

Build instructions for Closed-loop
Spectroscopy Lab: Light-mixing Demo

Sterling G. Baird1,2,* and Taylor D. Sparks1,3,**
1Materials Science & Engineering Department, University of Utah, Salt Lake City UT USA, 84108
2Technical contact
3Lead contact
*Correspondence: sterling.baird@utah.edu
**Correspondence: sparks@eng.utah.edu

Summary

Closed-loop Spectroscopy Lab: Light-mixing Demo (CLSLab:Light) is a teaching and prototyping
platform for autonomous scientific discovery. It consists of a set of LEDs and a light sensor while
encapsulating key principles for "self-driving" (i.e., autonomous) research laboratories, including
sending commands, receiving sensor data, physics-based simulation, and advanced optimization.
CLSLab:Light is a "Hello, World!" introduction to these topics, accessible by students, educators,
hobbyists, and researchers for less than 100 USD, a small footprint, and under an hour of setup time.

For context, please refer to Baird et al.1.

Graphical abstract

Before you begin

The protocol below describes how to set up a “Hello, World!” demonstration1–6 for a self-driving
laboratory7–11 using a Pico W microcontroller, LEDs, a light sensor, and Bayesian optimization.

Order Required Parts

Timing: 5 min (not including shipping time)

1. Order the required parts [Self-contained Digikey Order] (60.80 USD + shipping as of 2022-10-
20)

a. The sculpting wire needs to be 14 gauge (2 mm) or thinner, including the insulation
jacket, and rigid enough to support the sensor. Sculpting wire is also available at
Amazon. Approximately 3' is required.

b. The purpose of the wall adapter is so that, after initial setup, the demo can be
powered standalone

c. The bill of materials is also available at Adafruit, though you may need to source a
Pico W with headers or a Pico WH separately. See Raspberry Pi's supported resellers
for the Pico W.

https://www.digikey.com/short/045j7502
https://www.amazon.com/dp/B01FG9IRM2?ref_=cm_sw_r_cp_ud_dp_TV8WBR44GZVJ3544KA1X
https://www.amazon.com/dp/B01FG9IRM2?ref_=cm_sw_r_cp_ud_dp_TV8WBR44GZVJ3544KA1X
http://www.adafruit.com/wishlists/553992
https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w
https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w

Figure 1

Additional Prerequisites

Timing: N/A

2. Ensure access to a 2.4 GHz WiFi network (SSID + password)
a. The Pico W only supports 2.4 GHz WiFi networks. See self-driving-lab-demo #76 for

additional context.
i WPA enterprise networks such as Eduroam and other networks that use

captive portals (most schools, coffee shops, etc.) are not yet supported. It
needs to be a network such that on a computer, you can click on the WiFi
name (SSID), enter the password, and click connect (no additional steps).
Check to see if your institution offers network support for internet of things
devices (e.g. ULink at University of Utah).

ii Home networks can have both a 5G and a 2.4 GHz network (e.g. "My Network
5G" and "My Network")

iii If you use a mobile hotspot, you may need to use your device's "extended
compatibility" feature to drop the mobile hotspot from 5G to 2.4 GHz. See
also prepaid, long-expiry hotspot and classroom demo with standalone
network access discussions.

3. Ensure access to a computer (for initial setup only)
a. At a minimum, the computer needs to be able to run the Thonny editor (lightweight)

and it needs at least one USB-A port
4. Ensure access to a soldering iron and soldering wire (thinner is better in this case)
5. (Optional) Before soldering, ensure the Pico W can successfully connect to a computer

https://github.com/sparks-baird/self-driving-lab-demo/issues/76
https://github.com/sparks-baird/self-driving-lab-demo/discussions/83
https://github.com/sparks-baird/self-driving-lab-demo/discussions/88
https://github.com/sparks-baird/self-driving-lab-demo/discussions/88

a. You can do this by holding the BOOTSEL button on the Pico W while connecting the
Pico W to your computer via the USB cable. If a new drive appears, that indicates the
Pico W is working normally

b. Be careful only to heat the gold pads while soldering to avoid damaging the circuitry

Key resources table

REAGENT or

RESOURCE
SOURCE IDENTIFIER

Deposited Data

Red, Green, and Blue

LED Spectral Data

https://github.com/sparks-baird/self-driving-lab-

demo/tree/v0.6.0/src/self_driving_lab_demo/data

v0.6.0

Software and Algorithms

self-driving-lab-demo

v0.6.0

https://github.com/sparks-baird/self-driving-lab-demo

YouTube build tutorial https://youtu.be/GVdfJCsQ8vk

Other

STEMMA QT AS7341

COLOR SENSOR

DigiKey (Adafruit Product) Cat#1528-4698-ND

4-PIN

STEMMA/GROVE -

QT/QWIIC 4"

DigiKey (Adafruit Product) Cat#1528-4528-ND

RASPBERRY PI PICO

W

DigiKey (Adafruit Product) Cat#2648-SC0918CT-

ND

CBL USB2.0 A PLUG-

MCR B PLUG 3'

DigiKey (Adafruit Product) Cat#380-1431-ND

CONN HEADER VERT

20POS 2.54MM

DigiKey (Amphenol CS) Cat#10129378-

920001BLF-ND

MAKER PI PICO BASE

(WITHOUT PICO)

DigiKey (Adafruit Product) Cat#3614-MAKER-PI-

PICO-NB-ND

AC/DC WALL MOUNT

ADAPTER 5V 5W

DigiKey (Adafruit Product) Cat#1470-2768-ND

HOOK-UP SOLID

18AWG BLACK 100'

DigiKey (Remington Industries) Cat#2328-

18UL1007SLDBLA-

ND

128MB MICRO SD

MEMORY CARD

(optional)

DigiKey (Adafruit Product) Cat#1528-5250-ND

Step-by-step method details

Hardware Setup

Timing: 20 min

Solder the headers onto the Pico W, mount the light sensor so that the pinhole is facing the red green
blue (RGB) LED, connect the light sensor to the board, and get the microcontroller ready for firmware
installation.

1. Solder headers onto the Pico W
a. Insert the Pico W headers into the Maker Pi Pico base
b. Place the Pico W on top of the headers
c. Solder the headers to the Pico W

i MagPi guide
ii Tom's hardware guide
iii YouTube video

d. Remove the Pico W from the Maker Pi Pico base
2. Prepare 3 feet of sculpting wire (cut with wire cutters or bend until it breaks)
3. Thread the sculpting wire through each mounting hole on the Maker Pi Pico base, then twist

the wires together near the RGB LED. This setup will allow the position and orientation of the
sensor to be both adjustable and steady. Continue twisting until you have 4 to 6 inches of
twisted wire, and ensure that there are at least 3 inches of loose, untwisted wire at each end
(the leftover, untwisted wire will be threaded through the mounting holes of the light sensor

https://magpi.raspberrypi.com/articles/how-to-solder-gpio-pin-headers-to-raspberry-pi-pico
https://www.tomshardware.com/how-to/solder-pins-raspberry-pi-pico
https://www.youtube.com/watch?v=R11QanPDccs

in the next step). For reference, a diagram is also included below.

Figure 2

Figure 3

4. Thread the same sculpting wire through the AS7341 light sensor and position the sensor so
the pinhole is facing approximately 3 to 4 inches away from the RGB LED.

Figure 4

5. Connect the Grove/Stemma-QT connector into Grove port 6 (GP26&27) and the AS7341,
insert the Pico W, and while holding the BOOTSEL button, connect the Pico W to the

computer.

Figure 5

Software Setup

Timing: 20 min

Install the MicroPython firmware onto the Pico W microcontroller, enter the WiFi credentials, and
upload the source code files.

6. Download and install Thonny, a Python IDE with native support for microcontrollers. Choose
the platform appropriate for you (in my case, this is Windows 64-bit, Python 3.10). When
installing, use the default settings: "Standard (default)".

7. Click on the lower-right dropdown and click "Install MicroPython"

Figure 6

https://thonny.org/

8. Choose "MicroPython variant: Raspberry Pi - Pico W / Pico WH" and click install

Figure 7

9. Change the interpreter from Local Python 3 to MicroPython (Raspberry Pi Pico)

Figure 8

10. In Thonny's menubar, click "View" then "Files" to open a sidebar

Figure 9

11. Download sdl_demo.zip from the latest release at self-driving-lab-demo and unzip it

12. In Thonny, navigate to the unzipped sdl_demo folder, open secrets.py, enter your WiFi
network name (SSID) and password as Python strings. Optionally, you can create your own
MongoDB Atlas database and enter values for MONGODB_API_KEY,
MONGODB_COLLECTION_NAME, and DEVICE_NICKNAME (see below). Optionally, you can
create your own HiveMQ instance and enter the credentials there (see below).
Save secrets.py

Figure 10

Figure 11

https://github.com/sparks-baird/self-driving-lab-demo/releases/latest

a. (Optional) Set up a MongoDB database backend
i. Create an account at https://www.mongodb.com/cloud/atlas/register

ii. Create a free, Shared Cluster (optionally rename Cluster0 to something of
your choice, e.g. self-driving-labs. You can leave the default provider as-is)

iii. Navigate to “Data Services” → “Deployment” → “Database” and click

“Browse Collections” then “Add My Own Data”. Enter a database name (e.g.,
clslab-light-mixing) and collection name (e.g., test). Copy the names into
MONGODB_DATABASE_NAME and MONGODB_COLLECTION_NAME in

https://www.mongodb.com/cloud/atlas/register

secrets.py.

iv. Navigate to “Data Services” → “Services” → “Data API”, use the dropdown to

select your cluster, and click “Enable Data Access from the Data API”

v. Note the app name in the “URL Endpoint” box of the form

“https://data.mongodb-api.com/app/<data-abc123> /endpoint/data/v1”
where <data-abc123> is the app name. Copy the app name into the
MONGODB_APP_NAME variable in secrets.py.

vi. Click “Create API Key”, enter a name of your choice (e.g. clslab-light), and click

“Generate API key”. Copy the API key and store it somewhere secure. Paste

the API key into the MONGODB_API_KEY variable in secrets.py.

b. (Optional) Create your own HiveMQ instance

i. Navigate to https://www.hivemq.com/mqtt-cloud-broker/, click “Try out for
free”, and create an account

ii. Set up credentials by entering a username and password and press “ADD”

iii. Navigate to the “Clusters” tab and copy the URL (e.g.,

abc123.s2.eu.hivemq.cloud) to HIVEMQ_HOST in secrets.py. Also update
HIVEMQ_USERNAME and HIVEMQ_PASSWORD with the username and

https://www.hivemq.com/mqtt-cloud-broker/

password from the previous step.

iv. Create a certificate using the Google Colab notebook at

https://github.com/sparks-baird/self-driving-lab-
demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb. Enter
the server address (same as HIVEMQ_HOST), run the Google Colab cells, and
follow the instructions to download the hivemq-com-chain.der file to the
unzipped sdl_demo folder. This file is used to do secure authentication via
HiveMQ.

13. While holding Ctrl (Windows) or Cmd (Mac), select "lib", "main.py", “hivemq-com-chain.der”,
and "secrets.py", right click in the gray region, and click "Upload to /"

Figure 12

14. Double click to open main.py, click the green play button, and note the PICO ID that prints to
the command window ("prefix/picow/<PICO_ID>/"). This will act as the “password” to control

https://github.com/sparks-baird/self-driving-lab-demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb
https://github.com/sparks-baird/self-driving-lab-demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb

the demo.

Figure 13

Control from the cloud
Timing: 10 min

Bayesian optimization is commonly used for computational and experimental discovery of new
materials, and is often used with low experimental budgets in self-driving laboratory settings. This
section covers controlling the device in a closed-loop fashion via internet-of-things style
communication (MQTT) and run a basic optimization comparison of grid search vs. random search vs.
Bayesian optimization.

16. Open notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb in Google Colab
17. Scroll to the first code cell and click the play button to install the self-driving-lab-demo Python

package

Figure 14

18. Copy the PICO ID from the Thonny editor and paste it in place of "test" (without quotes). The

following is an example image of the output; the actual output to the command window may

https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb

vary in future releases.

Figure 15

Figure 16

19. Run the remaining code cells
a. Instantiate a SelfDrivingLabDemo class
b. Perform optimizations for grid search, random search, and Bayesian optimization

20. Additional notebooks that cover advanced optimization topics12 such as constrained13–15, high-
dimensional16,17, multi-fidelity18, and multi-objective11,19–22 optimization are also available.

Expected outcomes

1. Successfully set up the hardware and software for a closed-loop experiment
2. Run the first “autonomous drive” given in an example interactive notebook
3. Explore additional example notebooks

Figure 17 shows a comparison of optimization results for grid search vs. random search vs.
Bayesian optimization averaged over repeat campaigns with standard deviation error bands,
where Bayesian optimization, on average, performs the best. Figure 18 shows one of the outputs
from the cloud-based control notebook of best error so far vs. iteration number comparing grid
search vs. random search vs. Bayesian optimization. Typically, grid search is the least efficient,
Bayesian optimization is the most efficient, and random search is somewhere in-between. Figure
19, Figure 20, and Figure 21 show the points that were searched for a given campaign for grid
search, random search, and Bayesian optimization, respectively. Finally, Figure 22 shows the true,
underlying target color (defined by red, green, and blue values) and the best parameter set based
on minimizing error between the observed spectrum and the target spectrum for each of the
optimization methods.

https://github.com/sparks-baird/self-driving-lab-demo/blob/main/notebooks/README.md

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Quantification and statistical analysis

Discrete Fréchet distance, as implemented in https://github.com/cjekel/similarity_measures23, is used
to assess the mismatch between the currently observed spectrum and the target spectrum, where the
target spectrum is determined by arbitrarily choosing a random set of RGB values and measuring the
sensor data for the fixed, random set of RGB values. Lower Fréchet distances correspond to better
matches between the observed and target spectra (i.e. lower error).

An example JSON document logged to a MongoDB database backend containing experimental data
for a single run is given as follows:

The experimental parameters for two JSON documents are given in Table 1.

Table 1. Example of data obtained from two experiments. The LED parameters are red (R), green (G), blue (B). The sensor
settings are atime, gain, astep (affects integration time and intensity). The measured output values are of the form
“ch###” where the three digit number corresponds to the full-width half-max (FWHM) wavelength being measured.

utc_timesta
mp

onboard_temperat
ure_K

R G B atim
e

gain aste
p

ch41
0

ch44
0

ch47
0

ch51
0

ch55
0

ch58
3

ch62
0

ch67
0

11/4/2022
6:40

292.7041 41 3 31 100 128 999 188 3674 2828 354 498 2748 5661 276

11/4/2022
6:51

294.1085 41 3 31 100 128 999 188 3675 2827 354 498 2756 5671 277

{
 "utc_timestamp": "2022-11-4 06:51:16",
 "ch510": 354,
 "ch620": 5671,
 "ch410": 188,
 "ch440": 3675,
 "ch583": 2756,
 "_input_message": {
 "_session_id": "542e6e80-9c50-4c41-95a5-832603b96238",
 "B": 31,
 "atime": 100,
 "gain": 128,
 "astep": 999,
 "_experiment_id": "9b50c819-db8f-476f-b601-dbe79e871a46",
 "G": 3,
 "integration_time": 280.78,
 "R": 41,
 },
 "onboard_temperature_K": 294.1085,
 "sd_card_ready": True,
 "ch470": 2827,
 "ch550": 498,
 "ch670": 277,
}

https://github.com/cjekel/similarity_measures

Limitations

Environmental noise (e.g. light conditions) and hardware variation (LED, sensor, sensor positioning,
etc.) may affect the results obtained.

Troubleshooting

See the GitHub issue tracker for existing known issues or to post a new issue. See the GitHub
discussions for general questions and discussion.

Problem 1:
Can I use this with alternate microcontrollers or firmware?

Potential solution:

The hardware configuration and software were designed based on Raspberry Pi’s Pico Wireless (Pico
W) microcontroller. Libraries exist for LED control and the AS7341 light sensor in CircuitPython and
Arduino. The hardware and configuration and software can be adapted for other microcontrollers.
Contributions at https://github.com/sparks-baird/self-driving-lab-demo/ are welcome.

Problem 2:
Can I use this without connecting to the internet?

Potential solution:

While possible with minor modification, connecting via USB cable is not directly supported. The
emphasis is on using this with sophisticated software packages (e.g., Meta’s Adaptive
Experimentation platform) that are not typically supported via the lightweight MicroPython firmware
that runs on the microcontroller. For private, secure communication between the Pico W
microcontroller and the client (e.g., Jupyter notebook running locally), a free, private HiveMQ

instance can be set up per the instructions in Software Setup.

Problem 3:
Can I use this without logging to a MongoDB backend?

Potential solution:
If the MongoDB credentials are left to their default dummy values in secrets.py, then logging to the
MongoDB backend will fail and the device will simply notify the user rather than exit the program. The
same applies for logging to an onboard SD card. If an SD card is detected, the microcontroller will
write backup data to it, otherwise it will be skipped.

Problem 3:
The Stemma-QT to Grove connector is out-of-stock.

https://github.com/sparks-baird/self-driving-lab-demo/issues
https://github.com/sparks-baird/self-driving-lab-demo/discussions
https://github.com/sparks-baird/self-driving-lab-demo/discussions
https://github.com/sparks-baird/self-driving-lab-demo/issues
https://ax.dev/docs/bayesopt.html
https://ax.dev/docs/bayesopt.html

Potential solution:
An alternative connector that can be used in place of the Stemma-QT to Grove connector is a 4-pin
JST PH to JST SH Cable (DigiKey Cat#1528-4424-ND). Another alternative is using a Stemma-QT to
header pin cable (DigiKey Cat#1528-4209-ND) and plugging directly into the GPIO pins that
correspond to Grove Port #6 of the Maker Pi Pico base.

Problem 3:
The sculpting wire doesn’t fit through the mounting holes.

Potential solution:
Ensure that the outer diameter of the sculpting wire is 14 AWG or higher (i.e., 1.628 mm or thinner).
Enameled wire (often advertised as sculpting wire) has a very thin coating, whereas electrical wiring
typically has a non-negligible insulation thickness.

Resource availability
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled
by the lead contact, Taylor D. Sparks sparks@eng.utah.edu.

Materials availability
This study did not generate new unique reagents.

Data and code availability

The datasets and code generated during this study are available on GitHub:
https://github.com/sparks-baird/self-driving-lab-demo. A standalone DigiKey order is available at
https://www.digikey.com/short/c05d10fd.

Acknowledgments

This work was supported by the National Science Foundation under Grant No. DMR-1651668.

Author contributions

Sterling G. Baird: Conceptualization, Methodology, Software, Writing – Original Draft, Writing –
Review & Editing, Visualization, Taylor D. Sparks: Supervision, Funding Acquisition

Declaration of interests

The authors declare no competing interests.

References

https://github.com/sparks-baird/self-driving-lab-demo
https://www.digikey.com/short/c05d10fd

(1) Baird, S. G.; Sparks, T. D. What Is a Minimal Working Example for a Self-Driving Laboratory?
Matter 2022, 5 (12), 4170–4178. https://doi.org/10.1016/j.matt.2022.11.007.

(2) Saar, L.; Liang, H.; Wang, A.; McDannald, A.; Rodriguez, E.; Takeuchi, I.; Kusne, A. G. A Low-Cost
Robot Science Kit for Education with Symbolic Regression for Hypothesis Discovery and
Validation. arXiv June 13, 2022. https://doi.org/10.48550/arXiv.2204.04187.

(3) Vargas, S.; Zamirpour, S.; Menon, S.; Rothman, A.; Häse, F.; Tamayo-Mendoza, T.; Romero, J.;
Sim, S.; Menke, T.; Aspuru-Guzik, A. Team-Based Learning for Scientific Computing and
Automated Experimentation: Visualization of Colored Reactions. J. Chem. Educ. 2020, 97 (3),
689–694. https://doi.org/10.1021/acs.jchemed.9b00603.

(4) Gutierrez, J. M. P.; Hinkley, T.; Taylor, J. W.; Yanev, K.; Cronin, L. Evolution of Oil Droplets in a
Chemorobotic Platform. Nat Commun 2014, 5 (1), 5571. https://doi.org/10.1038/ncomms6571.

(5) Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L.
Networking Chemical Robots for Reaction Multitasking. Nat Commun 2018, 9 (1), 3406.
https://doi.org/10.1038/s41467-018-05828-8.

(6) Fuhrmann, T.; Ahmed, D. I.; Arikson, L.; Wirth, M.; Miller, M. L.; Li, E.; Lam, A.; Blikstein, P.;
Riedel-Kruse, I. Scientific Inquiry in Middle Schools by Combining Computational Thinking, Wet
Lab Experiments, and Liquid Handling Robots. In Interaction Design and Children; ACM: Athens
Greece, 2021; pp 444–449. https://doi.org/10.1145/3459990.3465180.

(7) Seifrid, M.; Hattrick-Simpers, J.; Aspuru-Guzik, A.; Kalil, T.; Cranford, S. Reaching Critical MASS:
Crowdsourcing Designs for the next Generation of Materials Acceleration Platforms. Matter
2022, 5 (7), 1972–1976. https://doi.org/10.1016/j.matt.2022.05.035.

(8) Hickman, R. J.; Ru, J. Equipping Data-Driven Experiment Planning for Self-Driving Laboratories
with Semantic Memory: Case Studies of Transfer Learning in Chemical Reaction Optimization.
27. https://doi.org/10.26434/chemrxiv-2022-jt4sm.

(9) MacLeod, B. P.; Parlane, F. G. L.; Morrissey, T. D.; Häse, F.; Roch, L. M.; Dettelbach, K. E.;
Moreira, R.; Yunker, L. P. E.; Rooney, M. B.; Deeth, J. R.; Lai, V.; Ng, G. J.; Situ, H.; Zhang, R. H.;
Elliott, M. S.; Haley, T. H.; Dvorak, D. J.; Aspuru-Guzik, A.; Hein, J. E.; Berlinguette, C. P. Self-
Driving Laboratory for Accelerated Discovery of Thin-Film Materials. Sci. Adv. 2020, 6 (20),
eaaz8867. https://doi.org/10.1126/sciadv.aaz8867.

(10) Bennett, J. A.; Abolhasani, M. Autonomous Chemical Science and Engineering Enabled by Self-
Driving Laboratories. Current Opinion in Chemical Engineering 2022, 36, 100831.
https://doi.org/10.1016/j.coche.2022.100831.

(11) Häse, F.; Roch, L. M.; Aspuru-Guzik, A. Chimera: Enabling Hierarchy Based Multi-Objective
Optimization for Self-Driving Laboratories. Chem. Sci. 2018, 9 (39), 7642–7655.
https://doi.org/10.1039/C8SC02239A.

(12) Arróyave, R.; Khatamsaz, D.; Vela, B.; Couperthwaite, R.; Molkeri, A.; Singh, P.; Johnson, D. D.;
Qian, X.; Srivastava, A.; Allaire, D. A Perspective on Bayesian Methods Applied to Materials
Discovery and Design. MRS Communications 2022. https://doi.org/10.1557/s43579-022-00288-
0.

(13) Griffiths, R.-R.; Hernández-Lobato, J. M. Constrained Bayesian Optimization for Automatic
Chemical Design Using Variational Autoencoders. Chem. Sci. 2020, 11 (2), 577–586.
https://doi.org/10.1039/C9SC04026A.

(14) Baird, S.; Hall, J. R.; Sparks, T. D. Effect of Reducible and Irreducible Search Space
Representations on Adaptive Design Efficiency: A Case Study on Maximizing Packing Fraction for
Solid Rocket Fuel Propellant Simulations; preprint; Chemistry, 2022.
https://doi.org/10.26434/chemrxiv-2022-nz2w8.

(15) Hickman, R. J.; Aldeghi, M.; Häse, F.; Aspuru-Guzik, A. Bayesian Optimization with Known
Experimental and Design Constraints for Chemistry Applications. arXiv:2203.17241 [cond-mat]
2022.

(16) Baird, S. G.; Liu, M.; Sparks, T. D. High-Dimensional Bayesian Optimization of 23
Hyperparameters over 100 Iterations for an Attention-Based Network to Predict Materials
Property: A Case Study on CrabNet Using Ax Platform and SAASBO. Computational Materials
Science 2022, 211, 111505. https://doi.org/10.1016/j.commatsci.2022.111505.

(17) Eriksson, D.; Jankowiak, M. High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces. arXiv:2103.00349 [cs, stat] 2021.

(18) Tran, A.; Tranchida, J.; Wildey, T.; Thompson, A. P. Multi-Fidelity Machine-Learning with
Uncertainty Quantification and Bayesian Optimization for Materials Design: Application to
Ternary Random Alloys. J. Chem. Phys. 2020, 153 (7), 074705.
https://doi.org/10.1063/5.0015672.

(19) Chen, Y.; Tian, Y.; Zhou, Y.; Fang, D.; Ding, X.; Sun, J.; Xue, D. Machine Learning Assisted Multi-
Objective Optimization for Materials Processing Parameters: A Case Study in Mg Alloy. Journal of
Alloys and Compounds 2020, 844, 156159. https://doi.org/10.1016/j.jallcom.2020.156159.

(20) Hanaoka, K. Comparison of Conceptually Different Multi-Objective Bayesian Optimization
Methods for Material Design Problems. Materials Today Communications 2022, 103440.
https://doi.org/10.1016/j.mtcomm.2022.103440.

(21) Daulton, S.; Eriksson, D.; Balandat, M.; Bakshy, E. Multi-Objective Bayesian Optimization over
High-Dimensional Search Spaces. arXiv June 15, 2022.
https://doi.org/10.48550/arXiv.2109.10964.

(22) del Rosario, Z.; Rupp, M.; Kim, Y.; Antono, E.; Ling, J. Assessing the Frontier: Active Learning,
Model Accuracy, and Multi-Objective Candidate Discovery and Optimization. J. Chem. Phys.
2020, 153 (2), 024112. https://doi.org/10.1063/5.0006124.

(23) Jekel, C. F.; Venter, G.; Venter, M. P.; Stander, N.; Haftka, R. T. Similarity Measures for
Identifying Material Parameters from Hysteresis Loops Using Inverse Analysis. Int J Mater Form
2019, 12 (3), 355–378. https://doi.org/10.1007/s12289-018-1421-8.

Figure legends

Figure 1: Visual bill of materials
Figure 2: Wire mounting instructions
Figure 3: Wire mounting schematic
Figure 4: Light sensor mounting instructions
Figure 5: Hardware connections
Figure 6: Firmware installation dropdown
Figure 7: MicroPython installation dialogue box
Figure 8: Interpreter dropdown
Figure 9: Opening the files sidebar
Figure 10: Editing secrets.py
Figure 11: Saving secrets.py
Figure 12: Uploading source files to microcontroller
Figure 13: Running main.py
Figure 14: Python package installation

Figure 15: Copying the Pico ID from the Thonny editor
Figure 16: Pasting the Pico ID into the Google Colab form box
Figure 17: Example optimization comparison between grid search, random search, and Bayesian
optimization averaged over repeated campaigns. Lower Fréchet distance between observed and
target spectra is better.
Figure 18: Example optimization comparison between grid search, random search, and Bayesian
optimization. Lower error is better.
Figure 19: Twenty-seven grid search points colored by the Fréchet distance between the target
spectrum and the sensor data evaluated at each grid point.
Figure 20: Twenty-seven random search points colored by the Fréchet distance between the target
spectrum and the sensor data evaluated at each grid point.
Figure 21: Twenty-seven Bayesian optimization points colored by the Fréchet distance between the
target spectrum and the sensor data evaluated at each grid point.
Figure 22: The true, underlying RGB target (purple diamond) and the best observed points for grid
search (blue circle), random search (red circle), and Bayesian optimization (green circle). Bayesian
optimization gave the closest match to the true target.

Methods Video S1: Thread the mounting wire through the mounting holes of the Maker Pi Pico base,
related to step 3
Methods Video S2: Thread the remaining mounting wire through the mounting holes of the AS7341
light sensor and position the sensor above the LEDs, related to step 4
Methods Video S3: Attach the Pico W and the AS7341 light sensor to the Maker Pi Pico base, then
connect the USB cable from the Pico W to the computer while holding down the BOOTSEL button,
related to step 5
Methods Video S4: Download the Thonny editor and install the MicroPython firmware onto the Pico
W, related to steps 6, 7, 8, and 9
Methods Video S5: Download the source code from GitHub, unzip it, and enter WiFi credentials,
related to steps 10, 11, 12, and 13
Methods Video S6: Upload the source code to the Pico W and run the main.py script, related to steps
14 and 15
Methods Video S7: Open the cloud-control Jupyter notebook via Google Colab and install the self-
driving-lab-demo Python package, related to steps 16 and 17
Methods Video S8: Copy-paste the PICO ID from Thonny to Colab and control the setup remotely
through the “evaluate” command, related to steps 18 and 19.
Methods Video S9: Perform the “Hello, World!” of optimization, comparing grid search vs. random
search vs. Bayesian optimization, related to step 19
Methods Video S10: Visualize the results of the optimization comparison, related to step 19

