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Abstract 

 

Voltammetry is a powerful analytical technique for evaluating electrochemical reactions and 

holds particular promise for interrogating electrolyte solutions suitable for energy storage 

technologies, including examining features such as state-of-charge and state-of-health. However, 

individual voltammetry techniques are likely to be subcomponents of broader analytical workflows 

that incorporate complementary methods to diagnose evolving electrolyte solutions of uncertain 

composition. As such, we demonstrate that jointly evaluating electrolyte solutions with distinct 

voltammetric modes can enhance the capabilities and sensitivities of characterization protocols. 

Specifically, by considering macroelectrode cyclic square wave and microelectrode cyclic 

voltammograms in sequential (“one after another”) and simultaneous (“all at once”) manners, the 

composition of an electrolyte solution may be estimated with greater accuracy, and analytes that 

exhibit near identical electrode potentials may be more readily differentiated. We explore means 

of further improving this method, finding that protocol accuracy increases when multiple 

voltammetry techniques are included in the training dataset. We also observe that the algorithm 

typically becomes more confident—but not necessarily more accurate—when the potential mesh 

granularity becomes finer. Overall, these studies show that the sequential and simultaneous 

methods may hold utility when evaluating multiple voltammetry datasets that, in turn, may be 

leveraged to streamline diagnostic workflows used to examine electrolyte solutions within 

electrochemical technologies. 
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1. Introduction 

Voltammetry is a foundational electroanalytical technique that has been leveraged for more 

than a century to evaluate electrochemical reactions, ranging from estimating fundamental 

transport and kinetic rate constants of analytes within well-defined electrolyte solutions to 

characterizing constituent components within electrolyte solutions of unknown, and sometimes 

evolving, composition in electrochemical devices.1–10 Often, physical models—either closed-form 

or otherwise (e.g., finite difference formulations)—accompany voltammetric experiments to 

facilitate quantitative interpretation of data collected.1,10–16 This union of experiment and 

simulation provides insights into the physical processes that underpin the current response to 

changes in the electrode potential, leading to the codification of canonical relationships (e.g., 

Randles-Ševčik equation, Nicholson relation)17,18 for a variety of potential waveforms, including 

cyclic linear sweep voltammetry (i.e., “cyclic voltammetry” (CV)), square wave and cyclic square 

wave (CSW) voltammetry, and alternating-current voltammetry.10,12,19–24 

The physical size and rotation rate of the disk electrode can be tuned to change the 

characteristic current response to electrode polarization. Of note, the nature and scaling of 

voltammograms can be readily altered by modulating the radius of the working electrode by 

multiple orders of magnitudes (often μm to mm). Larger electrodes, or "macroelectrodes” (radius 

ca. 1 mm), typically engender a linear boundary layer that results in a transient response, while 

smaller electrodes—“microelectrodes” (radius ca. 5 μm)—typically experience a near-

hemispherical boundary layer that results in near-steady-state behavior.2,3,10,13–15,25–30 Despite this 

versatility, voltammetric methods have certain limitations; as particularly salient examples, they 

only sense electrochemically-active compounds, and chemical structures cannot be directly 

discerned. Some of these limitations may be overcome by coupling with other techniques—such 
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as electrochemical cell cycling (either galvanostatic or potentiostatic), ultraviolet-visible 

spectrophotometry (UV-Vis), or sufficiently distinct modes of voltammetry (vide infra)—to 

enable more comprehensive analysis.4,31–34 

 A recent direction in the field has focused on integrating voltammetric methods with 

computational analyses to improve the robustness of established methods and potentially extract 

greater value from incomplete, convoluted, or otherwise complex data sets (e.g., multicomponent 

solutions). These methods have been developed for a variety of purposes, including analyte 

detection (e.g., biomarkers, explosive compounds) and property quantification (estimating 

transport and electrochemical features).35–48 However, these computational approaches often 

leverage physics-agnostic methods (e.g., support-vector machines, partial least squares regression) 

that are difficult to extrapolate to conditions not directly examined in the training data.46–49 In this 

vein, the integration of physical models into computational voltammetry algorithms may build 

upon the demonstrations already present in the field to enable more powerful algorithms. Efforts 

towards physics-augmented machine learning algorithms for voltammetry are already underway; 

indeed, inferential algorithms, combined with a physics-based voltammetry simulator (e.g., 

MECSim), can estimate parameter values and can even discriminate between candidate electron 

transfer mechanisms (e.g., Butler-Volmer, Marcus-Hush).23,24,50,51 Similarly, we ourselves have 

shown that physical models, binary hypothesis testing, and Bayesian inference can identify 

dissolved redox-active analytes, which may be useful for advancing in situ and operando 

characterization of electrochemical systems.1 A general summary of this formulation to identify 

redox-active compounds in electrolyte solutions is shown in Figure 1. 
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Figure 1. Flow diagram illustrating how compounds can be identified from multiple voltammetric 

techniques using Bayesian inference. (a) First, the training process involves experimental three-electrode 

studies of individual compounds used to assemble a library that catalogues physical descriptors for each 

species. “Macro” and “Micro” respectively refer to macroelectrode and microelectrode voltammetry, both 

of which are used in this work; the corresponding potential axes are not to scale. (b) Subsequently, to test 

the protocol, previously unseen experimental data are subsequently presented, and the catalogued 

descriptors are used to simulate multiple types of voltammograms. These are then compared to the 

experimental data using a regression step followed by a classification step that utilizes Bayesian inference 

to output the probability that each analyte is present in the solution being tested. (c) Finally, additional 

analyses can also be conducted to assess these results and potentially improve the inferential process. 

In this example system containing four compounds (A–D), the training in Figure 1a is 

conducted by developing a library that contains the physical descriptors (e.g., redox potential, 

diffusion coefficients) for the oxidized and reduced forms of each compound; these are estimated 

by evaluating voltammograms of each species in isolation. Once the training is complete (i.e., the 

library is constructed), the algorithm is tested according to Figure 1b. Specifically, previously 

unseen experimental data are pre-processed (e.g., background signal subtraction) and introduced 

into the compound identification protocol to label the composition of the electrolyte solution from 
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which the voltammogram was obtained. Modeled voltammograms normalized by analyte 

concentration (i.e., output units of A m3 mol–1)—simulated using the physical parameters from the 

library—are then regressed to the experimental data by adjusting the concentration weights. The 

presence of each compound is subsequently classified using binary Bayesian hypothesis testing 

(i.e., it is either present or absent) based on the goodness-of-fit between the modeled and 

experimental voltammograms. Output probabilities are calculated and reported using Bayes’ Rule 

and Bayes’ Information Criterion, and compounds with a probability of 50 % or greater are 

declared present. 

Though not directly pursued in our prior study, data obtained via other methods of interrogation 

(e.g., nuclear magnetic resonance (NMR), mass spectrometry, alternate electrochemical methods), 

as highlighted by the green text in Figure 1c, may be necessary to support—and potentially 

improve—the outcomes of this protocol. The initial demonstration of this algorithm, where only a 

single voltammogram was analyzed, was successful across a range of conditions and multiple 

macroelectrode voltammetric waveforms (CV and CSW voltammetry), but its failure to correctly 

determine solution compositions at higher CV scan rates (200–1000 mV s–1), along with its 

inability to differentiate degenerate compounds—those with very similar redox potentials (≤ 15 

mV)—emphasizes the need for improved detection accuracy.1 

Accordingly, we introduce a second analytical technique to improve the overall accuracy of 

the compound identification protocol. In principle, any non-redundant technique can be 

implemented, so long as the data quality is sufficient. We specifically explore suitably distinct 

voltammetry techniques—macroelectrode CSW and microelectrode CV (henceforth referred to as 

“microelectrode voltammetry”)—to explore the feasibility of this approach. More distinct methods 

of interrogation (e.g., macroelectrode CV and UV-Vis) are hypothesized to jointly extract more 
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information from a system of interest, as each technique can probe more features of an electrolyte 

solution that the other methods cannot discern. 

In this work, we first discuss how two voltammetry modes can be integrated by using two 

approaches: sequential (“one after another”) and simultaneous (“all at once”) analyses. We then 

examine the performance of the sequential method and compare it to the results from individual 

analyses of macroelectrode CSW and microelectrode voltammograms. Subsequently, we 

demonstrate that simultaneous evaluation of CSW and microelectrode voltammograms is 

particularly sensitive to experimental errors but, when the experimental parameters and library 

content are sufficiently accurate and precise, may differentiate between nearly-degenerate 

compounds—a difficult feat to accomplish using only electrochemical methods (especially those 

insensitive to chemical structure). Finally, we explore additional strategies to further improve the 

accuracy of this method. Overall, by using the case study of macroelectrode CSW and 

microelectrode voltammetry, we demonstrate that implementing two voltammetric techniques—

and perhaps multiple experimental techniques in general—may aid in analyses of electrolyte 

solutions for both fundamental and application-based purposes. 

 

2. Methods 

 Experimental 

All chemicals were used as received, and all experiments were conducted in a glovebox 

(MBraun Labmaster) filled with argon (Airgas, purity of ca. 100 %, catalog number AR UHP300); 

the glovebox temperature was measured to be 27 °C using a glass thermometer (VWR®, ± 2 °C). 

Five phenothiazines were tested in this work—10H-phenothiazine (PT), 10-methylphenothiazine 

(MPT), 10-ethylphenothiazine (EPT), 10-isopropylphenothiazine (iPrPT), and 10-
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phenylphenothiazine (PhPT)—which were synthesized and purified as previously described.1 We 

note the oxygen concentration in the glovebox was higher than in our prior report (here, ≤ 50 ppm 

total on average, as compared to an estimated ≤ 10 ppm in the previous study), though this change 

appears to have a negligible effect on the behavior of the phenothiazines—at least on the timescales 

of these experiments—as the algorithm performance and outcomes are consistent with the previous 

study that examines the exact same analytes.1 All the materials were opened and stored in the 

glovebox and were directly transferred from their container to a 5 mL volumetric flask with a 

plastic spatula to ensure the material mass in the solution matched the balance reading (Mettler 

Toledo, Balance XS64, 61 g capacity with ± 0.1 mg readability). Every solution studied contained 

between 1–10 mM of either ferrocene (Sigma Aldrich, 98 %, F408) or phenothiazines, along with 

0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma Aldrich, ≥ 99 %, 86879) in 

dichloromethane (DCM, ACROS OrganicsTM, 99.9 %, AC610931000 or Sigma-Aldrich®, ≥ 

99.9 %, 650463). Ferrocene was used as an internal standard for the reference electrode in a 

separate solution (also containing 0.1 M TEAPF6 in DCM) at a concentration between 1–10 mM.52 

The working electrode was a gold disk microelectrode (Bioanalytical Systems, Inc. (BASi), 10 

μm dia., MF-2006)—referred to as the “microelectrode”—or a glassy carbon disk macroelectrode 

(CH Instruments, 3 mm dia., CHI104)—referred to as the “macroelectrode”. Both were polished 

with 0.05 μm alumina powder (Buehler MicroPolishTM Powder, 4010075) in deionized (DI) water 

(Millipore, 18.2 MΩ cm), rinsed with DI water, and dried using compressed air. Occasionally, the 

polishing process was first conducted with 0.3 μm alumina powder (Buehler MicroPolishTM II 

Powder, 406323016) and then repeated using the 0.05 μm alumina powder. Neither lens paper nor 

sonication was employed in the polishing process. Appropriate care was taken after polishing to 

ensure the electrode surfaces did not contact any material aside from air (and in the glovebox, Ar) 
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prior to immersion in the solution of interest. The Ag/Ag+ electrode was prepared using a non-

aqueous reference electrode kit (BASi, MF-2062) filled with 10 mM silver hexafluorophosphate 

(Sigma-Aldrich®, 98 %, 208361) and 0.5 M tetraethylammonium tetrafluoroborate (Gotion, > 

99.9 %) in acetonitrile (Sigma-Aldrich®, ≥ 99.9%, 34851); since all Ag/Ag+ electrodes were 

referenced to the ferrocene redox event, the difference in reference fill solution composition is 

expected to negligibly impact the reported applied potential. The counter electrode was a Pt coil 

electrode (BASi, 99.95 %, MW-1033). When not in use, the Ag/Ag+ reference was stored in the 

glovebox in a fill solution of the same composition as its inner chamber. 

Two voltammetry techniques were employed: CV and CSW voltammetry. CV was conducted 

using both the microelectrode and macroelectrode, while CSW voltammetry was only conducted 

with the macroelectrode. All microelectrode studies were performed using a CHI630E potentiostat 

(CH Instruments, Inc.) and processed using the accompanying program “CHI630E 

Electrochemical Analyzer”, and all macroelectrode experiments were performed on a VSP 

potentiostat (BioLogic) with EC-Lab® software. All data was also processed with Microsoft Excel 

and MATLAB® R2020a. The potential bounds were  

–0.3 V and 0.75 V vs. the Ag/Ag+ reference electrode; the most negative and initial potential  

(–0.3 V vs. Ag/Ag+) was set to be approximately 400–500 mV negative of the ferrocene redox 

potential to minimize possible distortions of the redox events of interest. The initial scan was 

oxidative—towards more positive potentials—and the turnaround (i.e., the most positive) potential 

of the voltammetric experiment (0.75 V vs. Ag/Ag+) was set to be between 200–400 mV positive 

of the redox potential of the phenothiazine(s) probed. More specifically, the most positive potential 

was set far enough away from the phenothiazine redox potential as to minimally influence the 

voltammogram shape10 but not so far as to access the second electron transfer event of the 
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phenothiazine to an appreciable extent,6 to oxidatively decompose the solution, or to alter the 

electrode surface chemistry. 

Microelectrode voltammograms were acquired at a scan rate of 10 mV s–1, with a rest time of 

2 s before acquisition, with a potential step size of 1 or 5 mV (between each data point), and with 

a sensitivity of 1·10–8 or 1·10–9 A V–1. In turn, the CSW voltammetry step height was either 1 or 

10 mV, the pulse height was 50 mV, and the pulse duration (per half-period) was 100 ms, resulting 

in an effective scan rate of 5 or 50 mV s–1, respectively. The potential was held at its initial, most 

negative (i.e., reductive) value for 2 s before the initial positive (oxidizing) sweep, and the reported 

current for each potential step was calculated by averaging the raw current over the last 30 % of 

the step. Macroelectrode cyclic voltammograms were obtained at 10, 25, 50, 100, 200, and 500 

mV s–1; all macroelectrode voltammograms were corrected for resistance-driven potential 

distortions using the BioLogic protocol “iR determination with electrochemical impedance 

spectroscopy” (the “ZIR” protocol). For the “ZIR” protocol, the working electrode potential was 

set to its open-circuit value; a sinusoidal potential with a 20-mV amplitude and a 100-kHz 

frequency was applied, a delay of 10 % of the period duration was added before the measurement, 

and the reported resistance was the average of four independent measurements. The resistance was 

compensated 85 % by the software during the experiment, with the remaining 15 % manually 

corrected after the experiment. The solution resistance was not fully compensated (100%) during 

data acquisition to avoid possible oscillations in the potentiostat.53 

To calibrate the applied potential to that of the ferrocene redox event and to estimate the 

microelectrode radius, a separate solution of ferrocene was probed. To enable rapid transfer of the 

three-electrode configuration between analyte solutions, two separate vials containing only DCM 

solvent (no analyte or supporting salt) were used to rinse the electrodes. More specifically, after 



10 

 

removing the electrodes from the first solution containing analytes, they were gently dried with 

Kimwipes (no lens paper was used)—avoiding direct contact with the working electrode surface—

and then transferred to a solvent-containing vial. After residing and being intermittently swirled in 

the solution for 10–20 s, they were again removed, gently dried with Kimwipes, and inserted into 

the second vial containing only solvent. The rinsing process was repeated, and after being dried 

with Kimwipes a second time, they were inserted into the second electrolyte solution. Though 

somewhat laborious, this approach minimizes cross-contamination, as demonstrated in studies of 

solutions originally containing only solvent, supporting salt, and ferrocene within Supplementary 

Information Figure S1. For each solution, at least six macroelectrode and six microelectrode 

voltammograms were acquired for statistical rigor, while fewer (at least three) were obtained for 

ferrocene solutions probed to enable a degree of statistical rigor while minimizing the risk of 

electrode fouling.15,54 For most solutions studied, the microelectrode voltammograms were 

acquired before the macroelectrode voltammograms. 

 

 Library development 

Two compound libraries were utilized in this study. The first—referred to as the “previous 

library”, “prior library”, or “old library”—was the same as the one used in our prior study,1 while 

the second was developed specifically for this study and is referred to as the “new library”. Twelve 

voltammograms were used to construct each compound entry for both libraries—the previous 

library used only CSW voltammograms, whereas the new library used eight CSW voltammograms 

and four microelectrode voltammograms. Below, we describe the construction process for the new 

library. 
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2.2.1. Modified library construction from both cyclic square wave and microelectrode voltammograms 

The new library construction process is more involved than the process to compile the previous 

library,1 as microelectrode and macroelectrode voltammetric responses exhibit different 

dependencies on the same electrochemical and transport descriptors (e.g., redox potential, 

diffusion coefficient). In particular, the mid-point potential—defined as the average of the two 

peaks for reversible macroelectrode voltammograms and as the position of the half-max current 

for microelectrode voltammograms—relates to the redox potential and the ratio of diffusion 

coefficients with different scalings, respectively shown in Equations (1) and (2).10 Rather than 

obfuscating analyses, these distinctions enrich library construction; macroelectrode and 

microelectrode voltammograms may enable more accurate joint estimates of the true diffusion 

coefficient ratio and redox potential. 
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In Equations (1) and (2), 
UME

mid,iE  (V vs. a reference redox event) represents the mid-point 

potential for a microelectrode voltammogram (“UME” is short for ultramicroelectrode 

voltammetry)—with i  (–) representing any generic analyte—while 
CV/UME

0,iE  (V vs. a reference 

redox event) is the respective estimated redox potential of the couple obtained from 

macroelectrode and microelectrode experiments; the predicted values are not necessarily equal due 

to the coupling present in Equations (1) and (2). GR  (8.314 J mol–1 K–1) is the universal gas 

constant, T  (K) is the absolute temperature—typically set at 300.15 K in this work based on the 

measured glovebox temperature— F (96485 C mol–1) is the Faraday constant, and ,O iD  and ,R iD  
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(both m2 s–1) are the respective diffusion coefficients of the oxidized and reduced forms of species 

i . 
CV

mid,iE  (V vs. a reference redox event) is the mid-point potential for a macroelectrode 

voltammogram of species i ; “CV” represents cyclic voltammetry, but this relation also holds for 

macroelectrode CSW voltammetry of a reversible redox couple12 and is empirically validated for 

quasireversible couples in Figure S2. Though the temperature for this validation is 298.15 K, the 

generally observed behavior is robust to minor fluctuations in temperature (e.g., glovebox 

temperatures of 26 °C – 27 °C (299.15 K – 300.15 K)). 

Once the experimental voltammograms were acquired, the diffusion coefficient of the reduced 

species was determined by using the estimated microelectrode radius, microelectrode 

voltammograms acquired almost immediately after assembling the three-electrode configuration, 

and steady-state microelectrode models.55–57 For this regression process, the redox potential was 

also estimated, and, for simplicity, the ratio of diffusion coefficients was assumed to be 1 (i.e., 

, ,R i O iD D= )—the resulting potential estimate is the mid-point potential, rather than the true redox 

potential. When estimating these parameters from microelectrode voltammograms, only reversible, 

or diffusion rate-limited, electron transfers were modeled as, to the best of our knowledge, an exact 

closed-form expression for a quasireversible (kinetic rate-limited) electron transfer has yet to be 

derived. 

Subsequently, macroelectrode CSW voltammograms were analyzed in the same manner as in 

our previous study.1 Namely, both reversible and quasireversible electron transfer mechanisms 

were assessed, and, unlike when microelectrode voltammograms were evaluated, both ,R iD  and 

,O iD  were allowed to be free parameters. The results from these parameter estimation routines can 

be jointly evaluated by rearranging Equations (1) and (2) to estimate the true ratio of diffusion 
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coefficients (i.e., 
1

, ,O i R iD D−
), and consequently, the estimated true redox potential. Derivation of 

Equation (3) assumes the true redox potentials are equal across voltammetric modes 

(
CV UME

0, 0,i iE E= ). 
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estim,true

Od  (–) represents the diffusion coefficient ratio, which can then be substituted directly into 

Equations (1) or (2) to predict the estimated true redox potential 
estim,true

0,iE  (V vs. a reference redox 

event). 

 As a result, the true diffusion coefficient ratio and the true redox potential can be estimated. 

These parameters, along with the diffusion coefficient of the reduced species (determined from the 

initial set of microelectrode voltammograms), were subsequently catalogued. The library used to 

probe microelectrode voltammograms only considered reversible electrochemical kinetics; the 

macroelectrode library, in turn, also accounted for quasireversible kinetics (if appropriate). Though 

multiple simplifying assumptions are invoked in this procedure, the goal of constructing a new 

library is not to perfectly catalog the physical properties of each phenothiazine, but rather to 

improve the performance of the protocol compared to when only a single technique is used, which 

we indeed demonstrate to be possible (vide infra). 

 

 Compound identification using both cyclic square wave and microelectrode voltammetry 

Compound identification was conducted using a similar framework as previously reported and 

as discussed in the introduction.1 To summarize, the physical parameters catalogued in the library 

were used to simulate macroelectrode and microelectrode concentration-normalized 
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voltammograms (units of A m3 mol–1) using the same potential waveform as the experimental data 

of interest. These normalized curves were then fit to experimental data using weighted least-

squares regression; binary hypothesis testing was subsequently conducted using Bayesian 

inference to classify the presence or absence of each member of the library. For instances involving 

only a single voltammogram, a uniform (i.e., maximal entropy) prior was used. 

Our previous framework was extended to incorporate multiple voltammograms into the 

inferential process. Two approaches—the “sequential” and “simultaneous” approaches, along with 

the previous “individual” approach—are presented using graphical representations in  

Figure 2. As previously mentioned, a single (“individual”) analysis applies Bayes’ rule to only 

one voltammogram to infer the solution composition. In contrast, sequential analyses transfer 

information from one inferential process to the next by using the output probabilities from the 

previous state estimation as the priors for the current state estimation. Here, prior probability mass 

functions for the CSW voltammetry analyses were the output posterior probabilities from the 

microelectrode analyses and vice versa. 

 
 

Figure 2. Graphical models illustrating the inferential workflows utilized in this study. Within each portion, 

information is processed towards the right. (a) “Individual” analyses: only one observation is evaluated. 

(b) “Sequential” analyses: two voltammograms / voltammetric techniques are evaluated sequentially. The 

calculated probabilities from the first dataset serve as the prior probabilities for evaluating the second 

dataset. (c) “Simultaneous” analyses: two voltammograms / voltammetric techniques are evaluated as one 

“super-observation”, resulting in a single inference. 
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2.3.1. Simultaneous analyses 

Simultaneous analyses, in turn, utilize the same overall approach of the single inferential 

processes (i.e., only a single set of probabilities is generated) but increase in complexity, as two 

voltammograms were concurrently evaluated as a single observation. As such, more detailed 

treatment is required. The probability distribution function for the simultaneous protocol is treated 

as a multivariate normal distribution. 

( ) ( ) ( ) ( )
1

T
12

1
; , det 2 exp

2
j j j j j j j j j jP 

−
− 

= − − − 
 

    x x x     (4) 

In Equation (4), jP  (–) is the probability distribution function at the j th (–) data point within the 

string of interest (i.e., the j th point out of tN  (–) total points), jx  (units can vary) is the vector-

valued random variable of interest at the j th data point, j  (units can vary) represents the vector 

of average values at the j th data point, and j  (units can vary) represents the covariance matrix, 

also at the j th data point. Note that Equation (4) is equivalent to the multivariate normal 

distribution of the error between the two voltammetric techniques; also note that j  is unlikely to 

be only a diagonal matrix, as both techniques are correlated via the physical behavior of the redox-

active analyte. Further, as this work only evaluates two voltammetric techniques simultaneously, 

the dimensions of jx , j , and j  are 2 × 1, 2 × 1, and 2 × 2, respectively. In this instance, the 

covariance matrix can be analytically inverted without significant effort to expand Equation (4) 

and to potentially decrease computation time. 
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In Equation (5), ,j kx  (units can vary), ,j k  (units can vary), and 
,k l

j  (units can vary) are 

respectively the elements of the random vector, average vector, and covariance matrix for the j th 

data point; k  (–) and l  (–) are counters. In this work, jx  represents the experimental (difference) 

current, j  represents the modeled (difference) current, and j  represents the approximate 

experimental covariance. 

 Within the simultaneous protocol, additional data pre-processing must also be conducted. First, 

the two voltammograms might not have the same number of points or the same potential scaling—

for example, the CSW voltammogram may have a potential mesh granularity of 10 mV while that 

of the microelectrode voltammogram has a granularity of 1 mV—meaning at least one of the 

voltammetry data arrays must be resized. In this work, linear interpolation was used to scale the 

potential mesh of the microelectrode voltammogram to that of the CSW voltammogram. In 

addition, the potential values may not initially align—for example, after reference electrode 

potential calibration to the ferrocene redox event, the CSW voltammogram may be measured 

between –0.5 to 0.55 V vs. FeCp2
0/+, while the same of the microelectrode voltammogram may be 

–0.45 to 0.6 V vs. FeCp2
0/+. To avoid issues related to extrapolation arising from these differing 

potential bounds, data points were manually truncated. 

Only one voltammogram for each technique was analyzed, meaning a covariance matrix could 

not be directly calculated from the experimental data. To resolve this, the covariance matrix was 

synthetically generated based on the variances for each of the individual techniques. Specifically, 
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12 random numbers were generated according to a univariate normal distribution for each 

technique at each data point (i.e., at each applied potential), where the mean was the modeled 

current and the standard deviations were those predicted from experimental voltammograms of 

ferrocene. The covariance was calculated between the two strings of 12 random numbers to result 

in the final covariance matrix. A similar approach was also used to estimate the covariance of the 

blank electrolyte solution voltammograms—systems containing only solvent and supporting 

salt—needed for background signal subtraction (see Figures S9 – S12). Though this approach 

enables individual sets of dissimilar voltammograms to be analyzed, an additional measure of 

randomness is introduced into the protocol compared to when one voltammogram from a single 

technique is evaluated. However, based on multiple analyses of the same voltammogram, this 

added variability does not significantly alter the predicted compositions (e.g., Table S24). 

 

 Synthetic data analyses 

Synthetic data, generated from the library with added Gaussian noise, was also studied to 

evaluate the protocol performance in the absence of experimental errors difficult to quantify or to 

control. Specifically, synthetic data was generated from the new library for both CSW and 

microelectrode voltammetry. Concentration weights for each compound—and thus the 

composition of the voltammogram—are set by the user. White (Gaussian) noise was then added 

with zero-mean and 1 % of the experimental variance for each respective technique, tentatively 

attributed to potentiostat noise (empirically observed). The remaining 99 % of the standard 

deviation is attributed to other sources of variability (e.g., glovebox temperature fluctuations, 

analytical balance imprecision, differing working electrode roughness factors) and can be (and 

sometimes was) modeled by randomly determining the concentration of each species. However, 
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including this variability did not appear to impact the protocol accuracy, and at the same time, this 

approach leaves the user without knowledge of the specified concentration (i.e., ground truth). A 

visualization of the overall process is presented in Figure 3. 

 
 

Figure 3. Visualization of process used to generate noisy synthetic data (in this case, a cyclic square wave 

voltammogram). First, the physical descriptors from the compound library are used to generate 

concentration-normalized synthetic voltammograms; the concentration of each species is subsequently 

specified by the user. Gaussian noise is then added to account for the variability introduced by the 

potentiostat to result in the final noisy voltammogram. 

In Figure 3,   (A m3 mol–1) is the matrix of concentration normalized currents, C  (mol m–3) 

is a vector of concentrations, iC  (mol m–3) is the concentration of species i , I (A) represents a 

vector of currents, and nI  (A) represents a vector of noisy synthetic currents. As this synthetic 

data was directly generated from the existing library and physical (reaction-diffusion) models, data 

pre-processing was significantly simpler; specifically, no background correction was required, no 

ohmic losses needed to be compensated, and potential referencing between the Ag/Ag+ and 

FeCp2
0/+ redox couples was no longer necessary. However, the probability that a signal arose from 

background noise (e.g., non-faradaic processes)—rather than from the redox event of an analyte—
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was still estimated for synthetic data studies to maintain a consistent comparison with experimental 

analyses. When calculating this probability, the maximum standard deviation of the experimental 

blank electrolyte solution voltammograms was used instead of analyzing the entirety of the 

corresponding scan(s). 

 

3. Results and discussion 

 Individual analyses 

3.1.1. Cyclic square wave voltammetry 

Baseline analyses of individual voltammograms can help establish the foundational knowledge 

needed to assess the performance of the sequential and simultaneous algorithms. As such, CSW 

voltammograms and microelectrode voltammograms were individually evaluated. The first 

solution tested was similar in composition to that of our previous study—1 mM PT and 1 mM 

MPT in an electrolyte solution containing 0.1 M TBAPF6 in DCM—and Figure 4 illustrates the 

resulting inferential fitting process for CSW voltammetry.1 
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Figure 4. Analytical workflow for the inferential protocol to identify compounds from a representative CSW 

voltammogram according to the framework in Figure 2a, as illustrated by the graphical diagram in the 

rightmost probability bar graph. The true composition (not revealed to the protocol) is PT and MPT, and 

the inferred composition is boxed. All probabilities less than 1·10–9 are represented as “~ 0”. A maximum 

entropy (i.e., uniform) prior is utilized throughout this work; further, positive difference currents are always 

oxidative (anodic), negative difference currents are always reductive (cathodic), and the initial potential 

sweep is always oxidative (see the horizontal arrow). 

In Figure 4, the previously unexamined experimental data is introduced on the bottom-right 

(via the CSW voltammogram)— aI  (A) is the anodic (oxidative) difference current, cI  (A) is 

the cathodic (reductive) analogue, and the horizontal arrow indicates the initial voltammetric 

sweep is oxidative. Analogous to the process illustrated in Figure 1, the physical parameters in 

the compound library are subsequently used to generate concentration-normalized 

voltammograms using the same potential waveform as the experimental data of interest. These 
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normalized voltammograms, in turn, can be linearly regressed to the experimental data via least 

squares by adjusting the concentration weights—this process results in the dashed magenta fit in 

the same bottom-right graph. This regression is followed by a classification step via binary 

hypothesis testing, where the presence of every individual compound is evaluated by assigning a 

probability using Bayes’ Rule. 

In this work, all individual and sequential analyses use a uniform (i.e., maximum entropy) prior 

when no previous observations are available, as visualized in the top-left bar graph of Figure 4. 

The uniform prior is with respect to the presence or absence of each individual compound, rather 

than a uniform probability mass function across all five species (where each value would be 0.2). 

This prior belief is subsequently evaluated with the likelihood function—approximated using 

Bayes’ Information Criterion—and is normalized to output the posterior probability reported in 

the top-right bar graph, which is subsequently multiplied by the probability that the peak in 

question is not a background (i.e., non-faradaic) process. Compounds with final probabilities 

greater than 50 % are classified as present according to the Maximum a Posteriori principle, while 

species with a probability lower than 50 % are eliminated from consideration.58 Finally, regression 

is performed with the analytes that remain after the culling—the final fit is represented as the black 

line in the bottom-right of Figure 4. Consistent with our previous work, the protocol is accurate, 

correctly determining that PT and MPT are present in the solution.1 

 

3.1.2. Microelectrode voltammetry 

The exact same electrolyte solution was also probed using microelectrode voltammetry—the 

analysis for a representative microelectrode voltammogram is presented in  

Figure 5. Though the initial regression fits the data well—as illustrated with the dashed pre-cull 

fit—the classification step eliminates MPT from consideration (i.e., a false negative), indicating 
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microelectrode voltammetry may not characterize multicomponent solutions as well as 

macroelectrode CSW voltammetry. The variation in performance is hypothesized to arise from the 

difference in the shapes of redox events for CSW and microelectrode voltammetry (peaks vs. 

sigmoids, respectively), which alter microelectrode voltammetry baseline currents when 

investigating electrolyte solutions containing multiple analytes. 

 

 
 

Figure 5. Evaluation of an individual representative microelectrode voltammogram for composition 

estimation according to the framework in Figure 2a, as illustrated by the graphical diagram in the 

probability bar graph; Figure 4 depicts the analogous case for CSW voltammetry. The true composition 

(not revealed to the protocol) is PT and MPT, and the inferred composition is boxed. Note that uniform 

priors (Figure 4) are utilized. Positive currents are always oxidative (anodic); though not shown, negative 

currents are always reductive (cathodic); and the initial potential sweep is always oxidative (see the 

horizontal arrow). All probabilities less than 1·10–9 are represented as “~ 0”. Note that the horizontal lines 

below the abscissa likely arise from small bars that represent near- (but non-) zero probabilities and do 

not indicate negative probabilities. 
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aI  (A) is the anodic (oxidative) current. The misidentification in Figure 5 can potentially be 

circumvented by including additional data points (e.g., by using a finer potential mesh granularity). 

Indeed, when a synthetic voltammogram is generated with a potential mesh of 50 μV between each 

data point (instead of 1 mV per point), the probability of existence for MPT increases to nearly 1 

(Table S21). However, caution should be used when utilizing this approach, as the routine may 

not necessarily become more accurate (vide infra). 

  

 Sequential analyses 

Following the individual voltammetric analyses, the sequential framework ( 

Figure 2b) was subsequently evaluated to improve identification accuracy for CSW and 

microelectrode voltammetric workflows. Specifically, the studies illustrated in Figure 4 and  

Figure 5 are combined by setting the prior probabilities for the CSW voltammetry analysis equal 

to the posterior probabilities from the microelectrode analysis. In  

Figure 6, the sequential analysis workflow can correctly identify that both PT and MPT are present 

in the experimental voltammogram. In addition, the probability estimates slightly improve 

(probability of < 1·10–9 assigned to EPT) compared to when solely CSW voltammetry experiments 

are examined (EPT probability of ca. 3·10–6), demonstrating the simultaneous method may 

increase the accuracy of high-performing techniques. This result is also corroborated from the 

sequential analysis of synthetic data (Table S17 and Table S22). As such, these findings indicate 

that sequential analyses of voltammograms may correctly infer the solution composition, even if 

one of the techniques is not completely accurate in isolation. The order in which the techniques 

were evaluated (i.e., whether CSW or microelectrode voltammograms was assessed first) also did 
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not affect the output probabilities for the PT-MPT system; namely, minimal “probability hysteresis” 

was exhibited by the system of interest—however, this may not always be the case (vide infra). 

 

 
 

Figure 6. Sequential evaluation of the same representative voltammograms analyzed in Figure 4 and  

Figure 5 according to the framework in Figure 2b, as illustrated by the gray graphical diagram in the 

rightmost probability bar graph. Microelectrode voltammetry is evaluated first, followed by cyclic square 

wave voltammetry. The true composition (not revealed to the protocol) is PT and MPT, and the inferred 

compositions are boxed. All probabilities less than 1·10–9 are represented as “~ 0”. Note that the horizontal 

lines below the abscissa likely arise from small bars that represent near- (but non-) zero probabilities and 

do not indicate negative probabilities.  

 

 Simultaneous analyses 

The simultaneous approach (Figure 2c) was subsequently evaluated; microelectrode and CSW 

voltammograms are combined as a single larger observation (i.e., a “super-observation”). Beyond 

potentially improving protocol accuracy as compared to individual analyses, this framework may 



25 

 

differentiate between degenerate compounds. Specifically, the current signal for CSW and 

microelectrode voltammetry has different power-law dependencies on the diffusion coefficient 

(approximately 0.5 and exactly 1, respectively), which may enable differentiation between 

compounds with the same redox potential but dissimilar diffusion coefficients.10,12 

 

3.3.1. Simultaneous analysis—PT and MPT blend 

Inspired by this distinction in power law dependencies, we first use the simultaneous 

framework to evaluate the representative CSW and microelectrode voltammograms of the PT-

MPT blend studied thus far. Unfortunately, the simultaneous protocol does not successfully 

classify the solution composition; rather, it predicts that PT, iPrPT, and PhPT are present (two 

false positives and one false negative). This prediction error is posited to arise from inaccuracies 

in input parameter estimates—such as the microelectrode radius, which was sometimes observed 

to differ from its nominal value listed by the manufacturer (perhaps due to sub-optimal in-house 

polishing)—and in imperfect library construction. This hypothesis is qualitatively supported by 

the voltammetric fits on the bottom of Figure 7—if the concentrations of PT and MPT were 

increased to better fit the CSW voltammogram data, the simulated microelectrode voltammogram 

current would also increase, becoming much greater in magnitude than the experimental data. 

Further, this hypothesis is validated using synthetic data, whose input parameters and library are 

exactly known; indeed, there, the composition is accurately estimated across seven trials (results 

in Table S24). Additional studies with synthetic data beyond the scope of this work may offer 

further insight into the performance of the simultaneous protocol (e.g., the sensitivity of the 

performance of the protocol performance to the estimated microelectrode radius). 
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Figure 7. Simultaneous evaluation of the same representative voltammograms analyzed in Figure 4 and  

Figure 5 according to the framework in Figure 2c, as illustrated by the gray graphical diagram in the 

probability bar graph. The true composition (not revealed to the protocol) is PT and MPT, and the inferred 

composition is boxed. All probabilities less than 1·10–9 are represented as “~ 0”. 

Greater parameter accuracy is necessary because both voltammograms are being regressed 

using a single set of concentrations. This process contrasts with the individual and sequential 

analyses—where one set of concentrations is fit per voltammogram—to result in a more restrictive 

regression process for simultaneous method. As such, we tentatively conclude that the 

simultaneous analysis, while in principle able to correctly label analytes, suffers in the case of 

CSW and microelectrode voltammetry because input parameters may be sensitive and require a 

high degree of accuracy. We also hypothesize this constraint is generally present when using 

techniques that exhibit physical dependencies on the same parameters, though this currently 

remains unconfirmed and is beyond the scope of this study. 
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3.3.2. Simultaneous analysis—EPT and PhPT electrolyte solutions 

Despite the practical difficulties that may arise when conducting the simultaneous analysis, the 

protocol was explored further to determine whether the simultaneous approach could differentiate 

nearly-degenerate compounds. Specifically, we studied the EPT and PhPT pairing, whose 

estimated redox potentials differ by ca. 1.2 mV. As such, this study may not only help determine 

the capabilities of the simultaneous approach but also may help reveal general limitations in the 

protocol when probing nearly-degenerate species. 

Three EPT and three PhPT datasets (six total) were studied to evaluate the efficacy of the 

simultaneous approach with varying degrees of experimental uncertainty. First, synthetic data of 

both compounds were studied. Subsequently, voltammograms of EPT and PhPT were probed from 

a solution also studied for library development. By using the same solution, the experimental errors 

in library construction and the testing data are more likely to be similar, potentially reducing their 

undesirable effects; moreover, by dividing the voltammograms from this single solution into 

training and testing datasets, statistically rigorous analyses can be conducted. Finally, experimental 

voltammograms of EPT and PhPT were analyzed from a different solution than the one used for 

library construction. 

Individual, sequential, and simultaneous analyses for voltammograms of only EPT, taken from 

one of the solutions used in library construction via a training-testing data split, are visualized in  

Figure 8. There, the top right bar plot visualizes four different types of analyses for each compound. 

For each phenothiazine, the left-most bars (patterned with gray diagonal stripes) depict the 

estimated composition when only one CSW voltammogram is examined. The left-center bar for 

each compound (gray dots) depicts the estimated composition when only one microelectrode 

voltammogram is examined, the right-center bar (gray diamonds) represents the calculated 
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composition when sequential analyses are studied—minimal probability hysteresis occurs—while 

the right-most and fully-colored bars indicate the probabilities when the simultaneous approach is 

conducted. The reported numbers correspond to the estimated probabilities for the simultaneous 

analysis. 

 
 

Figure 8. Analyses of voltammograms taken from a solution examined to catalogue the EPT library entry 

using a training-testing data split; these specific voltammograms were not used in the construction of the 

library. In the probability bar graph, the results for the individual and sequential analyses are patterned 

gray bars, while the results for the simultaneous analysis are shown in full and colored bars. Note that 

“CSWV” is short for “CSW voltammetry”. The reported numerical probabilities are from the simultaneous 

analysis, as emphasized via the gray graphical diagram from Figure 2c, and only the observations for the 

simultaneous analyses are plotted. The true composition (not revealed to the protocol) is EPT, and the 

inferred composition is boxed. All probabilities less than 1·10–9 are represented as “~ 0”. Note that the 

horizontal lines below the abscissa likely arise from small bars that represent near- (but non-) zero 

probabilities and do not indicate negative probabilities.  

As EPT and PhPT are nearly degenerate, the protocol struggles to correctly identify the 

solution composition for the individual CSW and microelectrode voltammetry analyses. 

Unexpectedly, the protocol even estimates that PhPT is present with significant confidence for the 
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individual microelectrode analysis (probability of 0.9992)—this may potentially be an artifact of 

imperfect library construction combined with the similar redox potentials of EPT and PhPT (ca. 1 

mV difference). Sequential analyses also incorrectly classify that no compound is present in the 

solution, because the only information passed from one observation to the next is the posterior 

probabilities—the actual voltammograms are not transferred between analyses. Accordingly, 

within the sequential approach, voltammograms are still individually evaluated during the 

regression step; the only interaction with other observations occurs during probability 

computations. 

Despite the misidentifications using individual and sequential methods, the simultaneous 

approach correctly identifies EPT as the only compound present in the solution, demonstrating that 

this method is potentially capable of differentiating between similar compounds when 

experimental CSW and microelectrode voltammetry are used as joint techniques. However, the 

quality of the fits to the experimental voltammograms are not particularly high, suggesting there 

are likely remaining inaccuracies in the experimental and / or library parameters. This observation 

is encouraging, as it suggests the parameters do not need to be known with perfect accuracy to 

identify compounds correctly—rather, they need to meet a particular (presently unquantified) 

threshold that likely depends on multiple factors, such as the library makeup (e.g., imperfect 

feature estimations), instrument noise, and solution composition complexity (i.e., the threshold 

might be more easily met when evaluating single component vs. multicomponent solutions). 

Overall, Figure 8 indicates that the simultaneous method can differentiate nearly-degenerate 

compounds in an experimental system if the input parameters and the library are known with 

sufficient accuracy. This analysis also partially reveals further protocol limitations. Specifically, 

the CSW and microelectrode voltammetry protocols are challenged to identify similar 
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compounds—such as EPT and PhPT—when testing solutions that were not used for library 

construction (Figures S7 and S8). This finding also addresses an open query from our prior report; 

there, fast scan rate CV stymied the ability of the protocol to differentiate between MPT and iPrPT 

(redox potential difference ca. 15 mV), but analogous limitations were not found for CSW 

voltammetry.1 Now, an approximate range for the lower bound of the potential resolution can be 

estimated for CSW voltammetry—between ca. 15 mV and ca. 1 mV. 

 

 Discussion 

Sequential and simultaneous analyses have respective advantages that can improve detection 

accuracy when CSW and microelectrode voltammetry are used. Sequential analyses can 

potentially classify systems more accurately than the individual techniques can, even if one of the 

techniques incorrectly classifies a voltammogram (as is the case with the microelectrode 

voltammogram of the PT-MPT blend). Though not explicitly studied here, the sequential analysis 

may also be useful when evaluating time-series data of a transient process (e.g., an electrolyte 

solution containing decaying redox-active compounds) based on its graphical structure; the 

previous posterior probabilities serve as an initial guess of the composition at the update time as 

prior probabilities. In turn, simultaneous analyses of CSW and microelectrode voltammetry are 

challenged to study electrolyte solutions because multiple input variables, along with the library, 

must be known with a level of accuracy often difficult to obtain. However, with accurate input 

parameters—or when the errors in library construction and testing are similar—the method can 

identify degenerate compounds, as demonstrated with EPT and PhPT, whose estimated redox 

potentials only differ by ca. 1.2 mV. 
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Despite its promising initial demonstration in this work, the simultaneous method is inherently 

limited in its ability to differentiate degenerate compounds using voltammetric methods alone; one 

technique with a unique power-law dependence on the diffusion coefficient is needed for each 

degenerate analyte. For example, if there were three compounds with nearly the same redox 

potential (e.g., N-propylphenothiazine, EPT, and PhPT),4 three different voltammetric modes with 

different dependencies on the diffusion coefficient would be required—for example, rotating disk 

voltammetry with a proportionality of 2/3D , microelectrode voltammetry with a dependency on 

1D , and CSW macroelectrode voltammetry with an approximate scaling of 1/2D , where D  (m2 s–

1) represents a general diffusion coefficient.10,12 Alternatively, additional spectroscopic techniques 

(e.g., 1H HMR, UV-Vis) could be implemented to more readily differentiate these specific 

phenothiazines (or more generally, compounds that present similar electrochemical features). Non-

linear unsupervised classification methods beyond the scope of this study may also prove useful 

in helping to cluster degenerate compounds.59 Importantly, the fidelity of the library is correlated 

with the ability of the protocol to distinguish between similar compounds. For example, the library 

used in the experimental study could accurately label MPT and iPrPT (difference in redox 

potentials ca. 15 mV) but struggled to differentiate EPT and PhPT (difference in redox potentials 

ca. 1 mV). The synthetic data generated from the same library, in turn, labeled EPT and PhPT 

significantly better—though not perfectly, which is tentatively attributed to the added Gaussian 

noise and / or to the 10× fewer number of points in the CSW voltammogram that may result in less 

“confident” estimates (vide infra). 

As may be expected, the protocol performance improved when multiple techniques are 

included in the library construction. The library used in this study leveraged both CSW and 

microelectrode voltammograms; the library from our previous study,1 which was constructed 
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exclusively from CSW voltammograms, performed appreciably worse. A comparison of the two 

libraries is provided in Table 1. 

 

Table 1: Comparison of the performance of the libraries from our previous work (constructed using CSW 

voltammograms exclusively)1 and this work (constructed both from CSW and microelectrode 

voltammograms) for the experimental voltammograms depicted in Figure 4 and Figure 5. The boxed 

compositions are the ground truth in all instances. Probabilities less than 1·10–9 are represented as “~ 0”. 

Voltammetry 

Technique 
Probabilities 

 Library from previous study1 Library from this study 

 PT MPT EPT iPrPT PhPT PT MPT EPT iPrPT PhPT 

CSW 

(Figure 4) 

~ 1 ~ 1 3·10–4 ~ 0 ~ 0 ~ 1 ~ 1 3·10–6 ~ 0 ~ 0 

Microelectrode 

(Figure 5) 

~ 1 ~ 0 ~ 0 ~ 1 ~ 0 ~ 1 0.002 ~ 0 2·10–5 ~ 0 

  

Table 1 illustrates the superior performance of the library that leveraged microelectrode 

voltammograms in its construction. Namely, while both libraries resulted in false negatives (no 

MPT identified for the microelectrode voltammogram in Figure 5), only the previous library 

exhibited a false positive (microelectrode, iPrPT). Interestingly, when sequential analyses are 

conducted using the previous library, a “probability hysteresis” occurred—when CSW 

voltammograms were evaluated first, iPrPT is identified in the place of MPT, and vice versa when 

CSW voltammograms are evaluated second (results in Table S14 and Table S15). This finding 

suggests that the library must be of a particular quality (presently unquantified) for the sequential 

analyses of CSW and microelectrode voltammetry to be practically useful. Otherwise, conflicting 

results (i.e., probability hysteresis) may arise, which may at best confuse the user and at worst 

misrepresent the solution composition. 

It is also important to iterate that a finer potential mesh granularity (i.e., more points per unit 

volt) does not necessarily mean the protocol becomes more accurate, as mentioned in Section 3.1.2. 

Increasing the number of points typically results in more “confident” predictions, where 
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probabilities closer to 0 and 1 are respectively assigned for (un)likely compounds. This 

phenomenon was experimentally examined by acquiring CSW voltammograms with a step height 

of 1 mV (vs. 10 mV—that is, a finer mesh granularity) of the same PT–MPT blend elsewhere in 

this work. Microelectrode voltammograms were also acquired with a 5-mV step size between each 

point, as we were unable to configure the CHI630E potentiostat software (CHI630E 

Electrochemical Analyzer, last updated in 2021) to have a potential mesh granularity < 1 mV. The 

results of these analyses when the previous library was used are presented in Table 2. 

 

Table 2: Comparison of coarser (left-center columns) and finer (right columns) potential mesh 

granularities using only the library from our previous study (where only CSW voltammograms are 

evaluated).1 The CSW voltammogram step height was either 10 mV (211 total points; coarse) and 1 mV 

(2101 total points; fine), while the potential step was either 5 mV (420 total points; coarse) or 1 mV (2100 

total points; fine) for the microelectrode voltammograms. The baseline values used throughout the earlier 

parts of the study are 10 mV step height for CSW voltammetry and 1 mV step size for microelectrode 

voltammetry. The boxed compositions are the true compositions in all instances. All probabilities less than 

1·10–9 are represented as “~ 0”. 

Voltammetry 

technique 
Probabilities 

 Coarser potential mesh Finer potential mesh 

 PT MPT EPT iPrPT PhPT PT MPT EPT iPrPT PhPT 

CSW ~ 1 ~ 1 4·10–4 ~ 0 ~ 0 ~ 1 ~ 1 2·10–4 ~ 0 ~ 0 

Microelectrode ~ 1 ~ 0 ~ 0 0.792 ~ 0 ~ 1 ~ 0 ~ 0 ~ 1 ~ 0 

 

As the mesh granularity became finer, the probability increased for compounds that were 

assigned a non-zero concentration during the regression step, and vice versa, with the exception of 

EPT in the CSW voltammogram. Note that the probability of iPrPT within the microelectrode 

voltammogram increased as the step size decreased, even though in reality iPrPT is absent. As 

such, if the potential mesh granularity becomes fine enough, the false positive rate may 

concurrently increase—namely, a greater number of compounds may be classified as present, 

when they are actually not present. The converse may also apply—with a coarse enough potential 

mesh, compounds that are present may be classified as absent (i.e., false negatives), as was the 
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case for MPT in Figure 5; a more detailed analysis of this observation can be found in Section S7. 

As such, users must be cognizant of the number of data points being evaluated; calibrating the 

potential mesh by assessing the protocol performance on a solution of similar and known 

composition may enable more accurate identification. 

Overall, sequential and simultaneous analyses of CSW and microelectrode voltammetry have 

the potential to improve detection capabilities, but care must be taken to ensure reliable 

identification. Specifically, a high-fidelity library must be developed, an appropriate potential 

mesh must be leveraged, and input parameters (e.g., electrode radius) must be known with 

sufficient accuracy, especially for simultaneous analyses. When these conditions are adequately 

met, multiple voltammetric techniques can be integrated to improve the overall performance of the 

previously-developed compound identification protocol.1 Compared to the simultaneous workflow, 

sequential analyses are preferred when evaluating the multiple CSW and microelectrode 

voltammograms collected in this study. Within this context, simultaneous analyses should be 

considered only when multiple degenerate compounds are evaluated. The efficacy of these 

methods should be evaluated when using different techniques or probing new analytes—perhaps 

by examining a known standard—to validate whether sequential analyses remain the preferred 

approach. 

 

4. Conclusions 

In this work, we explore and expand upon methods to identify redox active compounds from 

voltammograms using physical models and Bayesian inference. Multiple analytical techniques 

will ultimately be necessary to identify redox-active analytes confidently and reliably in electrolyte 

solutions, and as such, we pursue multiple voltammetric methods—here, CSW and microelectrode 
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voltammetry—which may be readily implemented into electrochemical workflows.7 Specifically, 

in the particular case where CSW and microelectrode voltammetry are considered, we demonstrate 

that sequentially evaluating multiple voltammograms in series improves the overall detection 

accuracy when a sufficiently accurate library is used. We also show that simultaneous analyses 

can differentiate between degenerate compounds using these two voltammetric methods, but the 

input parameters and the library must be more accurate than is necessary for individual or 

sequential analyses. As such, sequential analyses appear to be the best suited for multicomponent 

electrolytes studied in this work. 

While sequential and simultaneous analyses can accurately classify electrolyte composition, 

significant work remains to develop a framework capable of probing electrolyte solutions in 

practical embodiments. For example, sequential analyses are not necessarily guaranteed to perform 

better for every conceivable technique pairing—the respective capabilities of these workflows, 

along with the employed techniques themselves, must be judiciously evaluated to determine the 

most accurate inferential framework for the system of interest. Sequential analyses may also be 

capable of analyzing time-series data, which could be useful in tracking the evolution (e.g., 

degradation) of redox-active species. As such, future efforts should be directed towards applying 

the current compound identification protocol to model evolving systems to further refine its 

performance. 

Additional approaches can be used to differentiate between similar species and generally 

improve detection accuracy. Information from a broader set of experimental methods—either 

analytical (e.g., UV-Vis, NMR) or applied (e.g., cell cycling data) in nature—can potentially be 

incorporated into a similar workflow, so long as these techniques do not provide redundant 

information and the collected data is of sufficient quality. Alternatively, non-linear and 
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unsupervised clustering algorithms (e.g., t-distributed stochastic neighbor embedding) can enable 

classification of degenerate groups;59 the protocol can then determine the presence of each group 

of degenerate compounds, rather than the individual species. Though a diversity of approaches and 

techniques can be integrated in a mix-and-match fashion, the best combination of methods is likely 

to be domain- and context-dependent. 
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8. Glossary 

Latin variables 

C  Vector of concentrations (mol m–3) 

iC  Concentration of species i  (mol m–3) 

D  General diffusion coefficient (m2 s–1) 

,O iD  Diffusion coefficient for the oxidized form of species i  (m2 s–1) 

,R iD  Diffusion coefficient for the reduced form of species i  (m2 s–1) 

estim,true

Od  Estimated value of the true diffusion coefficient ratio 
1

, ,O i R iD D−
 (–) 

CV/UME

0,iE  Respective estimated redox potential of the couple obtained from macroelectrode 

or microelectrode experiments (V vs. reference redox event) 
CV/UME

mid,iE  Respective mid-point potential for a macroelectrode or microelectrode 

voltammogram (V vs. reference redox event) 
estim,true

0,iE  Estimated value of the true redox potential (V vs. reference redox event) 

F  Faraday constant (96485 C mol–1) 

I  Vector of currents (A) 

aI  Anodic current symbol (A) 

nI  Vector of noisy synthetic currents (A) 

i  Indexing counter (–) 

j  Indexing counter (–) 

k  Indexing counter (–) 

l  Indexing counter (–) 

tN  Number of total entries in a dataset (–) 

jP  Probability distribution function at the j th data point of interest (–) 

GR  Universal gas constant (8.314 J mol–1 K–1) 

T  Absolute temperature (K) 

jx  Vector-valued random variable at the j th data point (units can vary) 

,j kx  k th element of jx  (units can vary) 

Greek variables 

aI  Anodic difference current symbol (A) 

cI  Cathodic difference current symbol (A) 

j  Vector of average (mean) values at the j th data point (units can vary) 

,j k  k th element of j  (units can vary) 

j  Covariance matrix at the j th data point (units can vary) 

,k l

j  ( ),k l th element of j  (units can vary) 

  Matrix of concentration normalized currents (A m3 mol–1) 
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Latin symbols 

A  Toy (i.e., example) species 

B  Toy (i.e., example) species 

C  Toy (i.e., example) species 

D  Toy (i.e., example) species 

O  Oxidized form of a redox couple 

R  Reduced form of a redox couple 
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