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Materials discovery for high-temperature, clean-energy applications us-
ing graph neural network models of vacancy defects and free-energy
calculations’

Matthew Witman, @ Anuj Goyal,bi Tadashi Ogitsu, Anthony McDaniel,* Stephan Lany,h*

We present a graph neural network modeling approach that fully automates the prediction of the DFT-relaxed vacancy formation
enthalpy of any crystallographic site from its DFT-relaxed host structure. Applicable to arbitrary structures with an accuracy limited
principally by the amount/diversity of the data on which it is trained, this model accelerates the screening of vacancy defects by many
orders of magnitude by replacing the DFT supercell relaxations required for each symmetrically unique crystal site. It can thus be used
off-the-shelf to rapidly screen 10,000s of crystal structures (which can contain millions of unique defects) from existing databases of
DFT-relaxed crystal structures. This modeling approach therefore provides a significant screening and discovery capability for a plethora
of applications in which vacancy defects are the primary driver of a material’s utility. For example, by high-throughput screening the
Materials Project's metal oxides, we rapidly “re-discover" and identify new high potential candidate materials for hydrogen generation
via solar thermochemical water splitting and energy storage, for CO, conversion via reverse water gas shift chemical looping, and for
cathodes in solid oxide fuel cells. Thermodynamic modeling on the basis of the high-throughput screening results allows us to connect
the predicted defect energies to high temperature process conditions relevant to the different application areas, and we extract the
reduction entropies as an additional selection criterion for high-performance materials. Further model development and accumulation
of additional training data will only serve to expand the significant utility of this generalizable defect model to solving materials

discovery problems in clean energy applications and beyond.

1 Introduction

High-accuracy calculations of vacancy defect formation en-
thalpies elucidate the primary and critical figure of merit needed
to assess a material’s utility across a large variety of applications.
These can range anywhere from catalysis (e.g., oxides for water
splitting1"3), to degradation resistance in extreme environments
(e.g., radiation hardness of transition metal dichalcogenides®),
to neuromorphic computing (e.g., tuning metal-to-insulator tran-
sition with oxygen vacancy formation®7), to multiferroics (e.g.,
oxygen vacancy induced magnetic phase transitions®).

Density functional theory (DFT) is the method of choice to
compute these vacancy formation enthalpies in a high through-
put fashion. However, given the need for supercell construc-
tion, atomic force relaxation, and the general presence of mul-
tiple non-equivalent atomic sites, the computational effort of
defect calculations far exceeds that of the computation of the
ideal defect-free material in the primitive cell. Thus, explicit
DFT defect calculations exist so far only for a small frac-
tion of the O(100) compounds contained in existing computa-
tional databases like the Materials Project (MP), 2110 Open Quan-
tum Materials Database (OQMD),1L NREL Materials Database
(NRELMatDB), 12714 joint Automated Repository for Various In-
tegrated Simulations (JARVIS), 15! and the Quantum Point Defect
database (QPOD).2% Additional, potentially combinatorial, com-
plexity arises from the desire to predict defect behavior in non-
ideal materials, e.g., in the presence of atomic site disorder. A
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successful surrogate modeling approach that avoids the cost re-
quirements of DFT is therefore critical in order to efficiently facil-
itate materials discovery efforts in these applications.

Previous efforts to predict vacancy formation enthalpies span
various methods and material classes within which the models
are applicable. Notable examples include modeling vacancy for-
mation enthalpy using a simple hand-derived or machine learn-
ing (ML) model based on hypothesized important featuresZ21
and descriptor derived properties to train ML regression models
for defect property prediction in semiconductors.2223 For 2D ma-
terials consisting of TMDs, hexagonal boron nitride, and other
selected wide band gap 2D materials, similar utilization of hand-
engineered features and random forests predicted vacancy de-
fect formation enthalpies.24 These examples provide highly use-
ful models in specific situations by capitalizing on physical intu-
ition regarding important material descriptors. But they do not
provide a generalized solution that (1) automatically predicts the
vacancy formation enthalpy of any crystal site in any material
class and (2) negates the need for manual feature-engineering of
material descriptors.

Various deep learning techniques, such as graph or convolu-
tional neural networks, can circumvent such limitations. Rather
than requiring the hand-crafting of an input feature vector to
describe a training example, the model directly learns a feature
representation from iterative convolutions and non-linear trans-
formations of the input data, i.e. a graph representation of the
crystal structure. The general success of graph neural networks
at performing property prediction on crystal structures is evident
from their recent explosion in popularity across a host of materi-
als science applications.253¢! In this work, we extend the graph
neural network concept for directly predicting vacancy defect for-
mation enthalpies (abbreviated dGNN for short). The only re-
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quired input is the non-defected, DFT-relaxed host structure, and
the model output is the predicted relaxed vacancy formation en-
thalpy of any site in the structure. The surrogate model therefore
replaces the need to do an expensive DFT supercell relaxation
for each symmetrically nonequivalent atomic site in the host, of
which there can be a sizable number (up to about 100 in the
present work) in compositionally and structurally complex mate-
rials. Other quantities typically derived from a DFT-relaxed struc-
ture like band gap (E,), effective electron mass (m*), compound
formation enthalpy (AHy), and oxidation state (s) can readily be
encoded into the material’s graph if available to further improve
prediction accuracy. Existing computational databases contain-
ing 10,000s of compounds with potentially up to millions of non-
equivalent defect sites can be screened in an automated fashion
using desktop computational resources with a prediction accuracy
limited mainly by the amount and diversity of the vacancy defect
training data.

As a specific use case, we first focus on the discovery of new so-
lar thermochemical (STCH) water splitting oxides, widely consid-
ered a promising route for renewable hydrogen production. =732
DFT investigations play a critical role in understanding these ma-
terials and helping to guide experiments, 492 but can only be ac-
complished on a limited scale. Due to the complexity of the asso-
ciated vacancy defect calculations using DFT, approximately one
year’s work was required to build our training database (~ 200
host oxide compounds consisting of ~1500 unique defects). Our
highly generalizable dGNN model then extends upon capabilities
of previous work that requires carefully hand-engineered features
in specific crystal systems (e.g., perovskites)21:40
similar expected mean absolute error in oxygen vacancy forma-
tion enthalpy (MAE < 450 meV) in unseen compounds (assum-
ing its cations are represented in the training data). Depending
on the model’s defect predictions, oxide stability, and the strin-
gency of these down-selection criteria, we then narrow down a
small number of priority candidates for experimental efforts from
10,000s of possible MP oxides (among which are known STCH
oxides we “re-discover" through our screening procedure).

and obtains a

Finally, optimal candidates for other clean energy applications
are highlighted where target ranges for oxygen vacancy formation
enthalpies have been proposed as a primary metric for material
down-selection, such as catalysts for CO, conversion and cath-
odes for solid oxide fuel cells.4Z48 We even extend our analysis
to predict defect density for all materials at finite temperatures,
a capability that can only be achieved due to our method’s abil-
ity to rapidly predict vacancy formation enthalpies of all sites in
the crystal structure (i.e., account for configurational entropy).
Thus materials can be assessed beyond the static picture of single
vacancy defect calculations at OK for a limited set of materials.
With continued accumulation of training data, this success paves
the way for automated materials discovery in other vacancy de-
fect dependent applications and lays the groundwork for more
complicated machine learning tasks such as correlated vacancy
formation enthalpy or vacancy mobility predictions. All data,
code, and scripts needed to reproduce this study are provided
open source.42
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2 Results and Discussion

2.1 Developing a diverse database of vacancy defects

We developed an automated workflow for DFT vacancy defect
calculations (Figure [1) as follows: (1) import the stoichiomet-
ric host oxide crystal structures from the ICSD®Y that are avail-
able in NRELMatDB; (2) relax the host supercell in ferromagnetic
and different possible anti-ferromagnetic spin configurations; (3)
choose the minimum energy host atomic and magnetic structure;
and (4) perform point defect calculations on the supercell using
the automated defect framework.L In the data acquisition step,
we extract host properties (from step 3) and calculate vacancy
formation energies (after step 4), which then supplies input and
target properties, respectively, for training the machine learning
model. Further details on the DFT settings are provided in Sec-
tion[S1}14444152:58 DT is currently the preferred method for high-
throughput supercell defect calculations. True benchmark calcu-
lations require total-energy methods beyond DFT, such as quan-
tum Monte Carlo or the random phase approximation, which are
currently available only for few defect systems and with restric-
tions in cell size and atomic relaxations. 44320 Given the DFT-
relaxed crystal structure, %, of the host oxide with total energy
Ej, and the DFT-relaxed defected structure, €,, with total energy
E, (calculated using the standard supercell approach of Ref. [61)),
we compute the enthalpy of defect formation via

AH; =E; —Ej, +Zniu{°f. (@D)]
i

Here the reference chemical potential of added or removed atoms
(n; = —1 and +1, respectively) are taken as the fitted elemental
reference energies (FERE)1457, yref =  FERE 'which improve the
description of thermochemical properties in DFT calculations®2,
For an oxygen vacancy, Equation , simplifies to AHy, = Ey,, —

E, +,U6€f.

Our final DFT training database consists of ~1500 unique de-
fect sites from ~200 parent oxides, which span 15 cations (Mg,
Al, Ca, Ti, Mn, Fe, Co, Ni, S, Y, Nb, In, Ba, La, Ce), 63 space
groups, and 51 unique stoichiometries. The choice of chemi-
cal space (Figure [2) is motivated by previous literature,>8l03H6>
which provides guidance on cations that form stable oxides and
play an active role in tuning oxygen vacancy formation energy
via their redox activity. Previous STCH material searches have
targeted perovskite (ABO3) stoichiometry and related structures
systems (cubic, orthorhombic, tetragonal). Our training data is
more diverse and spreads across all seven crystal structure sys-
tems and includes a wide range of stoichiometries to cover dif-
ferent coordination environments and metal ion oxidation states
varying from 2+ to 5+.

2.2 A graph neural network model for vacancy defects

We create a vacancy defect graph neural network (dGNN) sur-
rogate model fjgnn, parameterized by weights 6, of the general
form

ARy = faoan (G’ vg,5:6) 2
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Fig. 1 The automated DFT vacancy defect calculation workflow combined with the data acquisition and curation necessary to develop the training

dataset for a machine learning model.
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Fig. 2 The chemical and structural search space (cations in binary and
ternary oxides and the number of unique space groups in each of the
seven crystal systems) explored via DFT defect calculations. Cations
considered in training are shown in green, along with ones that should
eventually be considered for screening in yellow.

that will drastically reduce the computational cost associated with
Equation (1) when performing high-throughput materials screen-
ing. Here, vy = {Eg,m"*,AHy} refers to a set of global input fea-
tures as derived from the host compound (e.g., the band gap, ef-
fective electron mass, and compound formation enthalpy, respec-
tively) while s = {s1,s,, ...} refers to site specific input features for
each atom, (e.g., s; is the oxidation state of atom 1 in the host
structure). Intuitively, for example, we expect oxides with cations
in high oxidation states to form O vacancies (i.e., to reduce) more
easily than when cations are in lower oxidation states, hence mo-
tivating the inclusion of these properties derived from the relaxed
host structure.

Requiring only %), and the index of the atom to be defected, 7,
as an input, the model negates the cost of a DFT supercell relax-
ation for each unique symmetry site when predicting AH,, and ex-
ecuting the ML screening is of negligible computational cost when
querying ¢, from existing repositories like MP or NRELMatDB.
The inputs for model training (the host’s relaxed POSCAR file, for-
mation enthalpy, bandgap, effective electron mass, and oxidation
states) and neutral vacancy formation energies (for both oxygen
and cations) are provided in our open-source data repository.
Our dGNN closely follows the original Crystal Graph Convolu-
tional Neural Network (CGCNN) method of Ref. [31] for which we
highlight the necessary modifications to predict defect formation
enthalpies. The deep learning framework is composed of three
major steps.

Crystal embedding. First, ) is embedded as a graph with
nodes, V = {vg,vy,...}, corresponding to each atom and edges
B ={b;;} corresponding to bonds that are defined between atoms
i and j below a cutoff radius and up to a maximum number of
nearest neighbors. CGCNN One-Hot encodes®® and concatenates
a node’s elemental solid properties, v, = One-Hot(Mendeleev
number, atomic weight, melting temperature, covalent radius,
electronegativity, ground state volume per atom, ground state
band gap, ground state magnetic moment, and space group num-
ber) as the initial feature vector, vEO) = v,. We additionally con-
catenate a One-Hot encoding of the site’s oxidation state, as cal-
culated in our DFT defect database, to increase model accuracy
v = v, & OneHot(s;) . 3)

i =

Two atoms of the same element type are no longer guaran-
teed to share an identical encoding due to their dependence on
s; since various elements can assume different oxidation states
depending on their local environment. Since One-Hot encod-
ing increases sparsity and dimensionality of the initial node fea-
ture vectors and removes any quantitative ordering of a phys-
ical property, we also investigate whether a purely continu-
ous encoding strategy can improve performance. This alter-
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native approach involves the scaling of each elemental prop-
erty between [0,1], which can be combined with the ele-
ment’s ground state electron configuration and valence elec-

Is 25 2 5d 6 v
trons (e.g.,{ el P Vs Yp vd VS

continuously-scaled elemental representation, v/,. This vector can
further be concatenated with s/, scaled between [0,1], to produce
a vgo) that is lower dimensionality, less sparse, and preserves or-
dering of physical quantities.

}),35 to yield a

CGCNN2L also utilized a discretized Gaussian filter applied to
the distance between two atoms, r;;, to generate the initial edge
features, b;;, but this representation can be sparse and sensitive to
an arbitrary choice of the filter’s standard deviation. A more sys-
tematic approach is to use a radial basis set expansion (e.g., sim-
ilar Behler and Parinello’s G! functions®?) to generate the initial
feature vector according to a set of gaussian widths (1), centers
(R5), and a cutoff radius (r.):

bij = {exp [~ —R)*/72] ). )

This simultaneously reduces the sparsity and dimensionality
of b;; for a moderate basis set size (n = {0.5,1.0,1.5}, R, =
{1.0,2.0,3.0,4.0,5.0}). Such modifications facilitate distinguish-
ing between very similar crystal structures.

Convolutions. Automated feature extraction is then performed,
whereby the feature vector for each node is iteratively updated
via convolutions with its neighboring nodes and edges. Mathe-
matically, the output of the ™ convolutional layer can be written
2531

s (s (w0 s (5w 00))
J

Here z;; = v; ®v; ® b;; is the concatenation of information from
connected nodes in the graph, W;,b; and W,,b, represent
weights and biases of different learnable weight matrices (i.e.,
fully connected neural network layers), ¢ denotes a sigmoid ac-
tivation function, g denotes a softplus activation, and ® denotes
element-wise multiplication. This step remains unaffected for the
dGNN.

Property prediction. Following 7 total convolutions, the origi-
nal CGCNN method acquires an overall feature vector represent-
ing the crystal by pooling all nodes in the structure

v. = Pool (v(()T),ng), ..,,vl(\,T)) , (6)

which, for example, consists of a summation operation. Thus
crystals of arbitrary size are described by a vector of the same
dimensionality. The model predicts some final global property by
applying one (or more) fully connected layers to v,.

However, we are interested in the defect formation enthalpy
and therefore isolate the information contained only on the host
node/atom to be defected (specified at index i") following the T
total convolutions. We therefore replace eq. (6) with

T)

va=g (" @vy)-W+b). @)

4\1

We incorporate the global compound features at this step, v, =
{E;,m*,AH}, before applying the subsequent fully connected
layer. Additional feed-forward layers may be applied before the
final property prediction of AH, is then computed through one fi-
nal output layer. Equation is specifically designed for predict-
ing defect formation enthalpies for the limit of infinite dilution
in this work, but could be changed to, for example, expand its
applicability to correlated vacancy defects.

All training data, model structures, and hyperparameters used
in this study can be found in our Zenodo repository, from which
all results can be reproduced when used in conjunction with
the dGNN implementation built in Pytorch® provided at https:
//github.com/mwitmanl/cgcnndefect/tree/Paperl (modified
from Ref. [31). In brief, due to the small size of our training
data set, a dGNN model of minimal complexity is required to
facilitate training. In practice the number of trainable param-
eters often exceeds the number of training examples in deep
learning applications and explicit regularization isn’t even always
needed to achieve low generalization error.©? Nonetheless, our
minimal complexity architecture consists of T = 2 convolution
steps, v; € R%, and v; € R'°, leading to a GNN with only ~ 2,000
learnable parameters. After fixing the architecture, the learning
rate was adjusted to minimize K-fold test set performance (next
section), and over-fitting was minimized via early-stopping using
the mean absolute error on a 10% validation set within each train
fold.

2.3 Defect GNN validation and performance

We executed three different cross-validation (CV) strategies,
demonstrated by the toy examples in Figure [3p, to gauge model
performance. For defect-wise and compound-wise CV, we uti-
lize K = 10-fold cross validation. For each k-fold, 10% of the
training data is held as a validation set for early stopping, and
the mean absolute error over all n defects in the test set is com-
puted, MAE} = (1/n)Y,|AHY, — AHY |. The model’s expected
prediction error is then estimated across all folds, (MAEY)x =
(1/K)XX_  MAE!. Here Y = O or Y = Other filters evaluation of
the MAE by a defect’s specific element type to delineate model
performance between oxygen and non-oxygen vacancy predic-
tions. The standard deviation in MAE across all K models,
G[((MAEY), should be small once sufficient data has been col-
lected, i.e., the sampled distribution of training data no longer
changes significantly between each fold.

Validating the dGNN with defect-wise CV is a less challenging
task, since train and test sets may contain defects from the same
material in similar chemical environments (i.e., just above the
symmetry tolerance). Validating with compound-wise CV is more
challenging, since the test set contains all the defects from a given
material (none of which may appear in the training set). This bet-
ter reflects the practical performance for materials discovery, be-
cause one is usually interested predicting for materials for which
no DFT vacancy calculations have been performed and thus not a
single defect site could exist in training set. Finally, element-wise,
leave-one-out CV proves the hardest challenge, where all defects
for a compound containing the held-out element are placed in the
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Fig. 3 (a) Demonstration of different CV strategies in a toy dataset. In defect-wise CV, different defects from the same compound can appear in both
train/validation and test splits, whereas in compound-wise CV, the train/validation and test stratification is performed such that all of compound'’s
defects can only appear in either train/validation or test splits. The number of compounds is kept constant between folds, leading to small variations
in the number of unique defects contained per K-fold test set. In element-wise, leave-one-out CV, all defects in any compound containing the test
element, X, are placed in the test set. (b) Summary of expected prediction errors and a heuristic uncertainty metric (mean MAE and standard
deviation of MAE across K-fold test sets) for different cross-validation (rows) and graph encoding strategies (columns). (c) MAE averaged across
the CV test sets (K = 10) models as a function of training data size and the parity plots of the test set predictions with DFT for the “Full" encoding
strategy. (d) MAEY=0 for the element-wise, leave-one-out CV, separated by test element and encoding strategy. (e) Test set predictions for the

X ={Y} {La},{Fe} {Al}{Co} {Ti} {Nb} models.
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test set (thus there are X = 15 models and test sets, corresponding
to the number of cation types in the training data). At inference
time, the ML model is supplied with a graph encoding containing
node features that may not be represented by the training data.

Figure shows the evaluation metrics for each CV strategy,
with the MAE separated by predictions on oxygen and all other
vacancy types. Cation vacancies tend to have higher enthalpies,
but the mean relative errors between O and non-O defects are
quite similar. This CV analysis was repeated for four different
encoding strategies. “Element-only" encoding uses v,, while s;
and v, are empty. Conversely, “DFT-only" encoding keeps s; and
vg but v, is empty. The “Full" encoding strategy incorporates all
information, while the “Continuous" encoding replaces the one-
hot encoding of elemental properties and oxidation state with v/,
and s/. Three key observations arise from the defect-wise and
compound-wise CV. First, our strategy to encode both elemental
and DFT data via the “Full" and “Continuous" models provides im-
proved accuracy; nonetheless, “Element-only" and “DFT-only" en-
coding strategies both lead to reasonable accuracy on their own.
Second, the best accuracy for compound-wise CV is obtained with
the “Full" model with a (MAE)$ < 0.45 eV. Third, the ability of the
model to predict AH[?ther validates the generality of this approach
and its usefulness in other applications requiring predictive mod-
eling beyond oxygen vacancies.

Figure [3¢ demonstrates the continued decrease in the CV MAE
as more defects are added to the training data. While the MAE de-
crease with defect-wise CV starts to plateau, the compound-wise
CV still benefits from a log-linear decrease in MAE with increasing
data, highlighting the model can still be significantly improved
as more training data is acquired. This highlights the need for
continued, high-quality DFT defect calculations with automated
workflows®! (see Section for recommended settings to build
a larger training dataset consistent with this work). The parity
plots correspond to the test set results concatenated across all CV
models, with good performance between both oxygen and non-
oxygen vacancy defect predictions.

Figure [3d shows the results of the element-wise, leave-one-out
CV for each of the four different encoding strategies. While this
is not a task that one might expect a deep learning approach to
succeed at, several elements are well predicted and close to the
target error of 0.5 eV, regardless of encoding type. Yet other ele-
ments are poorly predicted for all encoding types. Without any a
priori knowledge of which held-out elements are well-predicted,
it is not possible to assume that predictions on materials with
unseen cation types can achieve (MAE)? < 0.97 eV (Figure .
We therefore recommend this current generation of models only
be used on compounds containing the fifteen cations spanned by
the training database. Nonetheless, Figure [3e demonstrates how
the continuous encoding strategy significantly improves property
prediction across selected element types. This could be due to
the continuous encoding’s preservation of quantitative periodic
trends (e.g., electronegativity, mean volume per atom, etc.). In
order to expand the quantitative applicability of the model for
materials discovery outside of the current cation set, we plan to
include a larger chemistry space in the future.
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2.4 Comparison with previous modeling efforts

Our cross-validation performance with the current training
dataset is comparable to the performance of linear models derived
via careful feature engineering to predict neutral oxygen vacancy
formation enthalpies. Deml et al. trained a model on 45 binary
and ternary oxides and achieved around 0.4 eV MAE on a small
test set of 18 oxides that had not been included in model devel-
opment.1Z Wexler et al. computed SCAN+U vacancy formation
enthalpies of 341 ABO; perovskites and derived a linear model
that globally achieved an MAE of 0.7 €V and an MAE of 0.45 eV
for the subset (142 materials) with hull energies less than 0.025
eV/atom. Another in depth validation of these studies with ours
is presented in Section These linear models are more inter-
pretable than our approach due to the small number of manually
derived features, but are less generalizable. For example, they are
not capable of predicting neutral cation vacancies, whereas our
trained model predicts either. Our model architecture was not
designed specific to oxides and could be applied to any material
class since it operates generally on any crystal structure, whereas
the linear models contain features that can only be calculated if
the structure contains O. Figure [3c also demonstrates strong ev-
idence for continued significant model improvement with more
training data, which is unclear for the linear models. This pat-
tern of comparable accuracy but increased generalizability also
holds true for our method relative to other machine learning ef-
forts for defect predictions, e.g., Frey et al.’s model for transition
metal dichalcogenides“* with MAE=0.67 €V and Cheng et al.’s
model for amorphous GeTe.”% Finally, in a concurrent preprint
with ours,”172 Choudary et al. used graph neural networks mod-
els to predict total energy of a host structure and with an atom re-
moved to estimate vacancy formation enthalpies, but this neglects
the relaxation of the host upon vacancy formation and yields an
MAE prediction of 1.5 €V for a single test set, including 2.3 eV for
oxides.

2.5 Predictions on known STCH materials.

Before utilizing the dGNN model to screen potential candidate
materials for STCH water splitting, it is instructive to first validate
against additional DFT calculations for experimentally known
STCH oxides. The materials behavior for the STCH redox pro-
cesses can be expressed in terms of reduction enthalpies and
entropies. 4073 For workable and economic thermodynamic con-
ditions, these considerations lead to a desirable value for the
oxygen vacancy defect formation energy in an interval of about
[2.3, 4.0] ev.214led [ gwer formation energies impair the abil-
ity to produce hydrogen in the oxidation step, while higher en-
ergies prevent significant changes of the O stoichiometry in the
reduction step. To predict the defect formation energies for
these "unseen" materials, we utilize the expectation across K-
fold models, (AHY )k =K'y K | FI; +» and the standard deviation,
ok (AHY) = \/K*1 Yo, (AY,—(H),))?, as a heuristic estimate of
7475

the uncertainty in the property prediction.

As a first test case, we consider the family of BXM oxides
(B=Ba; X=Ce,Nb,Pr; M=Mn)Z8 which have a higher degree
of compositional complexity than the materials in the training
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dataset. Figure [4a compares the (AH?)x with DFT for BXM ox-
ides for both “Full" and “DFT-only" encoded models. On aver-
age, “DFT-only" predictions are only more accurate when struc-
tures contain unseen cation types missing from the training set
(e.g., Pr), but are generally less accurate if all of a structure’s
cation types are in the train set (Figure ,d). Nonetheless, both
models are quite similar in qualitatively ranking and quantita-
tively capturing AH[?. We additionally tested our model on newly
discovered disordered perovskite oxides, Sr;_,Ce,MnO3; (SCM),
which demonstrate suitable STCH performance.”Z In contrast to
the BXM family which are line compounds, the SCM family can
accommodate a wide range of Ce doping, thereby providing bet-
ter control over water splitting capabilities by varying Ce con-
centration. To model SCM alloy structure we employ the spe-
cial quasirandom structure (SQS) approach”’® and generate two
80-atom supercell structures representing random alloying with
differing Ce content. Figure [4p shows the “Full" encoding model
predictions on both SQS’s. While the absolute value of the predic-
tions are slightly below the generally accepted optimal range of
[2.3, 4.0] eV, the ML model predicts the SQS with higher Ce con-
tent to have oxygen vacancy enthalpies closer to the target range,
which is experimentally consistent with its improved water split-
ting capabilities from the increased Ce content.7”
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Fig. 4 (a) Defect-wise CV model predictions (open squares) and DFT
values (stars) for each O vacancy in NRELMatDB structures of known
4 known STCH materials including BCM-12R = BasCeMn30,; (blue),
BCM-6H = Ba3;CeMn, 0y (orange), BNM-12R = BasNbMn3Oj; (green),
and BPM-12R = BasPrMn3 0Oy, (red). Error bars correspond to GK(AI:IC?).
(b) Distribution of (AH?)k for the (Sri_,Ce;MnO3) SCM family of alloys
with differing Ce concentrations with x = 0.25 and 0.38 in SCM025 and
SCMO038, respectively.

2.6 High-throughput screening for new STCH materials.

Our “element-only" encoding models can perform consistent pre-
dictions on input host crystal structures in which the DFT settings
for host relaxations are not identical to those used to create the
training set (see Section |S2| and Figure [S2| for details). Thus we
can now efficiently predict AH; across 10,000s of DFT-relaxed
crystal structures included in open source repositories beyond
NRELMatDDb, such as Materials Project (v2021.03.22). We em-
ploy the “Element-only" encoding model at the expense of slightly
lower accuracy since Materials Project (MP) data doesn’t neces-
sarily contain all the features needed for the “Full" encoding mod-
els. Figure[5h shows that the space of ~35,000 oxides (excluding
non-metals) is reduced to about ~2,200 structures by setting a
maximum energy above the hull requirement, Ey < 0.1 eV/atom,
and discarding any materials with cations not present in the train-
ing set. From these remaining ~2,200 host oxides, we predict
(AHy)k for the ~48,000 symmetrically unique defect sites. Be-
fore proceeding with candidate down-selection, we perform yet
another hold-out validation by comparing our MP screening pre-
dictions with existing first principles calculations and model pre-
dictions that could be easily mined from the literature (see Sec-
tion |S3)).

Although we omit host structures with cations outside the train-
ing set in this study, adding a small number of training structures
in the future (the full search space from Figure |2)) could further
expand the model’s applicability. Figure [Sb shows the predicted
(AI-AIdO) K Vs. AHy, and, although correlation is evident across the
entire enthalpy range, there is little correlation within [2.3, 4.0]
eV. Furthermore, a simple model using features derived only from
the host composition would clearly be insufficient due to an in-
ability to distinguish individual oxygen vacancies. Within a sin-
gle structure, these can span a very large range as shown for the
min, median, and max predictions for MP structure mp-1247717
(Ca4Mr13AlO“).

Assessing an oxide’s STCH potential first requires determining
AH(? of all sites and computing the fraction above the minimum
threshold of 2.3 eV, denoted x,;,, and the fraction of defects in
the optimal range of [2.3, 4.0] eV, denoted xye. If the material
contains any defects below the target range, the reduced metal
oxide cannot readily be regenerated at the oxidation conditions
relevant for STCH, and thus we require x,,;, = 1. It may be ideal
for all defects to fall within in the target range (xme = 1) to in-
crease capacity and defect mobility, but these considerations are
beyond the scope of this study. In practice, only one defect needs
to fall within the targeted range to be considered a promising
STCH material (xpmg > 0).

Recent total energy calculations for defects in hercynite
FeAl,04 have found good agreement between DFT+U, hybrid
functional, and the random phase approximation, but uncertain-
ties on the order of a few tenths of an eV should be expected
for DFT calculations in transition metal oxides.** We therefore
extend the defect screening metrics to be uncertainty inclusive
(Xmin,1 » Xrg,1), gNOSLIC (Xmin2 » Xmg,2), OF exclusive (Xmin,3 , Xg,3)
for increasingly strict down-selection. Given a host’s Ny symmetry
sites and the set of all predictions {(AH?)x} = H = {H, ...Hy,}
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Fig. 5 (a) Removing MP oxides containing non-metals, those with Ey > 0.1 €V/atom, and those with elements outside the training set yields ~2,200
structures for screening. (b) Screening predictions using the “Element-only" encoding, defect-wise CV models vs. AH;. (c) The cumulative histogram
of compounds that contain a specific fraction of defects predicted to satisfy the range criteria, xig, as defined in Table (d) Utilization of increasingly

stringent defect and host compound criteria (Xmg, Xmin, Ex, and A/,tg’;<

X) to narrow the list of potential STCH candidates. At each down-selection

stage, we show the number of unique remaining formulas, the number of which overlap with the training data, and an exemplar structure.

Uncertainty | Cfor xpmin | C for xim,
Inclusive Hi+U;>23 | [Hi—U;,H;+Uj]N[2.3,4.0] £ 0
Agnostic H;>23 H; €[2.3,4.0]
Exclusive H;—U;>23 | [Hi—U;,H; +Uj € [2.3,4.0]

Table 1 Criteria for Equation to determine the defect fractions, xpj,
and xmg, for increasingly strict uncertainty inclusive, agnostic, or exclusive
down-selection.

and uncertainties {ox(AHQ)} = U = {U;...Uy,}, these defect
fractions can be calculated subject to a criteria C,

if C

1Y% 1
— ®
Ny S |0 otherwise

X =

which is summarized in Table Figure |5| shows the impact of
applying these increasingly strict defect criteria and that a signif-
icant number of candidates remain even when using an uncer-
tainty exclusive filter and requiring x;,g — 1. See Section [S4|for a
more detailed discussion on uncertainty.

Down-selection must also consider host oxide stability under
STCH relevant conditions. For oxygen chemical potential yg =
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/.L(r)ef + AU, typical STCH operating conditions necessitate that

the host is stable in a target range Apgy = = [~3.0, —2.5] eV. 4044
Given the compound’s energy above the hull in the grand ensem-
ble, ¢r (Auo), we define the chemical potential range over which
the host stability is below some threshold X,

A= = [Apo|n (Auo) < X]. ©)

Setting X < 0.1 eV/atom, for example, helps avoid false neg-
atives during materials’ selection due to the synthesizability of
metastable structuresZ? or due to uncertainties originating from
the specific DFT approach and the convex hull analysis. Our fi-
nal down-selection criteria requires that the target and stability
chemical potential ranges intersect,

o <X

Ap=Y NApgE £ @ (10)

The vacancy defect fractions and host stability criteria can be
tuned for custom down-selection using our open access data and
post-processing scripts.42

Figure shows how increasingly stringent xmin, Xmg, and
94<X (riteria can narrow the candidate space from thousands

Al
0
of oxides to just a handful. At each down-selection criteria
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we have highlighted one material among many that appear
interesting due to relatively low prediction uncertainty, relatively
wide stability range, high cation/structure complexity, verified
experimental synthesis, 8984 and a lack of any STCH-specific
experimental investigations that we are aware of. Importantly,
this screening “rediscovers" the known STCH material BCM-12R.
However, it is eliminated by stricter down-selection criteria
since the “Element-only" encoding model under-predicts the
oxygen vacancy enthalpies with {2.0 +£0.3,2.9 + 0.4} eV for
the two O sites in BCM, compared to the “Full" encoding
predictions, {2.6 +0.3,3.8 +£ 0.5} €V, and DFT predictions,
{2.66,3.29} eV (Figure [4). This emphasizes the prudence
of considering materials inclusive of their uncertainty, es-
pecially since the “Element-only" model necessitated by MP
screening has slightly higher CV error. Some oxides with a
relatively simple composition satisfying strict down-selection
criteria include: Mn304,89 Fe;04,87 Fe,04,87 Ba,Fe,05,88
Mn,Co0,,8220  Mn(Fe0,),,2L  Sr;Mn, 05,84  Sr3(Fe03),,22
Ba(Fe02)2,93 Ba3In206,94 FezNiO4,87 and SI‘5MI]5013,84 All
have been experimentally synthesized in the literature. Notably,
several have already been investigated in the context STCH
performance808782 or other water splitting approaches.29
Rediscovering these known STCH materials further validates our
approach, and we have now identified many new candidates from
which promising STCH materials can be experimentally targeted
(see Table for details and the comprehensive list). Raw data
for all predicted defect properties and customizeable open source
scripts for reproducing or modifying the down-selection criteria
can be found in the project’s Zenodo repository.42

2.7 Beyond STCH: materials discovery across diverse energy
applications

Our dGNN methodology and high-throughput database of va-
cancy predictions can be used to rapidly screen candidate materi-
als in other important clean energy applications. The reverse wa-
ter gas shift-chemical looping (RWGS-CL) approach operates in a
concept very similar to STCH. H, gas is used to reduce a metal ox-
ide, after which oxidation with CO, produces CO for downstream
hydrogenation to carbon-based fuels. Like STCH, the process is
driven by thermodynamics of oxygen vacancy formation. Ref. 47
strongly correlated the energetics of vacancy formation to other
computed properties like O, surface-adsorbate binding energy to
conclude, “It is thus best said that Ey,. can solely describe the
RWGS-CL process and is capable of predicting the CO, conver-
sion ability of perovskite oxides." Based on a previously known
CO;-splitting perovskite (Lag75Srg,5Fe03) for which they com-
puted an average oxygen vacancy formation enthalpy of 3.4 eV,
they concluded that candidate materials with similar thermody-
namics (e.g., AI:IS € [3.0,4.0] eV) would be highly active. This
was confirmed by synthesizing new perovskites with the desired
vacancy thermodynamics and measuring their outstanding activ-
ity. By this metric, one can readily use our model to identify opti-
mal candidates for RWGS-CL. Similar to our STCH screening, we
“re-discover" experimentally known CO,-splitting oxides, e.g., the
La,MnCoOQg system.22, while discovering new ones (Figure @

U All data
-1 7 BaSr3(Co03)s
g 21 “©- Ba3Co0s
\é _3 - -e— BaCoO3
%
< —4 4 Sr3FerO7
=
E 5 - LapMnCoOg
6 -*— Sr3(FeO3)2
Sr3Ca(Fe20s5)2
-7 T T T
0 2 4 6 8
(min(H), max(H) )
Fig. 6 lIdentification of candidate materials for CO, conversion via

RWGS-CL (stars) and SOFC cathodes (circles). For each host oxide we
plot the lower bound on stability vs the min and max of all vacancy en-
thalpies. Some top candidates are noted whose vacancy enthalpy ranges
fall within or close to the RWGS-CL and SOFC target ranges (blue and
yellow shading, respectively) while simultaneously displaying stability to
the most reducing conditions.

Oxygen vacancy formation enthalpy has also been corre-
lated with the critical performance metrics for perovskite ox-
ide cathodes in solid oxide fuel cells. Ref. [48 discovered
a simple linear relationship for SOFC perovskite cathodes be-
tween Aﬂ(? and a metric for the macroscale oxygen-transfer
performance, the area-specific resistance (ASR). The authors
noted that successful materials should approximately be tar-
geted with ASR € [0.02 Q cm?,0.24 Q cm?], or between the ASR
values in the optimized Bag sSrgsCop7sFep2505_s5 (BSCF) and
Lag ¢25510.375C00.25Fen.7505_5 (LSCF) systems, respectively. This
essentially represents the trade-off between the correlated stabil-
ity (high defect formation enthalpy) and low operating temper-
ature (low defect formation enthalpy). Using DFT to compute
the average AI-AIdO in model BSCF and LSCF crystal structures, the
authors established guidelines that AH € [0.7,2.7] eV should be
targeted.

Once again, we can rapidly target such materials with our ap-
proach. BCSF-like BaSr;Feq(C001;), (mp-1099936) with AI-AIS €
[0.7,1.5] and LCSF-like are SryLaFe;(CoOs); (mp-1218676) with
AH? €0.7,1.5] are “re-discovered" in the screening to further val-

idate our approach. Interestingly, the BCSF-like structure is only
metastable with min <Aug” <0‘1§ = —0.88 eV, while the LCSF-like

is stable with min (Aug” =0

= —0.35 eV, an observation consis-
tent with the reduced stability of BCSF. For example, some Fe-
lacking analogs not discussed in Ref. |48 but computationally in-
vestigated elsewhere®® maintain low predicted vacancy forma-
tion enthalpy but improve upon phase stability according to MP
phase diagrams. Furthermore, non-simple perovskite compounds
can be identified that display similarly desirable vacancy proper-

ties and stability (Figure[6)).
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2.8 High Temperature Defect Thermodynamics

Thus far we have discussed materials selection purely in terms of
zero kelvin predictions of the defect formation enthalpies. How-
ever, our approach additionally permits the rapid assessment of
defect densities at high temperatures, which is critical in predict-
ing their behavior under realistic process conditions. The defect
formation energies AHy, were defined above for the reference en-
ergy /.L(r)ef, i.e., the zero temperature limit. At finite temperatures
T and partial pressures pO,, a corresponding chemical potential
Auo(T, pO,) is added to obtain the formation energy under the
respective thermodynamic condition (¢f. eq. [I). In a given oxide
with multiple O sites i and respective reference formation ener-
gies AHy,, ;, minimization of the free energy of defect formation 40
yields the dimensionless fractional concentration of O vacancies
relative to the nominal O stoichiometry of the respective oxide,

exp[—(AHy,,i +Apo) /ksT]
1+ exp[—(AHVO,i + A‘LL())/kB T] ’

Vol =) si 1D
i

Here, kg is the Boltzmann constant, and g; = m;/Y;m; are the

normalized degeneracies of the different oxygen sites with their

respective multiplicities m;.

To identify oxides which develop a desired degree of O-
deficient off-stoichiometry under high-temperature thermody-
namic conditions (7, pO,), suitable for different application areas,
we numerically invert Equation to solve for the chemical po-
tential Ao at a given target concentration [Vp]. At the same time,
the respective oxide must be stable under this condition and not
decompose into other phases. Here, we include the consideration
of a stability threshold X as defined above. For any given tem-
perature, the chemical potential Aup can be translated into the
corresponding partial pressure pO, (or vice versa) using the ideal
gas law. Note that many "stoichiometric oxides" do not accom-
modate high levels of defect concentrations, but instead prefer to
form a more reduced, ordered phase with lower O content. In this
case, there may not be any (pO,,T) conditions for the target [Vp)].
On the other hand, oxides that are able to develop a desired level
of off-stoichiometry under suitable conditions are considered as
potential candidates for functional O-deficient materials in the
different application areas.

For a target vacancy concentration of [Vp] = 1%, Figure
shows the pO, vs temperature diagram for oxides within X <
0.05 eV/at from the convex hull, using the ML screening of the
MP data (c¢f. Section [2.6)). This concentration is generally con-
sidered as a demarcation between the dilute, defect-like, and
concentrated, alloy like, limits of non-stoichiometric materials,
but a similar analysis can be made for any value of [Vp]. De-
sirable process conditions are indicated in Figure for Solid
Oxide Fuel Cells (SOFC)2Z98 Thermochemical Energy Storage
(TCES)221100 and STCH=876, using the reduction step for the lat-
ter two. A spreadsheet with the oxides falling into the respective
regions of interests is included in the SI. All three applications
depend crucially on the formation of O vacancies, 19! although
there are of course other materials considerations that we do not
address here. Therefore, the present screening should give valu-
able insights about potential candidate materials at least for the
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I (a) Process conditions |

| (b) Reduction entropy |

SOFC/// TCES

l

600 800 1000 1200 1400 1600
T (°C)

log(pOo/atm)

600 800 1000 1200 1400 1600
T(°C)

Fig. 7 (a) pO, vs temperature diagram for oxides with constant O-
deficiency of [Vo] = 1% between 600-1600 °C. Each line represents one
out of the 82 materials out of the high-throughput screening dataset that
attain this defect concentration while simultaneously fulfilling a stability
criterion of X = 0.05 eV/atom. Regions of interest for solid oxide fuell
cells (SOFC), thermochemical energy storage (TCES) and solar ther-
mochemical hydrogen (STCH) are highlighted. (b) Same data, except
presented as Alo(T). The graphs are approximately linear with a slope
corresponding to the reduction entropy 8S.q. The ideal configurational
entropy of mixing (4.6 kg at [Vp] = 1%) is indicated at the bottom.

aspect of O deficient off-stoichiometry.

The list of STCH oxides contains barium, strontium, and lan-
thanum manganates, which are previously identified classes of
oxides for this application®Z7677 but also new suggestions like
BayFe,05. On the other hand, it also contains BaMnO3, which
at first sight appears to be a false-positive, because this oxide
is known to reduce too easily and therefore be unable to split
waterZ8l., However, it is just one (mp-19267) out of 9 differ-
ent BaMnOj structures in the MP database, which it is not the
ground state. With a ML predicted minimum Vg formation en-
ergy of AHy = 3.0 €V it would be a useful water splitter, but the
corresponding energy is only 2.2 eV for the BaMnO3 ground state
(mp-1205336) in the MP database, which is too low. Thus, the
ML model is consistent with experimental observations, and this
example illustrates the tradeoff in choosing the tolerance for the
stability criterion. Finally, we note that the list does not contain
BCM, an apparent case of a false-negative, resulting from under-
estimation of the defect energy in the “element-only” encoding
used for the MP screening (see Section [2.6). Using the energy
from the direct DFT calculation or the “full” encoding ML model,
BCM would indeed fall into the STCH process window indicated
in Figure[7p.

Our thermodynamic modeling affords direct access to the re-
duction entropy, 4273 which is of great benefit to applications that
utilize a temperature swing, like STCH and TCES. For example,
a large entropy facilitates high H,/H,0O ratios in the STCH oxi-
dation stepY. Figure [7b represents the same data as Figure ,
but showing the O chemical potential Aup as ordinate instead
of the O, partial pressure. The relevant quantity is the differen-
tial reduction entropy with change in defect concentration (short-
hand 8S,.4), which equals the slope of the chemical potential,
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i.e., 8Sweq = /9T [Auo(T)]1, as described in detail in Ref.4Y., We
observe in Figure significant variations in S,y between the
different oxides, which originates from the distribution of de-
fect energies over different O sites. The ideal configurational en-
tropy of 4.6 kg for [Vo] = 1% is indicated in Figure [7p, and the
material-specific, numerically determined values are included in
the spreadsheet (SI) for the three process windows, giving addi-
tional guidance on materials selection over the enthalpy criterion
via AHy4 alone. We further note that additional electronic entropy
effects102 can arise in certain materials, in particular when the O
vacancies assume a charged defect state, 40 where the excess elec-
trons either form small polarons or occupy itinerant conduction
band states. Such effects are relatively rare in transition metal ox-
ides, where the redox activity is typically dominated by the tran-
sition metal ions close to the O defect. They could, however, play
a role in the extraordinary behavior of CeQ,76/103104  Qyr high-
throughput screening and thermodynamic analysis is a valuable
starting point for identifying new potential high-entropy materi-
als.

3 Conclusions

We have developed a powerful, generalized GNN approach for
predicting vacancy formation enthalpies of relaxed, defected
structures using the relaxed host geometry as input. Therefore,
only one DFT relaxation of the host is needed to derive the model
inputs, and the model efficiently replaces the computationally in-
tensive supercell calculations with numerous defect relaxations
(one per symmetry site) needed to obtain the vacancy formation
enthalpies. The model’s applicability is not limited to structures
in specific crystal/symmetry classes or elemental compositions,
and it’s accuracy is primarily limited by their representation in
the training data. Through careful cross validation, we have thor-
oughly highlighted the advantages and limitations of the model.
The best model performance was achieved by integrating DFT-
computed host compound properties beyond just the relaxed crys-
tal structure into the featurization process (i.e., oxidation states,
compound formation enthalpy, band gap, and effective electron
mass) to achieve a expected prediction error below 450 meV for
relaxed oxygen vacancy defect formation enthalpy. Nonetheless,
models trained only on the crystal structure exhibited just ~15%
higher MAE, since properties like oxidation state and compound
formation enthalpy are already indirectly encoded in the crystal
structure. AH, of any element/crystal site can be predicted us-
ing the same model architecture and learned parameters. Fur-
thermore, so long as two nominally identical materials (relaxed
under different DFT settings) have very similar structures, our
“element-only" encoding model provides close agreement on the
predicted vacancy formation enthalpies because it relies only on
the host crystal structure as input. This means that no new DFT
is required to screen different databases (e.g., Materials Project)
than the models were trained on (e.g., NRELMatDb) as predic-
tions on nominally identical materials provides the same quanti-
tative and qualitative outlook for vacancy formation enthalpies.
While our training database consists of 15 cation elements, we
tested an element-wise CV strategy to gauge model performance
when predicting vacancies in compounds whose elements were

missing from the training set. Finally, since the complexity of the
DFT defect relaxations limits the size of the training data that can
be collected, we have shown that the model error is still expected
to decrease significantly as more data is collected in the future.

We demonstrated the model’s significant utility for novel mate-
rials discovery in an exercise of identifying promising candidate
oxides in the context of various clean energy applications: solar
thermochemical water splitting and energy storage, CO, conver-
sion, and SOFC cathodes and electrolytes. We screened struc-
tures drawn from a different database (Materials Project) than
the source of the training structures (NRELMatDB) using the sim-
plest, “Element-only" graph encoding strategy (i.e., requiring only
the host crystal structure as input). Narrowing down the ~ 35,000
oxides initially queried to as few as ~ 10 depending on the strin-
gency of down-selection criteria, we identify candidates exhibit-
ing the greatest potential based on predicted vacancy defect en-
thalpy and host oxide stability criteria, which also “rediscovers"
known materials from previous experimental literature. This ML
strategy therefore efficiently reveals a handful of top candidates
from an intractably large space for brute-force DFT or experi-
ments, and will help facilitate the discovery of optimal materi-
als in the future (along with significant potential for more chem-
istry and structural diversity in the training data). Even stricter
down-selection can now additionally be explored based on more
detailed properties from first principles calculations that are only
tractable across a small number of materials. The final critical
contribution of this study is the prediction of defect formation
enthalpies across all sites to rapidly estimate defect densities at
finite temperatures. By accounting for configurational entropy
in high-throughput, we can assess material performance at finite
temperatures, rather than relying purely on a zero kelvin picture
from individual defect predictions across just a handful of mate-
rials.
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