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Abstract

The application of phase-field modelling has been expanded into smaller and smaller-

scale phenomena. However, phase-field modelling with a single atomic resolution has

not been proposed so far. Here, we have developed atomic-scale phase-field modelling,

that is, phase-field modelling for single atoms. We found that our modelling successfully

reproduced the stabilization of Cu lattices under NVT and NPT conditions. Moreover,

we found that our modelling allows us to use a longer time step than MD simulations

to simulate atom dynamics. This research expands the application of phase-field sim-

ulation into the ultra-small scale, providing a powerful strategy to clarify atomic but

longer time-scale phenomena.

Introduction

In phase-field modelling, an interface is modelled as a continuous field and its dynamics

are calculated by solving diffusion equations. This methodology has achieved great success

for mesoscopic materials properties in a diffusive time scale such as solidification, fracture,

and ferroelectricity 1–3. As one direction of the developments, the application of phase-field

simulation has gradually expanded to a smaller scale. For example, phase-field simulation of
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dislocation dynamics, coupling between ferroelectricity and dislocations, and thermal acti-

vated skyrmion motions has been conducted4–6. Such developments of phase-field simulations

have undoubtedly clarified many material properties at the nanoscale but diffusive time scale

where molecular dynamics (MD) and quantum mechanical simulations can not access.

In this context, phase-field crystal modelling has been proposed, in which the crystallines

of material are represented by periodic fields such as trigonometric functions7–10. In this mod-

elling, each peak of a wave corresponds to the probability density of atom vibration. In other

words, the application of phase-field simulation has now reached the quasi-atomic-scale. This

concept is novel because they show that phase-field modelling has the ability to investigate

diffusive time-scale phenomena with atomic resolution. However, those phase-field modelling

assumes crystallinity in solid states and this limitation restricts their simulation targets. In

other words, if such a limitation can be removed, phase-field simulation will be applied not

only to more complicated materials such as organic materials11–14 but also to chemistry and

biology, in which micro-millisecond phenomena have gained a lot of attention15–17.

The purpose of this study is to develop atomic-scale phase-field modelling, that is, phase-

field modelling for single atoms. In the following, we describe how to model atoms and calcu-

late their dynamics. Then, we validate our modelling by comparing it with MD simulations.

Furthermore, we investigate how much time step can be used in simulation to show the

ability of our modelling for clarifying longer time scale phenomena. Finally, we summarize

this study.

Methods

Theory

The thermal vibration of an atom around a mean position appears as a density cloud on a

longer time scale. In many solids, since this vibration is narrow and isotropic, a probability

density ρ of this atomic cloud can be approximated by a normalized Gaussian as follows
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(Supplemental Information 1)

ρi(xi|X i, αi) =
(αi

π

)3/2

e−αi(xi−Xi)
2

, (1)

where X i is the position of the vibration center of atoms i =1, 2, ..., N while αi =miωi/2kBT

is a parameter related to temperature in which mi is the atomic mass, ωi is the Einstein

frequency, kB is the Boltzmann constant, and T is the absolute temperature. When X i

and αi are given as a condition, a probability density at the position xi is determined. The

variational Gaussian (VG) theory says that the Helmholtz free energy for such probability

densities can be described as follows18,19
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3
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kBT
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{
ln
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)
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}
+
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N∑
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wij(X i,Xj, αi, αj). (2)

The first term is energy for atom vibrations where Λ = h̄
√

2π/mikBT is the de Broglie

thermal wavelength. The second term is energy for interactions between probability densities

and wij is an effective pair potential described as follows

wij(X i,Xj, αi, αj) =

∫
ρi(xi)

∫
ρj(xj)ϕ(xij)dxidxj (3)

=
(αi

π

)3/2 (αj

π

)3/2
∫

e−αi(xi−Xi)
2

∫
e−αj(xj−Xj)

2

ϕ(xij)dxidxj,

where xij = xj − xi, xij = |xij|, and ϕ is a pair potential between atoms. To understand

this potential, remind that an electric potential ϕ(x) = q/x by a point charge q corresponds

with ϕ(x) =
∫
qρ(x′)/(x−x′)dx′ by charge density ρ. This potential is equal to the following
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form (Supplemental Information 2)20

wij(Xij, αij) =
(αij

π

)3/2
∫

e−αij(xij−Xij)
2

ϕ(xij)dxij (4)

= 2π
(αij
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)3/2
∫ rc

0

∫ π

0

r2drdθ sin θ

×e−αijr
2

ϕ(
√
r2 +X2

ij + 2rXij cos θ),

where X ij = Xj − X i, Xij = |X ij|, αij = (1/αi + 1/αj)−1, and rc is the cutoff on the

Gaussian. This form is convenient to calculate an effective potential energy.

In previous studies18–20, the authors just optimized the above free energy to obtain finite-

temperature equilibrium states and they did not use it for dynamics. In this study, we

use the above theory for dynamics in the framework of the phase-field method. In other

words, based on the above free energy and Cahn-Hilliard equation3, we obtain the following

governing equation

∂ρi(x , t)
∂t

= ∇
(
Di(x )∇

δF

δρi

)
(5)

= ∇(κiρi(x )∇Φi(x )),

where t is time and Di(x ) is a position-dependent kinetic coefficient. Here, as κi is a kinetic

coefficient, we consider Di(x ) = κiρi(x ) because a probability density should follow the

conservation law. Here, a differential of functional derivative ∇δF/δρi = ∇Φi(x ) is an

effective force described as follows

∇Φi(x ) =
∑
j ̸=i

∫
e−αj(xj−Xj)

2∇ϕ(|x − x j|)dxj. (6)

By solving the above governing equation and force, the motion of probability densities should

be calculated.
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Simulation detail

To test the above theory, we employed Cu metals (m = 63.55 g/mol). A pairwise Morse

potential of Cu can be described as follows18

ϕ(xij) = D0{e−2β(xij−x0) − 2e−β(xij−x0)} (7)

where D0 = 0.3429 eV, β = 1.3588 Å−1, and x0 = 2.866 Å while the cutoff distance is 8

Å. As the initial structure, we considered 2 × 2 × 2 cells with a lattice constant a0 =

3.61Å, that is, the box size of 7.22 Å × 7.22 Å × 7.22 Å. In this box, we arranged 32 Cu

atoms to the face-centred-cubic (FCC) positions with random displacements between -0.1

and 0.1 Å in the x, y, and z directions. Then, we applied periodic boundary conditions to this

structure. To validate the above theory, we calculated the time development of this structure

under the constant volume and temperature (NVT) condition from both phase-field and MD

simulations.

For phase-field simulation, Eq. (5) has the same form as the Fokker-Planck equation

described as
∂ρi(x, t)

∂t
= ∇(ai(x)ρi(x)), (8)

where a is a drift coefficient. Since the Fokker-Plank equation can be converted into the

Langevin equation, this can be converted as follows (Supplemental Information 3)21

dXi

dt
= −ai(Xi) = −∇Φi(Xi). (9)

By solving this equation by the Vervet algorithm (Supplemental Information 4) with the

time step ∆t = 1 fs, we calculated the motions of the centres of probability densities. On

the other hand, the calculation of effective potential energy and force (Eqs. (4) and (6))

every time step increases computational costs because they include integrals. Therefore, we

made lookup tables for the effective pair potential and force until the cutoff distance with
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0.01 Å interval. For α, we calculated them by optimizing Eq. (2) by L-BFGS under 1 GPa

(Supplemental Information 1)22,23, and the obtained values are summarized in Table 1. Note

that, since α = 1/2σ2 where σ is a standard deviation of Gauss distribution, α = ∞ and F

= 1/2
∑N

i=1

∑
j ̸=i ϕ(Xij) at 0 K. For the mobility, a conductivity κ = 5.56× 10−8 m2/(V· s)

was taken from the mobility of Cu2+ in water at 298 K24.

For MD, we used LAMMPS software25 to calculate the time development of the above

initial structure under NVT the same as the phase-field simulation. We applied an initial

velocity corresponding to 300 K and the temperatue is controlled by the Berendsen thermo-

stat. Then, we calculated 20000 steps with the time step being 1 fs. Values such as pressure

are calculated in each time step.

Table 1: Values of α used in this study, which are obtained by optimising Eq. (2) by L-BFGS
under 1 GPa.

0 K 300 K 600 K 900 K 1200 K
α (Å−2) ∞ 240.9 120.0 78.3 57.8
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Results

Time development

Figure 1 shows a typical time development of Cu atoms under 300 K by phase-field simu-

lation. Note that atoms are represented by clouds to emphasize that we treat a probability

density. Moreover, atoms at the face-centred positions are represented by a blighter colour

for clarity. We found that atoms, which are displaced randomly as the initial condition (Fig.

1(a)), move toward the equilibrium fcc position as time passes (Fig. 1(b)). Finally, the

positions of atoms almost return to the fcc positions at t = 25 fs (Fig. 1(c)). Therefore, our

phase-field simulation has the ability to reproduce the equilibrium state of Cu.

Then, we calculated the time development of the pressure of the above system. We

derived the pressure P of the system from the Helmholtz free energy as follows

P = −
(∂F
∂V

)
T,N

= −1

2

∑
i

∑
j ̸=i

∂ω(Xij)

∂Xij

∂Xij

∂V
=

1

2

∑
i

∑
j ̸=i

fij
Xij

3V
(10)

where V is the volume of the system and fij = −∂ω(Xij)/∂Xij is a force between proba-

bility densities i and j. ∂Xij/∂V =Xij/3V can be derived from the scaling of the system

(Supplemental Information 5). This indicates that pressure can be calculated by virial (=

force × distance) the same as MD simulations. Figure 2 shows the time development of

pressure calculated by the above equation (red line). For comparison, a pressure calculated

by MD is also plotted (black line). We found that pressures in both phase-field and MD

simulations reach the equilibrium pressure through a similar steep descent behaviour. The

equilibrium pressure value is 2.18 GPa in phase-field simulation and 1.96 GPa in MD simu-

lation. In other words, a pressure value by phase-field simulation is comparative with that

by MD simulation. Thus, we concluded that our modelling successfully reproduced the time

development of pressure.

Figure 3 shows the variation of the equilibrium pressure by temperature difference under
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the NVT condition obtained by phase-field and MD simulations. Detailed values for each

simulation are listed in Table 2. We found that the equilibrium pressures by both simulations

show a similar trend, that is, almost linear incrementation. On the other hand, we also found

that the discrepancy of pressures between simulations expands as temperature increases.

The reason can be attributed that we employed α values obtained under 1 GPa. That is,

the deviation from 1 GPa increases by raising the temperature under the NVT condition,

changing the α values we should use. Moreover, at high-temperature regions, a slight change

of α will make a large subsequent difference because α converges as shown in Fig. S2.

Therefore, high-temperature conditions should be avoided in our phase-field modelling if a

large pressure fluctuation is expected.

Table 2: The equilibrium pressure under the NVT condition obtained by phase-field and
MD simulations.

Temperature (K) Phase-field (GPa) MD (GPa)
0 0.74 0.71

300 2.18 1.96
600 3.65 3.22
900 5.22 4.56
1200 6.85 6.01

Stress control

Then, we considered the constant temperature and pressure (NPT) condition. For this, we

change the volume of the system by the following equation26

dV

dt
= M(P − P0), (11)
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where P0 is an applied external pressure and M is mobility of the volume. In other words,

we scale the positions and volume at each time step as follows

Xi → µXi,

V → µ3V, (12)

where µ is a scale factor, which is described as follows

µ = {1 +M ′∆t(P − P0)}
1
3 , (13)

where M ′ = M/V is mobility of a scale factor.

By the above pressure and volume control, we calculated the equilibrium lattice constants

by phase-field simulation. We used the same parameters and initial structure as the above

NVT conditions. For the mobility of a scale factor, we used M ′ = 10 in this study. For

comparison, we conducted the same calculation by MD simulation using the LAMMPS

software(we used the dump = 2 commands to suppress fluctuation). Figure 4 shows the

obtained time developments of lattice constants by phase-field and MD simulations under

P0 = 1 GPa and T = 300 K. We found that both simulations converge to the almost same

equilibrium lattice constant as time passes. Therefore, we concluded that pressure and

volume controls can be conducted by the above equation in our phase-field simulations.

Figure 5 is the temperature dependence of a lattice constant after equilibrium under

P0 = 0, 1, and 10 GPa obtained by phase-field and MD simulations. Detailed values for

each simulation are listed in Table 3. We found that lattice constants agree with the MD

simulation under moderate pressure (Figs. 5(a) and (b)). This is also applied to the results

under high pressure and moderate temperatures (T < 600K in Fig. 5(c)). Therefore, our

modelling successfully reproduced the temperature-dependent lattice constants of Cu. On

the other hand, under high pressure and high temperature, a discrepancy between MD and

phase-field simulations increases (T > 600 K in Fig. 5(c)). This result agrees with the above
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discussion, that is, a slight change of α by a large pressure makes a large difference in related

properties in high-temperature regions. Thus, we again say that high temperature and large

pressure conditions should be avoided in our phase-field modelling.

Table 3: The equilibrium lattice constants under the NPT condition obtained by phase-field
and MD simulations.

Pressure (GPa) Temperature (K) phase-field (Å) MD (Å)
0 0 3.616 3.616

300 3.628 3.628
600 3.641 3.639
900 3.654 3.653
1200 3.667 3.665

1 0 3.608 3.608
300 3.620 3.618
600 3.632 3.630
900 3.645 3.643
1200 3.658 3.655

10 0 3.540 3.539
300 3.550 3.549
600 3.562 3.558
900 3.573 3.567
1200 3.588 3.577

Allowable time step

In the above, we set the time step ∆t = 1 fs in phase-field simulations to compare the

results with MD simulations. However, since we do not need to consider atom vibration

when atoms are treated as a probability density, we may be able to use larger time steps for

calculations. Thus, we recalculated the above NVT and NPT simulations with different ∆t

to investigate the allowable time step for the calculation. Figure 6(a) shows the recalculated

time development of pressure under the NVT condition of a0 = 3.61 Å and T = 300 K with

∆t = 1, 10, and 100 fs. We found that the same time development as ∆t = 1 fs is obtained

by ∆t = 10 fs. More surprisingly, a pressure converges to the same value even by ∆t = 100 fs

although there is a slight deviation in the convergence path (the enlarged view in Fig. 6(a)).
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This is also applied to the calculation under the NPT condition (Fig. 6(b)). Therefore,

we can use several ten femtosecond or more longer time steps to obtain the same results

as those by 1 fs. This suggests that atomic-scale phase-field simulation will be a powerful

strategy to investigate atomic-scale but longer time-scale phenomena that are difficult for

MD simulation.

Conclusion

In summary, we have developed atomic-scale phase-field modelling, in which atom vibrations

are modelled as a Gauss distribution. Our modelling successfully reproduced the stabilization

of Cu lattices under NVT and NPT conditions. Furthermore, we found that our phase-field

modelling allows us to use longer time steps than MD simulations to calculate dynamics.

This methodology will be a powerful strategy to investigate atomic but longer time-scale

phenomena that are difficult for MD simulations.
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(a) t = 0 fs

(b) t =5 fs

(c) t = 25 fs

Figure 1: The time development of Cu atoms obtained by phase-field simulation under the
NVT condition of a lattice constant a0 = 3.61 Å and T = 300 K. To emphasise we treat
probability densities, atoms are represented by clouds. For the eye guide, atoms at the face-
centred positions are represented by a blighter colour.
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Figure 2: The time development of pressure under the NVT condition obtained by atom
motions in Fig. 1. The corresponding result by MD simulation is also plotted for comparison
by a black line.

Figure 3: Temperature dependence of the equilibrium pressure under the NVT condition.
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Figure 4: The time developments of lattice constants of Cu by phase-field and MD simula-
tions under the NPT condition of P0 = 1 GPa and T = 300 K.

Figure 5: Temperature dependence of the equilibrium lattice constants obtained by phase-
field and MD simulations for P0 = (a) 0 GPa, (b) 1 GPa, and (c) 10 GPa.
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Figure 6: Recalculated time developments of (a) pressure under the NVT condition of a0 =
3.61Å and T = 300 K, and (b) lattice constants under the NPT condition of P0 = 1 GPa
and T = 300 K with different time steps.
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