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ABSTRACT 

The blood-brain barrier (BBB) plays a critical role in 
preventing harmful endogenous and exogenous 
substances from penetrating the brain. Optimal brain 
penetration of small molecule CNS drugs is 
characterized by a high unbound brain/plasma ratio 
(Kp,uu). While various medicinal chemistry strategies 
and in silico models have been reported to improve 
BBB penetration, none were developed to predict 
Kp,uu directly. We describe a physics-based 
computational approach, solvation free energy 
calculations (energy of solvation or E-sol), to predict 
Kp,uu. Prospective application of this method to 
internal CNS drug discovery programs highlighted the 
utility and accuracy of this new method, which showed 
a categorical accuracy of 79% and a R2 of 0.61 from a linear regression model. 

 

INTRODUCTION  
 

Unbound brain-to-plasma drug partition coefficient (Kp,uu) has been a key parameter to efficiently 

and reliably support decision making in CNS preclinical projects for many years.1 As first reported 

by Prof. Margareta Hammarlund-Udenaes, Kp,uu provides a direct quantitative description of the 

blood-brain barrier (BBB) permeability represented by passive transport and active influx/efflux.2 

The BBB is enriched with efflux transporters which, as a protective mechanism, reduce the brain 

penetration of potentially harmful endogenous and exogenous substances.3–5 Thus, in vitro assays 

are routinely used to identify efflux substrates in projects requiring good brain penetration. The 

Madin-Darby canine kidney (MDCK) cell line has been used to evaluate the apparent permeability 

(Papp), estimating the time required to reach distribution equilibrium between brain and plasma. 

The multidrug resistance protein 1 (MDR1 or P-glycoprotein, P-gp) and breast cancer resistance 



 

3 

 

protein (BCRP) are two major efflux transporters at the BBB, and their respective assays have 

been validated to significantly improve the prediction of brain penetration of substrates across 

species.6 Scheme 1 illustrates the equilibrium of drug concentration between the blood and brain, 

and defines the Kp,uu metric. Fraction unbound (Fu) is a critical parameter for Kp,uu 

determination that needs to be measured accurately from in vitro plasma protein binding and brain 

tissue binding experiments.  

Scheme 1. Schematic representation of drug concentrations between the blood and brain, with 

definitions for the partition coefficient of unbound drug (Kp,uu). BBB is the blood-brain barrier.  

 

 

In silico methods have been reported to predict BBB penetration of small molecules. These 

computational approaches include multi-parameter optimization (MPO) scoring functions,7–9 

Bayesian models (QSAR and machine learning)10–14 and simple alignment of physicochemical 

properties (Lipinski rules, RoCNS and others).15–18 These existing computational protocols proved 

to be good classifiers for identifying molecules that were more probable to cross the BBB, but to 
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our knowledge, they lack prospective accuracy and robustness. In addition, none of these methods 

were intended to predict Kp,uu directly. 

Solvation free energy is a fundamental molecular property that connects to several medicinal 

chemistry end-points, such as solubility, protein-ligand interactions, and any process driven by 

partitioning, including permeability. It is defined as the energy of hydration of a compound going 

from the gas phase to water. Solvation free energy can be viewed as one component of logP, the 

other one being the partition between gas and octanol (Scheme 2). 

Scheme 2. Schematic depiction of the partition coefficient (logP) and solvation free energy (E-

sol) in water. Figures adapted from the SAMPL6 challenge to predict logP. 19 

 

Solvation free energy (E-sol) can be accurately calculated by quantum mechanics (QM) using 

implicit solvent models.20–24 It can also be calculated using free energy perturbation calculations 

(FEP), which is more computationally expensive, but includes effects of explicit waters and 

enhanced conformational sampling.25 Herein, we demonstrate that E-sol, a ligand-based and 

physics-based computational approach, has predictive power for brain Kp,uu and P-glycoprotein 

mediated efflux. We also show that this approach has a significantly stronger predictive power 

compared to other calculated metrics with previously demonstrated enrichment of CNS penetrating 

molecules, such as polar surface area, hydrogen bond donors, molecular weight, logP/D, and 
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combinatorial metric MPO scores. Prospective application of E-sol in our internal CNS drug 

discovery programs shows promising  performance as  a new way of predicting Kp,uu.   

   

RESULTS AND DISCUSSION 

Predictive power of E-sol for Kp,uu.  To improve permeability and brain exposure, medicinal 

chemists have used calculated properties such as polar surface area, hydrogen bond donors, 

molecular weight, and logP/D, also combined as MPO scores or in QSAR models. However, to 

the best of our knowledge, the accuracy and prospective impact have been limited with respect to 

direct optimization of key brain penetration measured endpoint Kp,uu. As part of our ongoing drug 

discovery efforts, we attempted to identify the best possible correlations between a measured 

Kp,uu endpoint and physicochemical properties of a given molecule. In our work, a strong 

relationship emerged between E-sol, a physics-based calculated property, and Kp,uu. Predictions 

of the Kp,uu endpoint by E-sol are shown in Figure 1 for published Kp,uu datasets,26–34 as well as 

data from three Schrödinger CNS projects. Kp,uu is plotted in log scale, to enable better 

visualization of a linear relationship between the kinetic rate to units of energy (in kcal/mol). 

Where available, data was filtered by brain unbound fraction (Fu) > 1% and kinetic solubility > 1 

µM due to the potential errors introduced in calculating Kp,uu using these measurements (see 

Methods for details on filtering). We found significant linear correlation for E-sol and Kp,uu, with 

R2=0.61 for a linear regression model to the data. To characterize predictive power another way, 

we also showed that E-sol has 79% categorical accuracy for Kp,uu prediction, determined by 

confusion matrix analysis detailed in Methods. In Figure 1, a representative favorable Kp,uu of 
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0.3 is plotted with a horizontal line, and the E-sol threshold which maximizes categorical accuracy 

for achieving this target Kp,uu value is denoted with a vertical line (-17.1 kcal/mol).  

Figure 1.  Kp,uu data-points are plotted in log-scale (y-axis) with E-sol (kcal/mol) for compounds 

from internal projects and published datasets (x-axis). The total number of endpoints was 241 and 

the R2 from a linear regression model of the data was 0.61. We denote a favorable Kp,uu of 0.3 

with a horizontal line and the E-sol threshold which maximizes categorical accuracy for achieving 

this target Kp,uu with a vertical line (-17.1 kcal/mol). 

 

Figure 2  plots the relationship of Kp,uu with other popular calculated ligand descriptors, none of 

which showed predictive power. By comparison, the trend illustrated for E-sol in Figure 1 stands 

out as exceptional for Kp,uu predictions and represents for the first time, to our knowledge, that a 

calculated ligand property has significant predictive power for Kp,uu. Furthermore, the E-sol 
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dataset showed no clear systematic shifts in the linear regression model for the compounds grouped 

by project to represent distinct chemotypes. This indicated that the trend is robust and transferable.  

Figure 2. Kp,uu data-points are plotted in log-scale (y-axis) with calculated metrics for compounds 
from internal projects and published datasets (x-axis). Calculated endpoints (A) Pfizer MPO,7 (B) 
Merck pMPO,8 (C) molecular weight (MW), (D) polar surface area (PSA), and (E) Schrödinger 
RRCK predictions35 are shown. Sample size for the data and R2 fit from a linear regression model 
are reported for each plot.  

 

 

Figure 3. Kp,uu data-points are plotted in log-scale (y-axis) with measured endpoints for 
compounds from internal projects and published datasets (x-axis).  Endpoints (A) MDCK-MDR1 
Efflux Ratio and (B) measured logD are shown. Sample size for the data and R2 fit from linear 
regression model are reported for each plot.  
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Comparison of Predictive Power with Other Calculated and Measured Metrics for Kp,uu 

Prediction. Guidelines for desirable property space to achieve brain penetration have been 

elaborated and quantified in several CNS multiparameter optimization (MPO) scores,7,8 which are 

combinations of calculated properties commonly used in medicinal chemistry, such as logP, polar 

surface area (PSA), hydrogen bond donor (HBD), molecular weight (MW), and empirical or 

predicted pKa. Sets of marketed and proprietary compounds were used to establish cutoffs or train 

these models. The demonstrated utility of the MPO metrics was in retrospective enrichment of 

brain penetrant compounds and in enrichment of favorable overall ADME (Absorption, 

Distribution, Metabolism and Excretion) profiles. However, we found the MPO scores not to be 

predictive of Kp,uu for driving lead optimization stages of internal CNS programs. This is shown 

in Figure 2A and 2B, in which the MPO scores have no predictive power for Kp,uu. Similar results 

are shown for single descriptors such as MW and PSA in Figure 2C and 2D.  

A low P-gp transporter efflux ratio (ER) is a desirable profile for small molecule drug candidates 

to achieve adequate oral exposure to reach target tissues. Several brain penetration modeling 

approaches incorporate ER data into complex trained models to improve performance.10 Our 

analysis for Schrödinger drug discovery programs confirmed common knowledge that P-gp 

substrates are poorly brain penetrant, as most of the molecules with ER > 2 did not achieve a Kp,uu 

> 0.1. However, in the regime of non-P-gp substrates (ER < 2), results from these in vitro 

experiments alone did not predict Kp,uu, which ranged from less than 0.1 to greater than 1 (Figure 

3A). In addition, in our analysis of published datasets, there were at least 10 examples of high 

Kp,uu (Kp,uu > 0.3) compounds with high efflux, up to ER = 20 for Citalopram with Kp,uu (rat) 

= 1.3. This indicates that even strong P-gp substrates can have good brain penetration, particularly 
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if they are substrates of uptake transporters.26,36 Importantly, the E-sol predictive power for Kp,uu 

held for compounds with Kp,uu > 1 (e.g. Citalopram E-sol = -12.65 kcal/mol). 

Passive membrane permeability also has been shown to play a role in BBB function37,38 and our 

in-house tool for prediction of Ralph Russ canine kidney cells (RRCK) passive permeability35 was 

also compared for Kp,uu prediction (Figure 2E). Similar to the trend for ER, the passive 

permeability model identified compounds with poor brain penetration, but it did not have overall 

predictive power for Kp,uu. Similarly, experimentally measured logD also provided a necessary, 

but not sufficient, condition for brain penetration in our dataset. Figure 3B shows that the majority 

of polar (measured logD < 2) compounds were not brain penetrant, but there was no predictive 

power for compounds in a more drug-like logD range (2-4). This analysis was limited by the scarce 

availability of measured logD from public Kp,uu datasets. Overall, these results show the utility 

of efflux ratio and logD measurements for biasing away from poorly brain penetrant molecules, 

but underscore the inability of these experiments to guide optimization of Kp,uu.  E-sol gives a 

much stronger signal for predicting Kp,uu directly. 

Comparison of Categorical Accuracy for E-sol and Other Calculated and Measured Metrics. 

For a more coarse evaluation of the metric performance at Kp,uu prediction, we applied a 

confusion matrix analysis (see Methods) to compare compound classification with respect to brain 

penetration and to calculate categorical accuracy. Shown in Figure S1, E-sol categorical accuracy 

was the highest of the metrics at 79%, and this accuracy was achieved using a threshold of E-sol 

of -17.1 kcal/mol for our datasets (vertical line in Figure 1). Of all metrics, the E-sol method also 

had the lowest false negative (FN) rate and lowest false positive (FP) rate, at 10% and 11% 

respectively. This is consistent with the linear correlation shown in Figure 1. By comparison, the 

MPO scores enriched Kp,uu threshold with a more modest, but statistically significant categorical 
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accuracy of 55% to 63% for our dataset. This performance was slightly inferior to the results 

reported in the respective publications for these metrics, possibly due to differences in the 

compound datasets and the challenge in directly predicting Kp,uu endpoint as described here. 

Notably, MW had similar categorical accuracy at 61%, and the single descriptor PSA had higher 

categorical accuracy close to 70%. These results reinforce the common practice to design low 

molecular weight compounds with lower PSA on CNS programs,39 and they validate use of these 

properties in the CNS MPO scores evaluated here. Likely due to the smaller size of datasets 

available, statistically significant categorical accuracy could only be evaluated for measured ER 

and experimental logD at Kp,uu threshold of 0.2, at 63% and 62%, respectively. Accuracy for 

Schrödinger RRCK membrane permeability metric35,40 was 68%. The performance of these last 

three endpoints further support the strategy of reducing P-gp efflux, controlling lipophilicity, and 

maintaining good passive permeability to help with CNS penetration. However, E-sol again gives 

superior performance for prediction of Kp,uu. 

 

Computational Cost and Machine Learning Approximation. The total computational cost of 

calculating E-sol was dependent on the molecule conformational complexity and the number of 

conformations sampled (see Methods). Considering ligands of variable size and flexibility, our 

workflow required approximately one CPU-hour per conformation and typically used 8 to 40 

sampled conformations (water and gas-phases combined). This process is pleasantly parallel and, 

with adequate compute resources, can be optimized to concurrently compute E-sol estimates for 

large sets of molecules within a few hours. 

Although the calculations are relatively inexpensive, the overhead of multiple CPU-hours per 

ligand makes screening ultra-large ligand libraries impractical. Therefore, we have also explored 
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machine learning models as an alternative method to triage large libraries with modest computing 

resources. To do so, we trained a supervised machine learning (ML) model41 on a training set of 

~24,000 QM-computed E-sol values for ligands collected from internal Schrödinger projects and 

public literature sets.42 The resulting ML model enables an estimation of E-sol in milliseconds per 

ligand, but can suffer from inaccuracy due to a lack of generalization to novel chemical matter. 

We show a comparison of the ML model predictions versus the QM-computed E-sol values in 

Figure S2. The E-sol values from internal projects and published datasets were predicted with an 

MUE of 1.80 kcal/mol by the ML model and the predictions were largely underpredicted. This 

error increased 2-fold compared with the uncertainty estimated for the QM E-sol method from 

sampling analysis QM (MUE = 0.84 kcal/mol, see Methods). To demonstrate the utility of the 

ML model in predicting Kp,uu, Figure 4 shows the correlation between prospective ML E-sol 

predictions and log(Kp,uu) measurements for our dataset, with an R2 for linear regression of 0.5. 

Categorical accuracy of the ML E-sol model was 72%.  

Although the ML model was less accurate than the physics-based calculation, we can leverage the 

ML E-sol model by first screening large compound libraries, and then verifying compounds with 

predicted favorable Kp,uu with full-fidelity QM E-sol calculations. This workflow allows the E-

sol method to be extended to profile modern and ultra-large virtual libraries or enumerations.43 

When combined with an enterprise informatics platform,44 the low latency predictions also enable 

rapid feedback for medicinal chemists during compound ideation, as drawn candidate ligands can 

be screened in real time. 

Figure 4.  Correlation of machine learning model E-sol (kcal/mol) predictions, plotted on the x-
axis, against log(Kp,uu) measurements, on the y-axis.  
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Application to Efflux Prediction. With the known contribution of P-gp mediated efflux to the 

BBB, we also examined the predictive power of E-sol calculations for ER, shown for 310 

compounds across five internal projects (including two non-CNS projects) in Figure 5. As 

expected, we see a good linear relationship with R2 of 0.64, and 90% categorical accuracy using 

an E-sol of -19.5 kcal/mol threshold to predict ER < 2. Thus, E-sol calculations can be more 

broadly applicable to predict efflux ratios.45 Another QM approach has been previously described 

to have predictive power on a large efflux dataset from Amgen.46  

Figure 5. E-sol (kcal/mol) plotted with measured efflux ratios for 310 compounds across five 
internal projects. R2 = 0.64. Categorical accuracy for prediction of Efflux Ratio < 2 was maximized 
at 90% with E-sol = -19.5 kcal/mol. P-values << 0.01 as evaluated using Fischer’s exact test. All 
data were from MDCK-MDR1 cells except Project 5, from Caco-2. 



 

13 

 

 

  



 

14 

 

Prospective application of E-sol predictions to internal drug discovery projects.  During the 

lead optimization stage of a drug discovery project, medicinal chemists often struggle to improve 

brain penetration of lead molecules while maintaining overall favorable druglike properties. At 

Schrödinger, we have successfully incorporated E-sol predictions into a project multiple parameter 

optimization (Project MPO) scoring function that includes potency, selectivity, and ADME 

endpoints predictions, so that design ideas with high probability of achieving brain penetration as 

predicted by E-sol are prioritized for synthesis. Tables 1-3 show select matched molecular pairs 

from an internal CNS project, comparing Kp,uu (determined from in vivo mouse PK), the E-sol 

value, measured logD value, PSA and Merck CNS pMPO score. R group changes from various 

series are represented. As shown in Table 1, compound 1 featuring a basic piperidine (pKa of 8.2) 

showed reasonable brain penetration as indicated by Kp,uu (0.38). However, safety liabilities such 

as hERG inhibition with lipophilic basic compounds prompted us to evaluate pKa modulated or 

neutral molecules (compound 2 and 3). The E-sol value of 2 (pKa of 5.5) was least favorable 

among the three, which indeed agreed with the Kp,uu (0.15). Compound 3, with a neutral 

tetrahydropyran, showed good brain penetration (Kp,uu = 0.43) and was correctly predicted by E-

sol. Merck’s CNS pMPO scores were not able to differentiate these molecules in terms of predicted 

brain penetration. Compounds 4-6 are examples with various ether substitutions off a 

tetrahydropyran ring to achieve better target selectivity. E-sol values correctly predicted that the 

OCH2CF2 substituted analog 6 would have the worst brain penetration (Kp,uu = 0.09) and that the 

OEt analog 5 would have favorable brain penetration (Kp,uu = 0.3).  

Another example of excellent correlation of E-sol to Kp,uu is shown in Table 2 for a different 

chemical series, where various cyclic substitutions were introduced to the imidazopyridine core to 

adjust physicochemical properties of the lead series, including solubility, permeability and brain 
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penetration. Interestingly, E-sol correctly identified compound 7 as the least-brain penetrant 

molecule, while the Merck CNS pMPO predicted favorable scores for all of the molecules (pMPO 

> 0.6). Additional matched molecular pair examples shown in Table 3 demonstrated the impact 

of fluorine atom addition on brain penetration. Incorporation of fluorine atoms into potential drug 

candidates has been widely used by medicinal chemists to improve metabolic stability, membrane 

permeability, neighboring group conformation, electronic property of the aromatic rings, and oral 

bioavailability.47 E-sol accurately predicted the 7-F indazole analog 13 to be more brain penetrant 

than 5-F indazole analog 12, whereas again, the Merck CNS pMPO scores, logD and permeability 

(MDCK-MDR1; Papp A-B and ER) were similar among all three analogs.   

Table 1. Matched molecular pair analysis from a Schrödinger project. R group changes in 
pyrazolopyridinone series. Kp,uu was obtained either from in vivo mouse discrete PK or cassette 
PK (see Experimental section for details).  

 

compound R =  Kp,uu 
(mouse) 

E-sol 
(kcal/mol) 

LogD MDCK-
MDR1 
(Papp A-B) 
(10-6 cm/s) 
/ ER  

PSA Merck 
pMPO 

exp pKa 

1 

 

0.38 -16.81 2.77 18.6 / 0.6 91 0.67 8.2 
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2 

 

0.15 -20.17 3.05 15.8/ 0.6 100 0.59 5.5 

3 

 

0.43 -14.55 3.48 7.6 / 1.0 97 0.51 -- 

4 

 

0.22 -16.30 3.82 8.0 / 0.8 106 0.41 -- 

5 

 

0.30 -15.24 3.84 6.13 / 1.5 106 0.43 -- 

6 

 

0.09 -17.81 3.36 6.8 / 1.8 106 0.40 -- 

 

 

Table 2. Matched molecular pair analysis from a Schrödinger project. R group changes in 
imidazopyridine series. Kp,uu was obtained either from in vivo mouse discrete PK or cassette PK 
(see Experimental section for details). 
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compound R1 =  R2 =  Kp,uu 
(mouse) 

E-sol 
(kcal/mol) 

LogD MDCK-
MDR1 
(Papp A-B) 
(10-6 cm/s) / 
ER 

PSA Merck 
pMPO 

7 

 

Et 0.08 -20.15 3.14 23.6 / 0.6 77 0.68 

8 

 

Et 0.18 -17.07 2.80 10.6 / 1.6 59 0.90 

9 

 

Et 0.24 -17.13 3.28 15.6 / 1.0 69 0.73 

10 

 

H 1.2 -15.37 3.04 45.5 / 0.4 59 0.94 

 

 

Table 3. Matched molecular pair analysis from a Schrödinger project showing R group changes 
in an indazole series. Kp,uu was obtained either from in vivo mouse discrete PK or cassette PK 
(see Experimental section for details). 

 

compound R1 =  R2 =  Kp,uu 
(mouse) 

E-sol 
(kcal/mol) 

LogD MDCK-
MDR1 
(Papp A-B) 
(10-6 cm/s) / 
ER 

PSA Merck 
pMPO 
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11 H H 0.12 -17.05 3.24 9.8 / 1.1 86 0.53 

12 F H 0.13 -17.12 3.65 4.56 / 2.1 86 0.51 

13 H F 0.31 -15.89 3.53 4.8 / 1.8 86 0.51 

 

 

Application of E-sol to examples from public datasets. Toledo-Sherman et al32 recently reported 

on potent Ataxia Telangiectasia-Mutated (ATM) kinase inhibitors. Optimization of permeability 

and reduction of P-gp mediated efflux led to the discovery of brain-penetrant thioxanthene analogs 

(Table 4). Modifications of compound 14 by the introduction of solubilizing groups to modulate 

physicochemical properties such as compounds 15-17 led to significant changes in the brain Kp,uu. 

Although a relationship between Kp,uu and in vitro MDCK-MDR1 efflux ratio was observed, the 

differences in Kp,uu were also correctly captured by the E-sol calculations.  

For another example, in an effort to improve brain penetration of clinically proven EGFR TKIs for 

the treatment of NSCLC with brain metastases, scientists from AstraZeneca worked on a series of 

7-methoxyquinazoline carbamates31 (Table 5). Compound 18 demonstrated promising brain 

penetration (Kp,uu = 0.34). However, it showed high clearance in rats due to oxidative metabolism 

on the piperazine ring. Compounds 19-25 are examples either with the introduction of methyl 

substitutions or bridging substitutions to the piperazine ring to add steric hindrance, or examples 

that changed the piperazine to another moiety (such as pyrrolidine). E-sol predictions accurately 

rank-ordered brain penetration of these analogs and agreed very well with Kp,uu. Due to the nature 

of these small changes, it would not be possible to use any other parameters, including Merck CNS 

pMPO scores, to differentiate the molecules for brain penetration prediction. An important caveat 

to note is that accuracy in measuring plasma protein binding and brain tissue binding could 

influence brain Kp,uu. For example, the differences of Kp,uu between enantiomers 22 and 23 
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could be due to variability in measured unbound rat plasma protein binding (3.5% for 22 and 6.4% 

for 23),48 which is beyond the scope of the E-sol calculations. 

Table 4. Matched molecular pair analysis from literature paper.32 Representative thioxanthene 
analogs with various solubilizing R groups, as potent and selective Ataxia Telangiectasia-Mutated 
kinase inhibitors for the treatment of Huntington's disease.   

 

 

 

compound R =  Kp,uu 
(mouse) 

E-sol 
(kcal/mol) 

MDCK 
(Papp A-B) 
(10-6 cm/s) / 
ER 

PSA Merck 
pMPO 

14 
 

0.44 -16.92 21.8 / 1.5 52 0.58 

15 

 

0.14 -18.77 39.6 / 1.6 61 0.50 

16 

 

0.07 -20.76 57.4 / 4.7 61 0.53 

17 

 

0.05 -27.88 14.5 / 4.8 75 0.67 

 

Table 5. Matched molecular pair analysis from literature paper.31 Representative 7-
methoxyquinazoline analogs with various R groups, as potent, orally available and CNS- penetrant 
EGFR tyrosine kinase inhibitors for the treatment of brain metastases. 
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compound R =  Kp,uu (rat) E-sol 
(kcal/mol) 

MDCK-
MDR1 
(Papp A-B) 
(10-6 cm/s) / 
ER 

PSA Merck 
pMPO 

18 

 

0.34 -18.66 28 / 0.4 80 0.67 

19 

 

0.15 -20.31 17 / 0.3 80 0.72 

20 

 

0.27 -20.31 47 / 0.8 80 0.72 

21 

 

0.086 -20.54 14 / 0.4 80 0.67 
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22 

 

0.84 -19.01 59 / 1.5 80 0.65 

23 

 

0.28 -19.01 54 / 0.9 80 0.65 

24 
(AZD375
9 in PhI) 

 

1.3 -16.50 36 / 0.4 80 0.65 

25 

 

1.6 -16.50 51 / 0.9 80 0.65 

 

 

CONCLUSIONS  

With highly curated Kp,uu datasets, we have demonstrated a method with significant predictive 

power for guiding brain penetration for medicinal chemistry projects. Our method significantly 

outperformed other reported calculated metrics as well as experimentally measured descriptors 

such as efflux ratio (ER) and logD. We prospectively use similar E-sol thresholds reported here to 

predict brain penetration on internal projects, with the specific threshold value refined as data for 

individual projects is collected. With the categorical accuracies evaluated for other metrics in this 

work, we also confirm the rationale behind setting molecular property thresholds to enrich brain 
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penetration, and support common knowledge around improving ADME profiles with high passive 

permeability and low efflux ratios. The free energy of solvation in water (E-sol)  captures an 

essential character of molecules, including 3D molecular shape and polarity related to permeability 

and efflux. By computing the partition between water and vacuum, the method gives a clear signal 

related to the complex in vivo endpoint of brain penetration (Kp,uu). The E-sol method is also 

amenable to machine learning approximation, which permits the screening of ultra-large scale 

ligand libraries at minimal cost. By combining the machine-learned model with full-fidelity QM 

calculations, we can enrich for promising brain penetrant compounds from large chemical 

libraries. Successful prospective applications of this method in our internal projects demonstrated 

that E-sol provides a promising approach to help develop better brain penetrant drugs in the future. 

METHODS 

Kp,uu Data Collection. We have collected rodent brain penetration (Kp,uu) data from available 

published articles26–34 and curated data from internal Schrödinger drug discovery programs. 

Internal datasets were obtained from in vivo PK studies in mice, while published datasets were 

from studies in either rats or both mice and rats. We only analyzed brain penetration data that was 

supported by brain and plasma unbound fraction measurements, and measured efflux ratios were 

collected when available. Compounds with high brain tissue binding (brain unbound fraction < 

1%) or very low kinetic solubility (< 1 µM) were not included in the analysis due to the potential 

errors introduced in calculating Kp,uu using these measurements. These and other contributions 

to errors in Kp,uu measurements are discussed in a subsequent section. Plasma unbound fraction 

correlated well with brain unbound fraction (Figure S3) and was not used as an independent filter 

for data curation. Altogether, the brain penetration data analyzed in this work originated from 241 
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diverse endpoints from compounds at various stages of drug development, as well as approved 

drugs. General properties and a 2D view of the diverse chemical space explored is shown in Figure 

S4. 

Computational Protocol. Our E-sol protocol (Scheme 3) began with a 2D representation of a 

molecule as an input. An initial 3D structure of a ligand was generated using the LigPrep49 module 

from Maestro50 in a neutral form. The OPLS4 force field51 was used for molecular mechanics. 

Conformations were generated by MacroModel52 using mixed Monte Carlo Multiple Minimum 

(MCMM) and Low-Mode Conformational Search (LMCS) methods. GB/SA was used as an 

implicit water model for MacroModel. Up to 20 low energy conformers were kept for each ligand 

in water and from gas-phase within 5 kcal/mol from the energy minimum and with the threshold 

of 0.7Å RMSD to eliminate duplicate conformers. QM geometry optimization of all conformers 

was performed with B3LYP/LACVP* using Jaguar,53 and single point energy was calculated with 

M06-2X/LACVP** with and without PBF water solvation model. The energy difference between 

lowest energy conformations in gas and water phases was used to calculate the solvation free 

energy (E-sol, equation 1). The state penalty (SP, equation 2) was defined as the neutralization 

energy for a charged molecule at pH 7.4 (there were no acidic molecules in the current set). 

Measured pKa was used when available, otherwise predicted pKa by Jaguar54 was used for the 

state penalty. The Jaguar pKa was further corrected with experimental pKa values of related 

molecules where appropriate to improve the linear regression model in the Jaguar pKa method. No 

training on brain penetration or efflux data was involved in the generation of this model.  

E-sol = ΔG hydration, neut － SP     (1) 
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Where ΔG hydration, neut is hydration energy of a neutral species, and SP in kcal/mol is the state 

penalty energy to neutralize a molecule from an ionized state defined as 

𝑆𝑃 = 𝑙𝑜𝑔(1 + 10!"#$!%) 	∗ 	1.36 for a base    (2) 

 

Scheme 3. E-sol workflow, progressing from 2D molecular representation to a neutral 3D form 
that was conformationally sampled, geometry optimized in vacuum, then evaluated with single 
point energy in a PBF water implicit solvent model. The final E-sol value was the dE between 
lowest energy conformations in gas and water phases, with a state penalty value added for titratable 
groups.  

 

 

CNS MPO calculations. Pfizer CNS desirability MPO7 was implemented in LiveDesign.44 HBD, 

MW, PSA, and logP were calculated by RDKit,55 and Epik pKa56 was used to convert from logP 

to logD at pH 7.4. Merck CNS pMPO8 was implemented in LiveDesign44 using a published 

protocol.57 
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Confusion matrix analysis. For confusion matrix analysis, thresholds for each metric in Figures 

1, 2 and 3 were evaluated for prediction of Kp,uu of 0.3 and 0.2, maximizing true positive rates 

and minimizing false positive rates using Receiving Operator Characteristic (ROC) plots. Table 

S1 lists the area under the curve (AUC) scores for this analysis, where high values indicated robust 

and accurate model performance. The E-sol calculation predicted Kp,uu with the highest AUC 

(AUC = 0.88) compared with other metrics (all AUC ≤ 0.7). Categorical accuracy was calculated 

from the confusion matrices as (TP+TN)/N, and statistics were evaluated with Fishers’ exact test 

and only reported if p=value < 0.05.  We note that a limitation of this matrix approach was the 

sensitivity of the reported accuracy to the chosen thresholds for classification, particularly for the 

low to moderate sample sizes here. 

Errors in measurements and calculations. The data curation described above removed 

identifiable uncertainties to allow a clear relationship between brain penetration measurements and 

our predictions of solvation free energy. The curation also exemplified data that would be used to 

drive a CNS drug discovery project. We eliminated highly insoluble compounds (kinetic solubility 

< 1 uM at pH 7.4) and highly brain tissue bound compounds (brain unbound fraction < 1%) from 

our analysis, because these characteristics can cause a variety of problems in experiments that lead 

to large variations and uncertainties in key endpoints. 

The measured Kp,uu endpoint comes from complex in vivo experiments that can have errors from 

various sources. We have combined rat and mouse data for final analysis in Figures 1, 2, and 3 to 

increase statistical powering of our study, but differences in P-gp expression in these species could 

contribute to variance in Kp,uu and affect accuracy of model predictions.58 Differences in 

exposures due to cassette vs. discrete PK experiments, and the particular time point of the 

measurement, contribute to variation in Kp,uu, with errors up to 26% observed in our internal 
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Project 1 data (n = 16). From the same Project 1, we found that repeated measurements of in vitro 

measured plasma and brain tissue binding could give variance that impacts Kp,uu by up to 20%.   

In addition to errors from experiments, model performance was affected by uncertainties in our 

calculation. These uncertainties come from limitations of the employed sampling algorithms in the 

water and gas phase, as well as errors in scoring that most likely come from the implicit solvent 

model. To better understand the sensitivity of the conformational sampling, we have compared the 

E-sol values using quick (4 conformations in each gas and water phases) and extensive (20 

conformations) sampling methods. Figure S5A shows the correlation between the 2 methods with 

an error estimate of 0.84 kcal/mol. Although there can be significant differences in results from 

the two sampling methods, the impact on the R2 for model prediction of Kp,uu was negligible 

(Figure S5B and S5C). From our analysis, we confirmed that compounds with higher flexibility 

(number of rotatable bonds > 5) usually required the extensive sampling method to converge the 

energy value, as illustrated in Figure S6. We have ongoing work to further optimize the workflow 

by comparing implicit vs explicit solvent models, using QM vs free energy perturbation to compute 

the energies, and evaluating various conformational sampling techniques to increase overall 

calculation speed. However, the method described in Scheme 3 was used for all calculations in 

this work.  

 

EXPERIMENTAL SECTION 

General 
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All compounds used in this study originating from our internal projects were >95% pure by HPLC 

analysis.  

In vitro ADME profiling. Data on the following in vitro ADME properties for in house CNS 

projects were generated at Pharmaron in vitro ADME laboratory (Beijing, China), utilizing the 

corresponding HT assays: (a) P-gp efflux (ER) was measured utilizing the MDCKII-MDR1 cell 

line, an MDCK line stably transfected with the MDR1 gene, which expresses a functionally active 

human P-gp. The cell line was obtained from the Netherlands Cancer Institute (Amsterdam), used 

at passages between 10 and 20. Passive apparent permeability was determined in both directions, 

from apical to basolateral (A to B) and basolateral to apical (B to A) directions. Efflux ratios were 

calculated using the resultant Papp values (ER = Papp(B to A) / Papp (A to B)). 3% BSA (bovine 

serum albumin) was added into the incubation system to reduce nonspecific binding of the 

compounds to the plates thus to increase recovery. (B) Plasma protein binding was measured in 

pooled CD-1 mouse plasma using equilibrium dialysis method using 5 uM of the compound with 

6 hr incubation; (C) Brain tissue binding was measured in CD-1 mouse brain homogenate using 

equilibrium dialysis method and 1 uM of the compound with 6 hr incubation. 

In vivo brain penetration (Kp,uu). Mouse Kp,uu for in house CNS projects was obtained either 

from a CD-1 mouse IV cassette PK (each study includes 4 compounds plus 1 positive control, 0.5 

mpk IV dose, CD-1 mouse, N=3) at 30 min and/or 2 hr post-dose, or from a single dose discrete 

oral PK study (5 mpk PO dose, CD-1 mouse, N=3 for each time point) using AUC over 24 hr 

period. Multiple PK studies have confirmed that Kp,uu determined from IV cassette PK data at 2 

h post-dose was generally consistent with discrete PK data.  
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Kp,uu, unbound brain-to-plasma drug partition coefficient; CNS, central nervous system; MPO,  

multiparameter optimization; MW, molecular weight; BBB, blood-brain barrier; MDCK, Madin-

Darby canine kidney; Papp, apparent permeability; MDR1, multidrug resistance protein 1; P-gp, 

P-glycoprotein 1; BCRP, breast cancer resistance protein; QSAR, quantitative structure−activity 

relationship; RoCNS, Lipinski’s rule for central nervous system drugs; PSA, polar surface area; 

PK, pharmacokinetics; logP, partition coefficient; logD, distribution coefficient; FEP, free energy 

perturbation; E-sol, Energy of solvation; Fu, unbound fraction; HBD, hydrogen bond donor; 

ADME, Absorption, Distribution, Metabolism and Excretion; ER, efflux ratio; RRCK, Ralph Russ 

canine kidney; ROC, Receiving Operator Characteristic; AUC, area under the curve; TP, true 

positive; TN, true negative; FP, false positive; FN, false negative; CPU, central processing unit; 

ML, machine learning; Caco-2, human epithelial cell line; hERG, human ether-a-go-go-related 

gene; ATM, Ataxia Telangiectasia-Mutated; EGFR TKI, EGFR tyrosine kinase inhibitor; NSCLC, 

non-small cell lung cancer; QM, quantum mechanics; t-SNE, t-distributed stochastic neighbor 

embedding; MCMM, Monte Carlo Multiple Minimum; LMCS, Low-Mode Conformational 
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Search; GB/SA, Generalized Born/Solvent Accessible Surface; RMSD, root mean square 

deviation; PBF, Poisson Boltzmann Finite; SP, state penalty; MUE, mean unsigned error. 
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 1. Supporting Figures and Tables 
 

Figure S1. Categorical accuracy and confusion matrices for E-sol and other calculated and 
measured properties for prediction of Kp,uu. Categorical accuracy was calculated from the 
confusion matrices as (TP+TN)/N and only reported if p=value < 0.05, Two example matrices at 
the bottom of the figure label quadrants for positively and negatively correlated matrices. See 
Table S1 for AUC scores from threshold analysis.  
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Figure S2.  Correlation plot showing machine learning model fit on calculated E-sol (kcal/mol) 
on the y-axis and the full fidelity QM calculations for compounds from internal projects and 
published datasets (n = 241) on the x-axis (MUE = 1.80 kcal/mol).  

 

 

Figure S3. Correlation of plasma protein binding and brain tissue binding for analyzed data.  
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Figure S4. Basic calculated properties compared for Schrödinger project compounds (A) and 
published compounds (B) analyzed in this work. These two groups of compounds are also shown 
in t-distributed stochastic neighbor embedding (t-SNE) projections to create a graphical 
representation of the chemical space (C). 
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Figure S5. Correlation between quick and extensive sampling methods for E-sol (A) Kp,uu data-
points plotted in log-scale (y-axis) with E-sol (kcal/mol) for compounds from internal projects and 
published datasets (n = 241) on the x-axis for quick (B) and extensive (B) sampling methods. 

 

 

 

Figure S6.  Plot showing the difference of E-sol (kcal/mol) calculated between the quick and 
extensive sampling methods for the public and internal data sets sorted by the number of rotatable 
bonds (compounds with 0 rotatable bond not shown). 

 

 

 



 

39 

 

Table S1. AUC of ROC plots evaluated for the metrics in this study, with two Kp,uu thresholds 
used for classification. 

 

Metric Kp,uu = 0.3 AUC Kp,uu = 0.2 AUC 

E-sol Hydration 0.88 0.87 

Merck pMPO 0.67 0.58 

Pfizer MPO 0.55 0.48 

RRCK 0.72 0.67 

PSA 0.27 0.38 

MW 0.33 0.42 

LogD 0.60 0.69 

MDCK-MDR1 ER 0.43 0.37 
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2. HPLC chromatograms 
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