.3 eV for 393

oxides. 394

2.5 Predictions on known STCH materials. 395

Before utilizing the dGNN model to screen potential candidate 396

materials for STCH water splitting, it is instructive to first validate 397

against additional DFT calculations for experimentally known 398

STCH oxides. The materials behavior for the STCH redox pro- 399

cesses can be expressed in terms of reduction enthalpies and 400

entropies.40,73 For workable and economic thermodynamic con- 401

ditions, these considerations lead to a desirable value for the 402

oxygen vacancy defect formation energy in an interval of about 403

[2.3, 4.0] eV.21,41,64 Lower formation energies impair the abil- 404

ity to produce hydrogen in the oxidation step, while higher en- 405

ergies prevent significant changes of the O stoichiometry in the 406

reduction step. To predict the defect formation energies for 407

these "unseen" materials, we utilize the expectation across K- 408

fold models, 〈∆ĤY
d 〉K =K−1

∑
K
k=1 ĤY

d,k, and the standard deviation, 409

σK(∆ĤY
d ) =

√
K−1 ∑

K
k=1 (Ĥ

Y
d,k−〈Ĥ

Y
d,k〉)2, as a heuristic estimate of 410

the uncertainty in the property prediction.74,75 411

As a first test case, we consider the family of BXM oxides 412

(B=Ba; X=Ce,Nb,Pr; M=Mn)76 which have a higher degree 413

of compositional complexity than the materials in the training 414
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dataset. Figure 4a compares the 〈∆ĤO
d 〉K with DFT for BXM ox-415

ides for both “Full" and “DFT-only" encoded models. On aver-416

age, “DFT-only" predictions are only more accurate when struc-417

tures contain unseen cation types missing from the training set418

(e.g., Pr), but are generally less accurate if all of a structure’s419

cation types are in the train set (Figure 3b,d). Nonetheless, both420

models are quite similar in qualitatively ranking and quantita-421

tively capturing ∆HO
d . We additionally tested our model on newly422

discovered disordered perovskite oxides, Sr1−xCexMnO3 (SCM),423

which demonstrate suitable STCH performance.77 In contrast to424

the BXM family which are line compounds, the SCM family can425

accommodate a wide range of Ce doping, thereby providing bet-426

ter control over water splitting capabilities by varying Ce con-427

centration. To model SCM alloy structure we employ the spe-428

cial quasirandom structure (SQS) approach78 and generate two429

80-atom supercell structures representing random alloying with430

differing Ce content. Figure 4b shows the “Full" encoding model431

predictions on both SQS’s. While the absolute value of the predic-432

tions are slightly below the generally accepted optimal range of433

[2.3, 4.0] eV, the ML model predicts the SQS with higher Ce con-434

tent to have oxygen vacancy enthalpies closer to the target range,435

which is experimentally consistent with its improved water split-436

ting capabilities from the increased Ce content.77437

Fig. 4 (a) Defect-wise CV model predictions (open squares) and DFT
values (stars) for each O vacancy in NRELMatDB structures of known
4 known STCH materials including BCM-12R = Ba4CeMn3O12 (blue),
BCM-6H = Ba3CeMn2O9 (orange), BNM-12R = Ba4NbMn3O12 (green),
and BPM-12R = Ba4PrMn3O12 (red). Error bars correspond to σK(∆ĤO

d ).
(b) Distribution of 〈∆ĤO

d 〉K for the (Sr1−xCexMnO3) SCM family of alloys
with differing Ce concentrations with x = 0.25 and 0.38 in SCM025 and
SCM038, respectively.

2.6 High-throughput screening for new STCH materials. 438

Our “element-only" encoding models can perform consistent pre- 439

dictions on input host crystal structures in which the DFT settings 440

for host relaxations are not identical to those used to create the 441

training set (see Section S2 and Figure S2 for details). Thus we 442

can now efficiently predict ∆Hd across 10,000s of DFT-relaxed 443

crystal structures included in open source repositories beyond 444

NRELMatDb, such as Materials Project (v2021.03.22). We em- 445

ploy the “Element-only" encoding model at the expense of slightly 446

lower accuracy since Materials Project (MP) data doesn’t neces- 447

sarily contain all the features needed for the “Full" encoding mod- 448

els. Figure 5a shows that the space of ∼35,000 oxides (excluding 449

non-metals) is reduced to about ∼2,200 structures by setting a 450

maximum energy above the hull requirement, EH < 0.1 eV/atom, 451

and discarding any materials with cations not present in the train- 452

ing set. From these remaining ∼2,200 host oxides, we predict 453

〈∆Ĥd〉K for the ∼48,000 symmetrically unique defect sites. Be- 454

fore proceeding with candidate down-selection, we perform yet 455

another hold-out validation by comparing our MP screening pre- 456

dictions with existing first principles calculations and model pre- 457

dictions that could be easily mined from the literature (see Sec- 458

tion S3). 459

Although we omit host structures with cations outside the train- 460

ing set in this study, adding a small number of training structures 461

in the future (the full search space from Figure 2) could further 462

expand the model’s applicability. Figure 5b shows the predicted 463

〈∆ĤO
d 〉K vs. ∆H f , and, although correlation is evident across the 464

entire enthalpy range, there is little correlation within [2.3, 4.0] 465

eV. Furthermore, a simple model using features derived only from 466

the host composition would clearly be insufficient due to an in- 467

ability to distinguish individual oxygen vacancies. Within a sin- 468

gle structure, these can span a very large range as shown for the 469

min, median, and max predictions for MP structure mp-1247717 470

(Ca4Mn3AlO11). 471

Assessing an oxide’s STCH potential first requires determining 472

∆HO
d of all sites and computing the fraction above the minimum 473

threshold of 2.3 eV, denoted xmin, and the fraction of defects in 474

the optimal range of [2.3, 4.0] eV, denoted xrng. If the material 475

contains any defects below the target range, the reduced metal 476

oxide cannot readily be regenerated at the oxidation conditions 477

relevant for STCH, and thus we require xmin = 1. It may be ideal 478

for all defects to fall within in the target range (xrng = 1) to in- 479

crease capacity and defect mobility, but these considerations are 480

beyond the scope of this study. In practice, only one defect needs 481

to fall within the targeted range to be considered a promising 482

STCH material (xrng > 0). 483

Recent total energy calculations for defects in hercynite 484

FeAl2O4 have found good agreement between DFT+U, hybrid 485

functional, and the random phase approximation, but uncertain- 486

ties on the order of a few tenths of an eV should be expected 487

for DFT calculations in transition metal oxides.44 We therefore 488

extend the defect screening metrics to be uncertainty inclusive 489

(xmin,1 , xrng,1), agnostic (xmin,2 , xrng,2), or exclusive (xmin,3 , xrng,3) 490

for increasingly strict down-selection. Given a host’s Ns symmetry 491

sites and the set of all predictions {〈∆ĤO
d 〉K} ≡ H = {H1 . . .HNs} 492
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oxides

~23,000
oxides 

~2,200
oxides

Non-metals
excluded

𝐸( < 0.1 
eV/atom

Cations in 
train set

(d) Increasingly stringent, multi-objective STCH selection 
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Fig. 5 (a) Removing MP oxides containing non-metals, those with EH > 0.1 eV/atom, and those with elements outside the training set yields ∼2,200
structures for screening. (b) Screening predictions using the “Element-only" encoding, defect-wise CV models vs. ∆H f . (c) The cumulative histogram
of compounds that contain a specific fraction of defects predicted to satisfy the range criteria, xrng, as defined in Table 1. (d) Utilization of increasingly
stringent defect and host compound criteria (xrng, xmin, EH , and ∆µ

φH<X
O2

) to narrow the list of potential STCH candidates. At each down-selection
stage, we show the number of unique remaining formulas, the number of which overlap with the training data, and an exemplar structure.

Uncertainty C for xmin C for xrng

Inclusive Hi +Ui > 2.3 [Hi−Ui,Hi +Ui]∩ [2.3,4.0] 6= /0
Agnostic Hi > 2.3 Hi ∈ [2.3,4.0]
Exclusive Hi−Ui > 2.3 [Hi−Ui,Hi +Ui] ∈ [2.3,4.0]

Table 1 Criteria for Equation (8) to determine the defect fractions, xmin
and xrng, for increasingly strict uncertainty inclusive, agnostic, or exclusive
down-selection.

and uncertainties {σK(∆ĤO
d )} ≡ U = {U1 . . .UNs}, these defect493

fractions can be calculated subject to a criteria C,494

x =
1

Ns

Ns

∑
i=1

{
1 i f C

0 otherwise
(8)

which is summarized in Table 1. Figure 5 shows the impact of495

applying these increasingly strict defect criteria and that a signif-496

icant number of candidates remain even when using an uncer-497

tainty exclusive filter and requiring xrng→ 1. See Section S4 for a498

more detailed discussion on uncertainty.499

Down-selection must also consider host oxide stability under500

STCH relevant conditions. For oxygen chemical potential µO =501

µ
re f
O + ∆µO, typical STCH operating conditions necessitate that 502

the host is stable in a target range ∆µ
target
O = [−3.0,−2.5] eV.40,44 503

Given the compound’s energy above the hull in the grand ensem- 504

ble, φH(∆µO), we define the chemical potential range over which 505

the host stability is below some threshold X , 506

∆µ
φH≤X
O = [∆µO|φH(∆µO)≤ X ]. (9)

Setting X ≤ 0.1 eV/atom, for example, helps avoid false neg- 507

atives during materials’ selection due to the synthesizability of 508

metastable structures79 or due to uncertainties originating from 509

the specific DFT approach and the convex hull analysis. Our fi- 510

nal down-selection criteria requires that the target and stability 511

chemical potential ranges intersect, 512

∆µ
φH≤X
O ∩∆µ

target
O 6=∅. (10)

The vacancy defect fractions and host stability criteria can be 513

tuned for custom down-selection using our open access data and 514

post-processing scripts.49 515

Figure 5d shows how increasingly stringent xmin, xrng, and 516

∆µ
φH≤X
O criteria can narrow the candidate space from thousands 517

of oxides to just a handful. At each down-selection criteria 518
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we have highlighted one material among many that appear519

interesting due to relatively low prediction uncertainty, relatively520

wide stability range, high cation/structure complexity, verified521

experimental synthesis,80–84 and a lack of any STCH-specific522

experimental investigations that we are aware of. Importantly,523

this screening “rediscovers" the known STCH material BCM-12R.524

However, it is eliminated by stricter down-selection criteria525

since the “Element-only" encoding model under-predicts the526

oxygen vacancy enthalpies with {2.0 ± 0.3,2.9 ± 0.4} eV for527

the two O sites in BCM, compared to the “Full" encoding528

predictions, {2.6 ± 0.3,3.8 ± 0.5} eV, and DFT predictions,529

{2.66,3.29} eV85 (Figure 4). This emphasizes the prudence530

of considering materials inclusive of their uncertainty, es-531

pecially since the “Element-only" model necessitated by MP532

screening has slightly higher CV error. Some oxides with a533

relatively simple composition satisfying strict down-selection534

criteria include: Mn3O4,86 Fe3O4,87 Fe2O3,87 Ba2Fe2O5,88535

Mn2CoO4,89,90 Mn(FeO2)2,91 Sr2Mn2O5,84 Sr3(FeO3)2,92536

Ba(FeO2)2,93 Ba3In2O6,94 Fe2NiO4,87 and Sr5Mn5O13,84 All537

have been experimentally synthesized in the literature. Notably,538

several have already been investigated in the context STCH539

performance86,87,89 or other water splitting approaches.90540

Rediscovering these known STCH materials further validates our541

approach, and we have now identified many new candidates from542

which promising STCH materials can be experimentally targeted543

(see Table S6 for details and the comprehensive list). Raw data544

for all predicted defect properties and customizeable open source545

scripts for reproducing or modifying the down-selection criteria546

can be found in the project’s Zenodo repository.49547

2.7 Beyond STCH: materials discovery across diverse energy548

applications549

Our dGNN methodology and high-throughput database of va-550

cancy predictions can be used to rapidly screen candidate materi-551

als in other important clean energy applications. The reverse wa-552

ter gas shift-chemical looping (RWGS-CL) approach operates in a553

concept very similar to STCH. H2 gas is used to reduce a metal ox-554

ide, after which oxidation with CO2 produces CO for downstream555

hydrogenation to carbon-based fuels. Like STCH, the process is556

driven by thermodynamics of oxygen vacancy formation. Ref. 47557

strongly correlated the energetics of vacancy formation to other558

computed properties like O2 surface-adsorbate binding energy to559

conclude, “It is thus best said that Evac can solely describe the560

RWGS-CL process and is capable of predicting the CO2 conver-561

sion ability of perovskite oxides." Based on a previously known562

CO2-splitting perovskite (La0.75Sr0.25FeO3) for which they com-563

puted an average oxygen vacancy formation enthalpy of 3.4 eV,564

they concluded that candidate materials with similar thermody-565

namics (e.g., ∆ĤO
d ∈ [3.0,4.0] eV) would be highly active. This566

was confirmed by synthesizing new perovskites with the desired567

vacancy thermodynamics and measuring their outstanding activ-568

ity. By this metric, one can readily use our model to identify opti-569

mal candidates for RWGS-CL. Similar to our STCH screening, we570

“re-discover" experimentally known CO2-splitting oxides, e.g., the571

La2MnCoO6 system.95, while discovering new ones (Figure 6).572

Fig. 6 Identification of candidate materials for CO2 conversion via
RWGS-CL (stars) and SOFC cathodes (circles). For each host oxide we
plot the lower bound on stability vs the min and max of all vacancy en-
thalpies. Some top candidates are noted whose vacancy enthalpy ranges
fall within or close to the RWGS-CL and SOFC target ranges (blue and
yellow shading, respectively) while simultaneously displaying stability to
the most reducing conditions.

Oxygen vacancy formation enthalpy has also been corre- 573

lated with the critical performance metrics for perovskite ox- 574

ide cathodes in solid oxide fuel cells. Ref. 48 discovered 575

a simple linear relationship for SOFC perovskite cathodes be- 576

tween ∆ĤO
d and a metric for the macroscale oxygen-transfer 577

performance, the area-specific resistance (ASR). The authors 578

noted that successful materials should approximately be tar- 579

geted with ASR ∈ [0.02 Ω cm2,0.24 Ω cm2], or between the ASR 580

values in the optimized Ba0.5Sr0.5Co0.75Fe0.25O3−δ (BSCF) and 581

La0.625Sr0.375Co0.25Fe0.75O3−δ (LSCF) systems, respectively. This 582

essentially represents the trade-off between the correlated stabil- 583

ity (high defect formation enthalpy) and low operating temper- 584

ature (low defect formation enthalpy). Using DFT to compute 585

the average ∆ĤO
d in model BSCF and LSCF crystal structures, the 586

authors established guidelines that ∆ĤO
d ∈ [0.7,2.7] eV should be 587

targeted. 588

Once again, we can rapidly target such materials with our ap- 589

proach. BCSF-like BaSr7Fe6(CoO12)2 (mp-1099936) with ∆ĤO
d ∈ 590

[0.7,1.5] and LCSF-like are Sr4LaFe2(CoO5)3 (mp-1218676) with 591

∆ĤO
d ∈ [0.7,1.5] are “re-discovered" in the screening to further val- 592

idate our approach. Interestingly, the BCSF-like structure is only 593

metastable with min
(

∆µ
φH<0.1
O

)
= −0.88 eV, while the LCSF-like 594

is stable with min
(

∆µ
φH=0
O

)
= −0.35 eV, an observation consis- 595

tent with the reduced stability of BCSF. For example, some Fe- 596

lacking analogs not discussed in Ref. 48 but computationally in- 597

vestigated elsewhere96 maintain low predicted vacancy forma- 598

tion enthalpy but improve upon phase stability according to MP 599

phase diagrams. Furthermore, non-simple perovskite compounds 600

can be identified that display similarly desirable vacancy proper- 601

ties and stability (Figure 6). 602
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2.8 High Temperature Defect Thermodynamics603

Thus far we have discussed materials selection purely in terms of604

zero kelvin predictions of the defect formation enthalpies. How-605

ever, our approach additionally permits the rapid assessment of606

defect densities at high temperatures, which is critical in predict-607

ing their behavior under realistic process conditions. The defect608

formation energies ∆HVO were defined above for the reference en-609

ergy µ ref
O , i.e., the zero temperature limit. At finite temperatures610

T and partial pressures pO2, a corresponding chemical potential611

∆µO(T, pO2) is added to obtain the formation energy under the612

respective thermodynamic condition (cf. eq. 1). In a given oxide613

with multiple O sites i and respective reference formation ener-614

gies ∆HVO,i, minimization of the free energy of defect formation40615

yields the dimensionless fractional concentration of O vacancies616

relative to the nominal O stoichiometry of the respective oxide,617

[VO] = ∑
i

gi
exp[−(∆HVO,i +∆µO)/kBT ]

1+ exp[−(∆HVO,i +∆µO)/kBT ]
. (11)

Here, kB is the Boltzmann constant, and gi = mi/∑i mi are the618

normalized degeneracies of the different oxygen sites with their619

respective multiplicities mi.620

To identify oxides which develop a desired degree of O-621

deficient off-stoichiometry under high-temperature thermody-622

namic conditions (T, pO2), suitable for different application areas,623

we numerically invert Equation (11) to solve for the chemical po-624

tential ∆µO at a given target concentration [VO]. At the same time,625

the respective oxide must be stable under this condition and not626

decompose into other phases. Here, we include the consideration627

of a stability threshold X as defined above. For any given tem-628

perature, the chemical potential ∆µO can be translated into the629

corresponding partial pressure pO2 (or vice versa) using the ideal630

gas law. Note that many "stoichiometric oxides" do not accom-631

modate high levels of defect concentrations, but instead prefer to632

form a more reduced, ordered phase with lower O content. In this633

case, there may not be any (pO2,T ) conditions for the target [VO].634

On the other hand, oxides that are able to develop a desired level635

of off-stoichiometry under suitable conditions are considered as636

potential candidates for functional O-deficient materials in the637

different application areas.638

For a target vacancy concentration of [VO] = 1%, Figure 7a639

shows the pO2 vs temperature diagram for oxides within X <640

0.05 eV/at from the convex hull, using the ML screening of the641

MP data (cf. Section 2.6). This concentration is generally con-642

sidered as a demarcation between the dilute, defect-like, and643

concentrated, alloy like, limits of non-stoichiometric materials,644

but a similar analysis can be made for any value of [VO]. De-645

sirable process conditions are indicated in Figure 7a for Solid646

Oxide Fuel Cells (SOFC)97,98, Thermochemical Energy Storage647

(TCES)99,100, and STCH38,76, using the reduction step for the lat-648

ter two. A spreadsheet with the oxides falling into the respective649

regions of interests is included in the SI. All three applications650

depend crucially on the formation of O vacancies,101 although651

there are of course other materials considerations that we do not652

address here. Therefore, the present screening should give valu-653

able insights about potential candidate materials at least for the654

Fig. 7 (a) pO2 vs temperature diagram for oxides with constant O-
deficiency of [VO] = 1% between 600-1600 ◦C. Each line represents one
out of the 82 materials out of the high-throughput screening dataset that
attain this defect concentration while simultaneously fulfilling a stability
criterion of X = 0.05 eV/atom. Regions of interest for solid oxide fuell
cells (SOFC), thermochemical energy storage (TCES) and solar ther-
mochemical hydrogen (STCH) are highlighted. (b) Same data, except
presented as ∆µO(T ). The graphs are approximately linear with a slope
corresponding to the reduction entropy δSred. The ideal configurational
entropy of mixing (4.6 kB at [VO] = 1%) is indicated at the bottom.

aspect of O deficient off-stoichiometry. 655

The list of STCH oxides contains barium, strontium, and lan- 656

thanum manganates, which are previously identified classes of 657

oxides for this application37,76,77, but also new suggestions like 658

Ba2Fe2O5. On the other hand, it also contains BaMnO3, which 659

at first sight appears to be a false-positive, because this oxide 660

is known to reduce too easily and therefore be unable to split 661

water76. However, it is just one (mp-19267) out of 9 differ- 662

ent BaMnO3 structures in the MP database, which it is not the 663

ground state. With a ML predicted minimum VO formation en- 664

ergy of ∆Hd = 3.0 eV it would be a useful water splitter, but the 665

corresponding energy is only 2.2 eV for the BaMnO3 ground state 666

(mp-1205336) in the MP database, which is too low. Thus, the 667

ML model is consistent with experimental observations, and this 668

example illustrates the tradeoff in choosing the tolerance for the 669

stability criterion. Finally, we note that the list does not contain 670

BCM, an apparent case of a false-negative, resulting from under- 671

estimation of the defect energy in the “element-only” encoding 672

used for the MP screening (see Section 2.6). Using the energy 673

from the direct DFT calculation or the “full” encoding ML model, 674

BCM would indeed fall into the STCH process window indicated 675

in Figure 7a. 676

Our thermodynamic modeling affords direct access to the re- 677

duction entropy,40,73 which is of great benefit to applications that 678

utilize a temperature swing, like STCH and TCES. For example, 679

a large entropy facilitates high H2/H2O ratios in the STCH oxi- 680

dation step40. Figure 7b represents the same data as Figure 7a, 681

but showing the O chemical potential ∆µO as ordinate instead 682

of the O2 partial pressure. The relevant quantity is the differen- 683

tial reduction entropy with change in defect concentration (short- 684

hand δSred), which equals the slope of the chemical potential, 685
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i.e., δSred = ∂/∂T [∆µO(T )], as described in detail in Ref.40. We686

observe in Figure 7b significant variations in δSred between the687

different oxides, which originates from the distribution of de-688

fect energies over different O sites. The ideal configurational en-689

tropy of 4.6 kB for [VO] = 1% is indicated in Figure 7b, and the690

material-specific, numerically determined values are included in691

the spreadsheet (SI) for the three process windows, giving addi-692

tional guidance on materials selection over the enthalpy criterion693

via ∆Hd alone. We further note that additional electronic entropy694

effects102 can arise in certain materials, in particular when the O695

vacancies assume a charged defect state,40 where the excess elec-696

trons either form small polarons or occupy itinerant conduction697

band states. Such effects are relatively rare in transition metal ox-698

ides, where the redox activity is typically dominated by the tran-699

sition metal ions close to the O defect. They could, however, play700

a role in the extraordinary behavior of CeO2
76,103,104. Our high-701

throughput screening and thermodynamic analysis is a valuable702

starting point for identifying new potential high-entropy materi-703

als.704

3 Conclusions705

We have developed a powerful, generalized GNN approach for706

predicting vacancy formation enthalpies of relaxed, defected707

structures using the relaxed host geometry as input. Therefore,708

only one DFT relaxation of the host is needed to derive the model709

inputs, and the model efficiently replaces the computationally in-710

tensive supercell calculations with numerous defect relaxations711

(one per symmetry site) needed to obtain the vacancy formation712

enthalpies. The model’s applicability is not limited to structures713

in specific crystal/symmetry classes or elemental compositions,714

and it’s accuracy is primarily limited by their representation in715

the training data. Through careful cross validation, we have thor-716

oughly highlighted the advantages and limitations of the model.717

The best model performance was achieved by integrating DFT-718

computed host compound properties beyond just the relaxed crys-719

tal structure into the featurization process (i.e., oxidation states,720

compound formation enthalpy, band gap, and effective electron721

mass) to achieve a expected prediction error below 450 meV for722

relaxed oxygen vacancy defect formation enthalpy. Nonetheless,723

models trained only on the crystal structure exhibited just ∼15%724

higher MAE, since properties like oxidation state and compound725

formation enthalpy are already indirectly encoded in the crystal726

structure. ∆Hd of any element/crystal site can be predicted us-727

ing the same model architecture and learned parameters. Fur-728

thermore, so long as two nominally identical materials (relaxed729

under different DFT settings) have very similar structures, our730

“element-only" encoding model provides close agreement on the731

predicted vacancy formation enthalpies because it relies only on732

the host crystal structure as input. This means that no new DFT733

is required to screen different databases (e.g., Materials Project)734

than the models were trained on (e.g., NRELMatDb) as predic-735

tions on nominally identical materials provides the same quanti-736

tative and qualitative outlook for vacancy formation enthalpies.737

While our training database consists of 15 cation elements, we738

tested an element-wise CV strategy to gauge model performance739

when predicting vacancies in compounds whose elements were740

missing from the training set. Finally, since the complexity of the 741

DFT defect relaxations limits the size of the training data that can 742

be collected, we have shown that the model error is still expected 743

to decrease significantly as more data is collected in the future. 744

We demonstrated the model’s significant utility for novel mate- 745

rials discovery in an exercise of identifying promising candidate 746

oxides in the context of various clean energy applications: solar 747

thermochemical water splitting and energy storage, CO2 conver- 748

sion, and SOFC cathodes and electrolytes. We screened struc- 749

tures drawn from a different database (Materials Project) than 750

the source of the training structures (NRELMatDB) using the sim- 751

plest, “Element-only" graph encoding strategy (i.e., requiring only 752

the host crystal structure as input). Narrowing down the∼ 35,000 753

oxides initially queried to as few as ∼ 10 depending on the strin- 754

gency of down-selection criteria, we identify candidates exhibit- 755

ing the greatest potential based on predicted vacancy defect en- 756

thalpy and host oxide stability criteria, which also “rediscovers" 757

known materials from previous experimental literature. This ML 758

strategy therefore efficiently reveals a handful of top candidates 759

from an intractably large space for brute-force DFT or experi- 760

ments, and will help facilitate the discovery of optimal materi- 761

als in the future (along with significant potential for more chem- 762

istry and structural diversity in the training data). Even stricter 763

down-selection can now additionally be explored based on more 764

detailed properties from first principles calculations that are only 765

tractable across a small number of materials. The final critical 766

contribution of this study is the prediction of defect formation 767

enthalpies across all sites to rapidly estimate defect densities at 768

finite temperatures. By accounting for configurational entropy 769

in high-throughput, we can assess material performance at finite 770

temperatures, rather than relying purely on a zero kelvin picture 771

from individual defect predictions across just a handful of mate- 772

rials. 773
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E. S. Toberer, Chem. Mater., 2017, 29, 2494–2501.1025

95 M. M. Nair and S. Abanades, Sustain. Energy Fuels, 2018, 2,1026

843–854.1027

96 D. Fuks, Y. Mastrikov, E. Kotomin and J. Maier, J. Mater.1028

Chem. A, 2013, 1, 14320.1029

97 Y.-M. Kim, J. He, M. D. Biegalski, H. Ambaye, V. Lauter, H. M.1030

Christen, S. T. Pantelides, S. J. Pennycook, S. V. Kalinin and1031

A. Y. Borisevich, Nature materials, 2012, 11, 888–894.1032

98 Y.-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn and D. Morgan,1033

Energy & Environmental Science, 2011, 4, 3966–3970.1034

99 N. Gokon, T. Yawata, S. Bellan, T. Kodama and H.-S. Cho,1035

Energy, 2019, 171, 971–980.1036

100 D. Xiang, C. Gu, H. Xu and G. Xiao, Small, 2021, 17,1037

2101524.1038

101 B. Steele, Journal of Power Sources, 1994, 49, 1–14.1039

102 S. S. Naghavi, A. A. Emery, H. A. Hansen, F. Zhou, V. Ozolins1040

and C. Wolverton, Nature communications, 2017, 8, 1–6.1041

103 W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M.1042

Haile and A. Steinfeld, Science, 2010, 330, 1797–1801.1043

104 A. H. McDaniel, Current Opinion in Green and Sustainable1044

Chemistry, 2017, 4, 37–43.1045

14 | 1–14


	Introduction
	Results and Discussion
	Developing a diverse database of vacancy defects
	A graph neural network model for vacancy defects
	Defect GNN validation and performance
	Comparison with previous modeling efforts
	Predictions on known STCH materials.
	High-throughput screening for new STCH materials.
	Beyond STCH: materials discovery across diverse energy applications
	High Temperature Defect Thermodynamics

	Conclusions

