
1 of 10 
 

Chemical language models for de novo drug design: 

challenges and opportunities 

Francesca Grisoni1,2* 

1Eindhoven University of Technology, Institute for Complex Molecular Systems and Dept. Biomedical 

Engineering, Eindhoven, Netherlands. 
2Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Netherlands. 

*Email to: f.grisoni@tue.nl  

 

 

Introduction  

Chemical biology is populated with linguistics analogies [1]: the genetic code is transcribed and 

translated, and cells communicate with each other by sending and receiving signals. Molecules can be 

considered as the elements of a ‘chemical language’ [1]. Like human language, chemical language 

possesses a syntax: finite elements (atoms, like words) can relate (bind) to one another only in specific 

ways to form ‘chemically valid’ molecules (Fig. 1a). Molecules also have semantical properties: based on 

which elements are present and how they are connected, different high-level properties (e.g., 

physicochemical, biological) will emerge (Fig. 1b).  

Abstract 

Generative deep learning is accelerating de novo drug design, by allowing the construction of 

molecules with desired properties on demand. Chemical language models – which generate new 

molecules in the form of strings – have been particularly successful in this endeavour. Thanks to 

advances in natural language processing methods and interdisciplinary collaborations, chemical 

language models are expected to become increasingly relevant in drug discovery. This minireview 

provides an overview of the current state-of-the-art of chemical language models for de novo design, 

and analyses current limitations, challenges, and advantages. Finally, a perspective on future 

opportunities is provided. 

 

Figure 1. The ‘chemical language’. (a) Syntax. 
Only certain combinations of atoms and bonds 
will lead to ‘chemically valid’ molecules. (b) 
Semantics, molecular properties emerging 
depending on what atoms are present and how 
they are connected to each other. Depicted, 
three molecules with the same chemical 
formula, but different semantical properties: 
resorcinol, an antiseptic and disinfectant, 
hydroquinone, a skin lightening agent, and 
catechol, a toxic molecule. 
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Learning the chemical language is crucial for de novo drug design [2], which addresses the difficult 

question of how to generate molecules from scratch that are chemically valid (syntax) and possess 

desired pharmacological properties (semantics). De novo design is confronted with an extremely vast 

‘chemical universe’, estimated to contain up to 1060 drug-like molecular entities one could synthesize [3], 

which makes extensive enumeration practically impossible. De novo design has highly benefitted from 

the recent artificial intelligence (AI) renaissance, in the form of deep learning [4]. ‘Generative’ deep 

learning allows for generating ‘raw’ representations of molecules (e.g., molecular graphs), and 

circumvents the need for molecule assembly and construction rules of conventional design algorithms 

[5]. 

Among the many flavours of deep learning for drug discovery, chemical language models (CLMs) [6], 

[7] have spearheaded AI-driven de novo design  (Fig. 2). CLMs borrow and adapt algorithms developed 

for natural language processing to learning the chemical language. This is allowed by the usage of string 

notations, such as Simplified Molecular Input Line Entry Systems (SMILES [8]) strings (Fig. 2).  

In the last few years, CLMs have been successful in designing experimentally-validated bioactive 

molecules [7], [9]–[11], and are providing increasing evidence of their capacities to explore the uncharted 

biochemical matter. This mini-review will focus on CLMs for de novo molecule design, although many 

other exciting applications have been reported [12]. After discussing the state-of-the-art of CLM-driven 

de novo design, this paper describes current gaps and future opportunities in the field of drug discovery. 
 

  

 

Figure 2. Overview of chemical language models (CLMs) for de novo drug design. (a) Starting from a string 
representation of molecules (e.g., Simplified Molecular Input Line Entry System [SMILES] string), CLMs can be used 
to generate novel molecules possessing desired properties on-demand, in an ‘end-to-end’ fashion. (b) Overview of 
the SMILES algorithm, where atoms are indicated with their atomic letters, bonds and branching with symbols and 
ring opening/closure with numbers. Colours indicate the correspondence between substructures and elements of the 
string. Multiple SMILES for the same molecule can be obtained. (c) Example CLM in the form of recurrent neural 
networks (RNNs), which are trained to predict (and generate) the next character in a molecular string. ‘G’ and ‘E’ 
indicate the start and the end of the sequence, respectively. Once trained, the CLM can generate new strings starting 
from the ‘go’ (‘G’) character. 
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State of the art 

Molecular string representations: advantages and drawbacks.  

Molecular string representations were originally developed for database storage and molecule 

identification [13], but they have found a renaissance thanks to deep learning algorithms for sequence 

processing [12]. The most popular molecular string representations for de novo design are the following 

(Table 1): 

• Simplified Molecular Input Line Entry Systems (SMILES) [8]. SMILES strings are obtained by 

converting H-depleted molecular graphs into a string where atoms are indicated with their atomic 

letters, bonds, and branching with symbols and ring opening/closure with numbers. SMILES are non-

univocal, as they can be obtained from any non-H atom by traversing the molecular graph in any 

chosen direction (Fig. 2b). To obtain a univocal SMILES string, canonicalization algorithms are 

necessary [14]–[16]. Several studies have shown the beneficial effect of using multiple SMILES for 

the same molecule [17]–[19] to artificially inflate the number of samples used for CLM training (‘data 

augmentation’).  

• DeepSMILES [20] were proposed as an improvement of SMILES, to address unbalanced 

parentheses and ring closure pairs which cause invalid syntax. DeepSMILES have been applied to 

predict drug-target binding affinity [21], but their difficult syntax limits molecule generation compared 

to SMILES strings [19].  

• Self-referencing embedded strings (SELFIES) [22] are built upon ‘semantically constrained graphs’ 

so that each symbol in the string can be used to convert it into a unique graph. Unlike SMILES, every 

SELFIES string corresponds to a valid chemical graph.  

Each representation can be thought of as a different ‘chemical language’, characterized by its own 

syntactic rules to be preserved to generate chemically valid molecular entities. SELFIES bypasses the 

need to learn the chemical syntax (as these strings always correspond to valid molecules), which has 

been described as an advantage of this language [22], [23]. A recent study suggested that learning the 

syntax of SMILES strings allows invalid molecules to be filtered out, and to retain de novo designs 

matching the target chemical space better than SELFIES [24]. This agrees with findings from the natural 

language processing domain [25], highlighting the benefits of syntax learning to achieve better semantical 

properties. 

All in all, the superior performance of either SMILES, SELFIES, or DeepSMILES seems to depend on 

the chosen application, with small differences in general [24], [26]–[29]. InChI notations (describing 

chemical substances via layers of information separated by “/”, Table 1) were also used in combination 

with CLMs, but performed substantially worse than SMILES, due to a more complex syntax that includes 

counting and arithmetic [30].  

Molecular strings constitute an ideal representation for molecule generation, due to the ease of 

producing text compared to more complex entities like graphs [29]. However, linear notations also 

possess certain drawbacks, since atoms that are close in the molecular graph might be located distant 

from each other in the corresponding string (e.g., due to the presence of rings and branches). This might 

be the reason why bidirectional learning strategies [31] and infusion of ‘linguistic knowledge’ [32], [33] 

have been shown to improve CLMs. 
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Table 1. Examples of molecular strings for ibuprofen. 

Type Representation 

Structure (2D 
molecular 
graph) 

 

IUPAC Name 2-[4-(2-methylpropyl)phenyl]propanoic acid 
SMILES CC(C)Cc1ccc(cc1)[C@@H](C)C(=O)O 
DeepSMILES CCC)Ccccccc6))[C@@H]C)C=O)O 
SELFIES [C][C][Branch1][C][C][C][C][=C][C][=C][Branch1][Branch1][C][=C][Ring1][=Branch1][C@@

H1][Branch1][C][C][C][=Branch1][C][=O][O] 
InChI 1S/C13H18O2/c1-9(2)8-11-4-6-12(7-5-11)10(3)13(14)15/h4-7,9-10H,8H2,1-3H3,(H,14,15) 
InChIKey HEFNNWSXXWATRW-UHFFFAOYSA-N 

De novo design with chemical language models.  

Many ‘flavours’ of deep learning have been used for chemical language modelling [12], [34], and recurrent 

neural networks (RNNs) with memory cells [35], [36] have found widespread usage [29], [37], [38]. RNNs 

are often trained to generate one character at a time, based on the preceding portions of the molecular 

string (Fig. 2c). In this way, they can become generative tools to produce molecular strings de novo. 

Other popular CLM architectures are (a) variational autoencoders (VAE) [30], constituted by an encoder 

that converts molecular strings to latent vectors and a decoder that converts latent vectors back to 

molecular strings, and (b) generative adversarial networks (GANs) [39], constituted by a generator 

network that produces novel molecular strings and a discriminator network aiming to distinguish between 

the generated molecules and existing molecules. Alternative deep learning approaches have been 

proposed for de novo design (e.g., molecular graph generation [40, p.], [41] or fragment-based assembly 

[42]), but they have not been shown to outperform CLMs [29], [37], [38].  

CLMs can be grouped into three categories (Fig. 3): 

• Distribution-learning [37], whereby new molecules are generated to populate the same chemical 

space of the training set. Distribution-learning algorithms are usually evaluated for their abilities to 

match the properties of the training set, e.g., via Kullback-Leibler [43] (KL) divergence (e.g., to 

compare the distribution of computed physicochemical properties), or the Fréchet ChemNet Distance 

[44] (FCD), which measures the similarity in terms of chemical and biological properties. 

• Goal-directed generation [37], in which molecules are generated aiming to optimize one or more 

goals. In this paper, the frequent connotation of the term is considered, i.e., models that leverage 

scoring functions to quantify the molecule conformity to the end goal. In particular, scoring functions 

are used to iteratively improve the generated molecules. This can be achieved via reinforcement 

learning, in which the actions taken by the model are steered towards promising solutions via a 

reward. Commonly used scoring functions for CLMs are the similarity to known active molecules, 

predicted bioactivity, and computed physicochemical properties (e.g., [45], [46]). 

• Conditional generation. Conditional molecule generation can be considered somewhat intermediate 

between goal-directed (via a scoring function) and distribution-learning algorithms. It tackles the task 

of generating new molecules satisfying designated properties, by learning a joint semantic space 

between experimentally determined properties and corresponding molecular structures. The desired 

set of properties can be used as an input ‘prompt’ for molecule generation. By forming latent 

representations capturing both desired properties (e.g., a desired three-dimensional shape [47], 

gene-expression signature [48], and protein target [49], [50]) and corresponding molecular structure 

in an end-to-end fashion, these algorithms allow a goal-directed generation that bypasses the need 

of scoring-function engineering. 
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Figure 3. Categories of CLMs for 
molecule generation. Distribution learning 
algorithms aim to generate molecules that 
match the chemical distribution of the 
training set. Goal-directed algorithms 
generate the best possible molecule(s) to 
satisfy a predefined goal, specified via a 
scoring function. Conditional generation 
algorithms design molecules that are 
conditioned on desired properties, trained 
via a joined semantic space. 
 

 

Each of these approaches comes with distinct advantages and limitations. Distribution-learning 

approaches allow end-to-end learning and generation, thereby not requiring scoring functions to steer 

the molecular design. Although models are evaluated by comparing the properties of the generated 

molecules with those of the training set molecules, no indication is provided of the quality of individual 

designs. This requires human-engineered post-hoc ranking and/or filtering procedures to narrow down 

the list to promising molecules, thereby partially reducing the advantages of these end-to-end pipelines. 

On the other hand, goal-directed studies provide a direct indication of the quality of both the population 

and single molecules, via the scoring function. However, several studies have pointed out the challenges 

of goal-directed generation [51]–[53], due to (a) the difficulty in condensing complex chemical properties 

(e.g., bioactivity, drug-likeness, and synthesizability) into single scoring functions, (b) model shortcuts, in 

which the generator exploits features unique to the scoring function it was optimized for, and (c) limited 

structural diversity due to biases induced by scoring functions. Here, the data and models used to develop 

scoring functions becomes essential to avoid failures [51]. Finally, the predicted synthesizability of the 

designs is in certain cases lower than for distribution-learning algorithms [54].  

Conditional generation approaches have found relatively little application in drug discovery compared 

to distribution learning and goal-directed methods. By being devoid of ‘externally computed’ scoring 

functions, these approaches might (a) overcome the shortcomings of their discriminative counterparts 

(e.g., bioactivity prediction models), (b) capture complex structure-objective relationships by forming 

latent associations between the desired properties and the corresponding structure(s), and (c) preserve 

the end-to-end learning character of distribution learning algorithms. Despite promising, these methods 

have found no experimental application to date. Finally, it is yet to be demonstrated how well they can 

explore regions of the chemical space that are not well represented in the training set (e.g., out-of-

distribution generation) to motivate their usage compared to simpler distribution learning or goal-directed 

generation algorithms. 
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Exploring uncharted regions in the chemical space with language models.  

With the ‘chemical universe’ estimated to contain way more drug-like molecules than there are stars in 

the Milky Way ([3], [55]), we are in need of methods to efficiently chart ‘dark’ chemical matter. CLMs bear 

great promise to navigate the chemical space and explore sparsely populated regions ([6], [18], [24], 

[29]), thanks to their ability to produce in theory millions of molecules in one go, without requiring human-

engineered rules.  

Deep neural networks are notoriously ‘data hungry’, and drug discovery datasets are notoriously small 

(e.g., in the order of ~101 to ~104 known molecules possessing the relevant biological activity). Transfer 

learning has found a widespread application to leverage small datasets for chemical space exploration. 

Transfer learning is a two-step procedure, aiming to transfer knowledge acquired by solving one task to 

another, related, task. In the first step (‘pretraining’), CLMs are usually trained on a large set containing 

105 to 106 molecules (e.g., via next-character prediction, Fig. 2b). In the second step, the generic CLM is 

‘fine-tuned’ using a smaller set of molecules possessing desired properties (e.g., bioactivity on a certain 

pharmacological target). CLMs have shown promise to navigate the chemical space in low training data 

regimes [18], [24], e.g., to design natural-product-inspired bioactive molecules [11] and learn multiple 

properties simultaneously [10], [29].  

The efficiency of CLMs to navigate the chemical space depends on multiple factors simultaneously 

[18], [24], [29]. The minimum number of molecules required to train a robust model is linked to the 

complexity of the target molecules [24], [56]: the higher the complexity and the heterogeneity, the more 

data will be required. The structural diversity of training molecules will also reflect in the ‘broadness’ of 

the chemical space explored, e.g., in terms of the structural diversity and molecular scaffolds of the 

designs [18]. Fine-tuning with 10-102 molecules has been shown to lead to experimentally-determined 

bioactive designs [9], [11], but might require more careful post-hoc filtering/ranking procedures to 

consider high-quality designs only [56]. SMILES augmentation increases the CLM performance [17]–[19], 

with a diminishing return when increasing the augmentation folds (e.g., after 10- to 20-fold augmentation 

[18], [24]). SMILES augmentation is particularly beneficial with small training sets (less than 10,000 

molecules [19]), while its effect plateaus for large datasets of structurally complex molecules (e.g., more 

than 500,000 molecules), potentially with the risk of ‘over-enumeration’ and quality decrease [24]. The 

number of necessary epochs for fine-tuning also affects the ‘semantical’ quality of the designs, and 

depends on the dataset size and diversity [18], [56], while hyperparameter tuning seems to have little 

effect on the performance of CLMs overall [24].  

These rules of thumb provide a good indication of what to expect from CLMs for chemical space 

exploration based on data availability and structural complexity. In general, evaluating CLMs and the 

quality of their designs is complex and more challenging than with predictive models [24], [37], [38], and 

often involves seemingly contradictory objectives (e.g., maximizing the similarity to known bioactive 

molecules while achieving structural novelty [56]). Thus, a careful assessment of the designs is 

recommended on a case-by-case basis, by leveraging domain expertise and auxiliary computational tools 

(e.g., pharmacophore models, molecular dynamics). The time- and cost requirements of chemical 

synthesis constitute a bottleneck to evaluating the quality of CLM designs on large scales. In the future, 

‘self-driving’ labs will constitute a solution to swiftly explore the chemical space guided by CLMs. 

Chemical language modelling: gaps and opportunities 

In recent years, deep learning has taken drug discovery by storm, offering new opportunities to design 

new molecules de novo. With small molecules still being the “brick and mortar” [57] of the global 

pharmaceutical industry, chemical language models are here to stay. CLMs are providing increasing 
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evidence of their capacities to explore the uncharted biochemical matter, also thanks to the ease of 

generation of molecular strings and the flexibility of application to a multitude of tasks. Advances in 

language processing algorithms and the incorporation of medicinal chemistry expertise are expected to 

further propel the capabilities of CLMs in drug discovery. 

CLMs are often evaluated for their capability to optimize ‘toy’ properties, e.g., the calculated octanol-

water partitioning coefficient, molecular weight, or the quantitative estimate of drug-likeness (QED [58]). 

These objectives capture the ability to generate molecules fulfilling predefined criteria, but fail to capture 

the complexity of real-world drug discovery and might lead to trivial solutions [52], [59]. Existing 

benchmarks for de novo design (e.g., GuacaMol [37] and MOSES [38]) are a solution to ensure 

comparability between approaches developed independently, although not fully addressing the quality of 

the generated compounds [37]. Given the complexity of evaluating the goodness of de novo designs 

computationally, experimental validation constitutes the ultimate ‘proof of the pudding’. Only a few 

prospective applications of CLMs have been published this far ([9]–[11], [60]), due to the complementary 

expertise required, and the time and cost investment. Interdisciplinary collaborations between deep 

learning practitioners, cheminformaticians, and medicinal chemists will be the key to bringing CLMs into 

real-world deployment. Automated synthesis platforms might constitute a solution to accelerate de novo 

design driven by CLMs [10], despite potentially limiting the chemical space accessible for synthesis. 

Conditional generation algorithms are expected to increase in relevance in the years to come. These 

methods might overcome limitations of existing scoring functions (e.g., which struggle in the presence of 

activity cliffs or non-additivity [61], [62]) and allow generating molecules matching certain criteria by 

design. Among them, structure-based design bears particular promise, by generating molecules 

matching electrostatic and shape features of certain binding pockets, and potentially start addressing de 

novo design for unexplored macromolecular targets. Structure-based de novo design has found an 

underwhelming prospective application, potentially due to limitations and bias in existing protein-ligand 

affinity datasets [63]. Achieving a fine-grained control on multiple properties of de novo designs bears 

great potential for uncharted applications, such as polypharmacology or selectivity.  

‘Few-shot’ learning approaches combined with large-scale pretrained chemical language models [64] 

are expected to further boost prospective applications of CLMs. Moreover, improving the ability of CLMs 

to propose synthesizable molecules is expected to increase their practical relevance for drug discovery 

[54]. Extending chemical languages to more complex molecular entities also bears great promise to 

advance the potential of generative deep learning in chemistry, e.g., for proteins and peptides containing 

non-natural amino-acids, crystals, and supramolecular chemistry. Future extensions of SELFIES to 

address challenges of current molecular string representations have been thoroughly discussed recently 

[23] and they might inspire variants of SMILES and DeepSMILES, too.  

Deep learning models like CLMs and beyond are expected to have an increasingly relevant role in drug 

discovery. Besides improving time- and cost-efficiency, deep learning will accelerate our capacity to 

explore uncharted regions in the chemical space, as well as to formulate and verify exciting new scientific 

hypotheses for drug discovery. In the future, joined forces among AI experts, chemists, and biologists will 

allow designing innovative algorithms imbued with scientific knowledge and gathering of new scientific 

insights into human biology driven by AI. 
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