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Abstract 
Healthy lifestyle has been associated with decreased risk of developing breast cancer. Using 
untargeted metabolomics profiling, which provides unbiased information regarding lifestyle 
choices such as diet and exercise, we aim to identify the molecular mechanisms connecting 
lifestyle and breast cancer through network analysis. A total of 100 post-menopausal women, 50 
with breast cancer and 50 cancer-free controls were selected from the Long Island Breast 
Cancer Study Project (LIBCSP). We measured untargeted plasma metabolomics using liquid 
chromatography-high resolution mass spectrometry (LC-HRMS). Using the ‘enet’ package, we 
retained highly correlated metabolites representing active molecular network (AMN) clusters for 
analysis.  A typical machine learning workflow (LASSO) was used to examine associations 
between cancer status and AMN metabolites and covariates such as BMI, age, and 
reproductive factors. LASSO was then repeated to examine associations between AMN 
metabolites and 10 lifestyle related variables including smoking, physical activity, alcohol 
consumption, meat consumption, fruit and vegetables consumption, and supplemental vitamin 
use. Results were displayed as a network to uncover biological pathways linking lifestyle factors 
to breast cancer status. After filtering, there were 1797 metabolomics peaks in the plasma 
samples. Of these, 851 “active” metabolites were retained in 197 correlation AMN clusters. 
Using LASSO, breast cancer status was associated with 71 “active” metabolites. Several of 
these metabolites were associated with lifestyle variables including meat consumption, alcohol 
consumption, and supplemental β-carotene, B12 and folate use. No individual lifestyle factors 
were significantly associated with breast cancer status using LASSO, suggesting that 
metabolites may act as biological intermediaries between healthy lifestyle factors and breast 
cancer. In particular, DiHODE, a metabolite linked with inflammation, was associated with 
breast cancer status and connected to β-carotene supplement usage through an AMN. We 
found several plasma metabolites associated with lifestyle factors and breast cancer status. 
Future studies investigating the mechanistic role of inflammation in linking supplement usage to 
breast cancer status are warranted. 
  



Introduction 
Lifestyle factors can influence breast cancer risk1. We have previously investigated the role of 
healthy lifestyle on the development of breast cancer by creating a healthy lifestyle index (HLI) 
using information on body fatness, physical activity, intake of plant and animal foods, alcohol 
consumption, breastfeeding, and smoking2. This analysis and other derived healthy lifestyle 
indices3, demonstrated that a healthier lifestyle was associated with decreased risk of 
developing breast cancer2. However, the biological response to lifestyle factor exposures 
associated with breast cancer remains unknown.  
 
Untargeted metabolomics can be used to describe the overall molecular level changes that 
reflect the confluence of genetic disposition, environment, diet, and health conditions to capture 
an individual’s susceptibility to breast cancer. Indeed, metabolomics studies have been used to 
identify biomarkers of nutrition, diet, and lifestyle habits4, some of which were directly associated 
with breast cancer risk5,6. In addition, metabolomics identified altered endogenous metabolite 
levels and biological pathways in breast cancer patients compared to controls7. However, these 
approaches have not yet linked the endogenous metabolites and pathways that moderate 
lifestyle exposures and breast cancer. In particular, exposures to dietary and lifestyle 
components are bi-directional where changes in physiology as a result of exposure can impact 
how dietary substances are metabolized8. This results in complex relationships difficult to 
uncover through traditional univariate analyses.  
 
Previously, we developed a metabolomics data analysis workflow to identify the metabolite 
profiles that are associated with exposures9. This workflow is based on the hypothesis that 
some key metabolites moderate the influence of exposures to health outcomes. Those 
metabolites called ‘gatekeepers’, act as sentinel nodes that link biological pathways (i.e, 
correlated metabolites) to exposures or health effects (Figure 1). The relationships among those 
gatekeepers and correlated metabolites can be used to construct a network based on statistical 
models and/or known biochemical reaction information10. Such metabolite networks [Active 
Molecular Networks (AMN)] cover only part of the metabolome but provide crucial information 
linking external stimulus and health conditions. Unlike a meet-in-the-middle approach which 
assigns direct associations between exposures and metabolites11 and then metabolites and 
health outcomes12, the AMN includes more distant chemical relationships and pathways which 
can capture the synergistic, combined, and interactive effects of lifestyle factors on the 
metabolome13. 
 
Here, we performed untargeted analysis using liquid chromatography high-resolution mass 
spectrometry (LC-HRMS) on plasma samples from 100 postmenopausal women who 
participated in the Long Island Breast Cancer Study Project (LIBCSP). We then applied AMN 
discovery to generate hypotheses on biological mechanisms linking lifestyle factors to breast 
cancer with the help of machine learning.   
 



 
Figure1. Active molecular network analysis to mediate the influences from lifestyle and breast 
cancer with the help of machine learning. Gatekeepers are key metabolites that link single or 
multiple exposure biomarkers or health outcomes with correlated clusters of related 
endogenous metabolites. 

Methods 

Population 
We utilized plasma samples archived from the LIBCSP, a population-based case–control study 
of women residing in Nassau and Suffolk Counties on Long Island, New York with newly 
diagnosed first primary in situ or invasive breast cancer recruited between 1996-97. The parent 
study included 1,508 women diagnosed with breast cancer and 1,556 women without breast 
cancer from the same two counties, frequency matched by 5-year age group as described in 
previous studies.14 All participating institutions obtained Institutional Review Board approval and 
written informed consent was obtained prior to study participation. Information on demographic 
characteristics, pregnancy history, hormone usage, family history of cancer, current alcohol use, 
cigarette smoking, and physical activity were obtained from the main study in-person 
administered questionnaire completed at enrollment. Variables with missing values of more than 
10 percent were removed from further discussion. 
 
Additional dietary lifestyle factors were captured from the food frequency questionnaire (FFQ) 
for the LIBCSP, describing intake, usual frequency, and portion sizes of ~100 foods and 
beverages in the 12 months before diagnosis or prior to enrollment among controls.15 Lifestyle 
factors selected for this analysis included alcohol use16, tobacco smoking17, meat 
consumption18, vegetable and fruit consumption19, physical activity 20, and use of supplements 21 
with reported association with breast cancer. Variables with missing values of more than 10 
percent were removed. At the time of the interview, women provided a non-fasting 40 mL blood 



sample for laboratory analyses. The current analysis includes 100 post-menopausal women 
who had never used menopausal hormone therapy. Summary statistics for participants included 
in this analysis and potential confounding variables are presented in Table S1 and lifestyle 
factors in Table S2. Differences between case and control groups were tested for each 
covariate using the ‘t.test’ or ‘chisq.test’ functions in R, specifying a two-sided alternative. There 
was evidence for a difference in age at menarche, which was earlier for cases than controls 
(nominal p-value = 0.066). There was also evidence for differences in physical activity (nominal 
p-value = 0.013) and fruits and vegetables intake (nominal p-value 0.048) between cases and 
controls. There was no evidence of a statistically significant difference for any of the other 
covariates or lifestyle characteristics.  

Untargeted analysis 
Plasma samples stored at -80oC were thawed on ice. After light vortexing, 50 μL plasma 
aliquots were combined with 150 μL of ice-cold methanol containing internal standards. 
Following incubation at -80oC for 30 min to precipitate proteins, the samples were centrifuged, 
and the supernatant was aliquoted and evaporated to dryness using a Savant SC250EXP 
SpeedVac concentrator.  A pooled quality control sample (‘pooled QC’) was generated by 
combining an additional 10-μL plasma aliquot from each sample. Following the same protocol, 
the matrix blank (replacing the plasma with water) and multiple pooled QC samples were 
extracted and dried. Samples, matrix blanks, and pooled QCs were stored at -80oC until 
analysis. Before LC-HRMS analysis, dried extracts were reconstituted either in 100% methanol 
or in acetonitrile:water (8:2, v/v).  Samples were analyzed using reverse-phase (RP) and 
hydrophilic interaction liquid chromatography (HILIC) connected to HRMS in negative and 
positive mode, respectively, as described elsewhere22. Samples were analyzed in a randomized 
order with pooled QCs injected routinely throughout the run. 

Data analysis 
Raw LC-HRMS data were converted to open-source format and processed by R 4.2.123. 
Features were extracted by ‘xcms’24 using optimized parameters determined by the ‘IPO’ 
package25 as in the previous study9. Features with RSD larger than 30% in the pooled QC 
samples were filtered, and features with average intensity in the pooled QC samples lower than 
3-fold change compared with blank samples. Redundant features such as adducts, neutral 
losses, isotopologues or common fragment ions were removed by the GlobalStd algorithm26. 
Remaining features were treated as potential metabolites features and used as precursor ion 
targets to collect MS/MS spectra by repeated injections27. The features collected from RP and 
HILIC modes were merged, removing those features with both a mass difference of 2.02 
between positive and negative mode data and correlation coefficients larger than 0.9, as they 
were expected to be the same chemicals27. Annotation of metabolites was performed by 
matching to library standards analyzed under the same analytical conditions and MS/MS 
annotation by GNPS28, metlin29, and MS-DIAL30.  
 



AMN analysis was performed by the ‘enet’ package9. Analysis steps are depicted in Figure 2.  
First, correlation network analysis was performed among the potential metabolite features of the 
merged LC-HRMS dataset. The correlation cutoff was determined empirically to maximize the 
number of correlation clusters (Figure 2, step 1). The gatekeeper workflow is modular because 
metabolomics is at the interface where exposure meets biology31. Here, instead of identifying 
AMN to exposures in step 29, we identified the AMN to breast cancer. Association between 
cancer diagnosis and all active metabolite features and covariates (see Table S1) was 
determined using machine learning. Here we used the Least Absolute Shrinkage and Selection 
Operator (LASSO) generalized linear model (Figure 2, step 2). The model was fit to feature 
abundances over 100 bootstrapped datasets to tune the penalized parameters (lambda) and 
accuracy was used to select the optimal models. The binary case-control status was used as 
the outcome variable with the following independent variables: logged intensities for all 1797 
metabolite features and 15 covariables listed in Table 1. Next, a network connecting the 
selected metabolites and the metabolite clusters was generated (Figure 2, step 3). Then, for 
each metabolite remaining in the network, associations among the 10 lifestyle factors listed in 
Table S2 were individually determined using LASSO over 100 bootstrapped datasets to tune the 
penalized parameters and Root Mean Square Error (RMSE) used to select the optimal model. 
The lifestyle variable was used as the outcome variable with the remaining logged intensities of 
the metabolite features as the independent variables. For associations with categorical lifestyle 
variables, metabolites were retained when training accuracy was larger than 50% for predicting 
the lifestyle variable. For associations with continuous lifestyle variables, metabolites were 
retained when the best model showed non-zero coefficients with metabolites. A final network 
was built from the selected lifestyles and their predictive metabolite clusters (Figure 2, step 4). 
To help elucidate the biochemical relationships between two correlated metabolites, we used 
the package ‘pmd’ to obtain reaction level information with paired mass differences. To test any 
direct associations between lifestyle factors, we performed LASSO where the binary case-
control status was used as the outcome variable with the lifestyle factors as independent 
variables.  



 

 
 
Figure 2. Active Metabolite Network (AMN) workflow to build the network between metabolites, 
exposures, and health outcomes. Step 1: Select active metabolite clusters through correlation 
analysis; Step 2: Determine associations between health outcome (triangle) and those 
metabolites in the correlated clusters (gatekeeper discovery) by machine learning; Step 3: 
Generate the health outcome-AMN network; Step 4: Add exposure associations to the health 
outcome-AMN by machine learning. 

Results and Discussion 

Active metabolites selection by correlation network analysis 
Peak-picking resulted in 6615 (HILIC) and 5171 (RP) features measured in the samples. After 
the removal of redundant peaks, 913 (HILIC) and 890 (RP) peaks were retained as potential 
metabolites features. Merging of the datasets resulted in 1790 peaks selected for AMN. Among 
these metabolites, an empirically derived Pearson’s correlation threshold9 of 0.84 resulted in 
197 metabolite correlation network clusters found containing 851 metabolites, considered active 
metabolites (see Figure 3). 
 



 
 
Figure 3. a) Active metabolites selected by correlation network analysis to generate Active 
Metabolite Network (AMN). Red dots represent gatekeepers and their respective correlated 
metabolite clusters associated with breast cancer. Blue dots are metabolites in correlated 
clusters not associated with breast cancer. b) Thirteen correlated metabolite clusters with at 
least one metabolite associated with breast cancer status. These 71 metabolites represent 
breast cancer-AMN (BC-AMN). 

Association between AMN and breast cancer 
 
In this study, breast cancer is associated with 13 metabolites connected to 13 correlation 
clusters containing a total of 71 active metabolites (see Figure 3). Active metabolites included 
those annotated as trazodone hydrochloride, lysoPC(20:4(5Z,8Z,11Z,14Z)), DiHODE, 
glycodeoxycholic acid, glycocholic Acid, taurodeoxycholic acid, Taurocholic acid and PE(P-
18:0/18:1(9Z)) (Table 1 and Table S3).  The 13 metabolites are considered gatekeepers for 
breast cancer while the 71 active metabolites may be biological links from external exposures. 
No individual lifestyle factors were associated with breast cancer in this study according to 
LASSO. Therefore, several metabolomics gatekeepers linked lifestyle factors to health 
outcomes, even when main effects of individual lifestyle factors on breast cancer were absent. 
This suggests that the molecular level changes in an active metabolite network may be more 
sensitive than direct exposures-health outcome associations.  
 



Table 1. Metabolites in the AMN associated with breast cancer and lifestyle factors. 
Associations were determined by LASSO. For categorical lifestyle variables, metabolites were 
retained when training accuracy was larger than 50% for predicting the lifestyle variable. For 
associations with continuous lifestyle variables, metabolites were retained when the best model 
showed non-zero coefficients with metabolites. N=100 
 

    Lifestyle Factors 

annotationa mz rt mode 

Continu
ous daily 
alcohol 
use (β) 

Daily 
meat 
intake 
(β) 

Supplem
ental 
B12(β) 

Supplem
ental 
beta-
carotene
(β) 

Supplem
ental 
folate 
suppl.(β) 

DiHODE 
311.222
3 412.3 negative  -1.5796  

-
3,446.47 

-
122.182
5 

Unknown 
274.183
6 251.9 positive  -4.2477  

-
3,538.60 98.3056 

Unknown 
325.095
7 205.2 negative -10.7111 -0.7763    

Unknown 
460.169
5 405.9 negative -5.7003 -2.2841  

-
328.348
8 -33.0294 

Unknown 
514.218
2 284.5 positive  -0.3512  

-
205.151
4 -16.989 

Unknown 
578.301
4 469.2 negative    

-
3,431.26 36.8464 

Unknown 
598.278
5 61.5 positive 3.7936 3.3787  1,031.04 -12.9315 

Unknown 
614.482
7 68 positive -2.2161 22.434 -0.1168 

-
4,363.21 -86.7204 

Unknown 
627.695
8 549.6 positive 

125.380
8   -694.679 

231.003
3 



Unknown 
724.527
4 715.7 negative -11.6159 23.04  9,358.87 -95.7523 

Unknown 
968.705
5 333.7 positive 5.1246   -43.3207 10.3826 

Unknown 
986.660
9 141.7 positive  2.1691  

254.895
3 

58.968 
  

Unknown 
1076.57
47 237 positive 1.6495 3.1187  

-
1036.70
28 -31.7337 

 
a. Details of annotation of DiHODE could be found in supporting information.  

Association between AMN and lifestyle factors 
We found no significant associations between individual lifestyle factors and breast cancer in 
our study population, a subset of the LIBCSP (data not shown). However, we performed 
gatekeeper discovery to link lifestyle factors with active metabolites associated with breast 
cancer, to generate mechanistic hypotheses. As shown in Figure 4a, most of the lifestyle factors 
have shared sets of associated gatekeeper metabolites. Beta-carotene supplement usage had 
the most associated gatekeepers with 4 unique metabolites and 66 gatekeepers linked with 
multiple lifestyle factors followed by folate supplement usage, suggesting that they heavily 
influence the breast cancer metabolome. Folate supplement usage linked 57 gatekeepers with 
multiple lifestyle factors. Alcohol and meat consumption followed with 43 and 33 gatekeepers 
linked with multiple lifestyle factors, respectively. B12 supplement usage was only associated 
with two gatekeepers. However, one gatekeeper (m/z 614.4827 and rt = 68 sec, Table 1 and 
Table S3), was associated with all 5 lifestyle factors and breast cancer.  Since the metabolites in 
this BC-AMN are biased towards those that are also associated with breast cancer, our results 
suggest that supplement usage, meat, and alcohol have the largest influence on the breast 
cancer-active metabolome, compared to the other lifestyle factors of physical activity and fruit 
and vegetable intake. 
 
As a sensitivity analysis, we also checked the associations between the full set of 851 AMN 
metabolites and the lifestyle factors (Figure 4b). Overall, there were over four times as many 
AMN metabolites associated with lifestyle factors than the BC-AMN (300 versus 71, 
respectively). Similar to that of the BC-AMN, lifestyle factors with the most influence on the AMN 
network included folate and beta carotene supplement usage, followed by alcohol usage, then 
meat intake, then B12 supplement usage. However, for the AMN, most (207/300) of the 
lifestyle-metabolite associations were unique to a single lifestyle factor. There were 61 
metabolites associated with only folate, 59 metabolites associated with only beta-carotene, 46 
metabolites associated with only alcohol, 39 metabolites associated with only meat intake and 2 
metabolites associated with only B12 supplement usage. Therefore, these results suggest that 
lifestyle factors have a strong influence on the BC-AMN and metabolome in general, and the 



BC-AMN is most influenced by overlapping exposure influences suggesting complex 
interactions and possibly shared pathways among different lifestyle factors. 
 
Emerging metabolomics studies of dietary factors including supplement usage, meat, and 
alcohol intake suggest strong and overlapping effects on metabolite profiles. In a study of 
dietary exposures and breast cancer in 1242 participants, 113 metabolites were significantly 

associated with ≥1 dietary exposure while 37% of these were significantly associated with 

multiple dietary exposures5, suggesting similar chemicals found in different food groups. Indeed, 
gamma-tocopherol measured with metabolomics was positively correlated with processed meat 
intake but negatively correlated with vitamin E intake, and ergothioneine was positively 
correlated with both red meat intake and total alcohol intake5 showing the complexity of 
associations between specific metabolites and multiple dietary exposure. 
 
Oxidative stress is one pathway to which several of these lifestyle and dietary factors have been 
linked. Oxidative stress can cause DNA damage that when unbalanced, can contribute to 
increased risk of cancer32. Folate, B12, and beta-carotene are individually considered 
antioxidants, while processed meat and alcohol are considered pro-oxidants33. Folate, a nutrient 
in one-carbon metabolism, affects DNA methylation by regulation of S-adenosylmethionine 
levels which are ubiquitous methyl-donors. Reduced S-adenosylmethionine can cause DNA 
hypomethylation, inducing the expression of proto-oncogenes34. In addition, folate insufficiency 
can cause methylation of uracil which incorporates into DNA causing chromosome breakage 
and carcinogenesis35. Similarly, B12 is an essential co-factor in the methionine cycle as part of 
one-carbon metabolism, which together with folate, regulate DNA synthesis and methylation 
reactions36. However, while considered antioxidants, folate or B12 intake has inconclusive 
associations with breast cancer in several studies37. Further, beta-carotene’s antioxidant actions 
are based on their ability to quench singlet oxygen and trap peroxyl radicals38,39, as well as  
protecting lipid tissue from peroxidation in vivo40. However, increased risk of several cancers 
have been observed with beta-carotene supplementation41. The results of these epidemiological 
studies point to the complexity of not yet defined interactions between dietary components and 
cancer initiation and progression. 
 
Dietary exposures have been shown to interact with each other and resultant biology linked with 
cancer. Mechanisms for alcohol-induced carcinogenesis suggest that one-carbon (folate) 
metabolism may play an important role42, and the formation of aldehydes and ROS that promote 
carcinogenesis by covalently modifying DNA, proteins, and lipids resulting in altered 
function43,44. Interestingly, alcohol consumption was shown to increase blood beta-carotene 
levels, likely due to interference by ethanol in its conversion to vitamin A even at moderate 
alcohol intake, potentially promoting carcinogenesis45. In addition, alcohol diminished vitamin 
B12 status in postmenopausal women46, but can also potentially modify protective associations 
between folate and breast cancer 47, or increase the risk of breast cancer for women with higher 
vitamin B12 levels and either low plasma folate or increased alcohol consumption37. These 
observations further support the importance of investigating dietary exposures as interacting 
mixtures in association with breast cancer. 



 

 



Figure 4.  a) UpSet plot of pairwise associations between 71 metabolites in the BC-AMN 
network and lifestyle factors.and b) UpSet plot of pairwise associations between 851 
metabolites in the AMN network and lifestyle factors. Associations were detected by LASSO 
where metabolites were retained when the best model showed non-zero coefficients with 
metabolites. The Set Size is the total number of unique metabolites associated with each 
lifestyle factor. The Intersection Size (vertical axis) then describes the distribution of those 
unique metabolite associations as single and multiple exposures. 

AMN identifies inflammation linking lifestyle factors to breast 
cancer 
A network was built to link lifestyle factors, active metabolites, and breast cancer (Figure 5). 
Here, lifestyle factors connect between these correlated metabolite clusters to form a single 
network, and alcohol, folate, and beta-carotene are the most central lifestyle factors in the 
network with B12 the most adjacent, having the least interaction with the BC-AMN. The BC-
AMN suggested several long-distance (e.g., multi-node) connections are required to link 
outcome gatekeepers to lifestyle factors. In this case, the active metabolites in the cluster may 
play a moderating role between lifestyle and breast cancer, where metabolites linking exposure 
and outcome play causal biochemical roles.  
 
Meanwhile, there are several important paired mass differences (PMDs) linking lifestyle factors 
to breast cancer. We identified a total of 23 different PMDs with reactions that included oxidation 
(PMD 2.02 Da) hydroxylation (PMD 15.99 Da), and dehydration (PMD 18.01 Da). These 
reactions are consistent with KEGG PMDs suggesting that there are some enzymes that could 
link lifestyle factors to breast cancer and that the interference of those reactions might regulate 
or moderate such influences. For example, both oxidation and dehydration reactions of lipids 
are important in inflammation processes48,49. BC-AMN and the biochemical reactions among the 
active molecules are used to generate hypotheses on important biochemical reactions and 
causal pathways linking lifestyle factors to breast cancer. 



 
Figure 5. Association between lifestyle, breast cancer and metabolites in the breast cancer- 
active metabolite network (BC-AMN). Edges between metabolites and lifestyle/breast cancer 
are associations determined by LASSO.  Edges among metabolites determined by correlation. 
Black edges indicate paired mass differences (PMDs) consistent with PMDs from common 
KEGG database reactions. 
 
Among the AMN molecules, DiHODE is negatively associated with breast cancer risk as an 
outcome gatekeeper and remotely connected to beta-carotene supplement usage, meat intake, 
and folate supplement usage through an active molecular network of five nodes (Figure 6). 
Increased DiHODE is associated with decreased breast cancer risk in this population. DiHODE 
is a degradation compound of epoxy-fatty acid50, which is positively associated with 
inflammation in other studies51. Since epoxide hydrolases can generate DiHODE from the 
corresponding epoxy-fatty acid52, this enzyme might be important in mediating the influences 
from lifestyle factors to cancer. DiHODE is also an oxylipin, which is influenced by a high fat 
diet53.  
 
PMD was then used to interpret this connection. A PMD 18.01 Da between nodes DiHODE and 
M329.2328T384.4 suggests a dehydration process between DiHODE and an unannotated 
compound. These results suggest a pathway where increased beta-carotene is involved in 
dehydration of an unknown metabolite from lipid metabolism leading to increased DiHODE. 



Since the untargeted assay is broad but not comprehensive of every cellular metabolite, it is 
possible that compounds along the pathway linking lifestyle factors to breast cancer are missing 
from the analysis.  Nevertheless, even in the absence of further annotation information about 
the unknown active metabolite and possible missing compounds, our results suggest that 
enzymes that participate in dehydration reactions may play an important role in the pathways 
linking supplemental usage to breast cancer.  
 
Inflammation is a hallmark of cancer54, including breast cancer55. However, the role of 
inflammation in linking lifestyle factors to breast cancer initiation and progression remains 
undefined. We found that metabolite DiHODE linked beta-carotene, folate, and meat intake to 
breast cancer, supporting the role of dietary-induced inflammatory compounds in breast cancer. 
Alcohol and meat intake have been positively associated with inflammation56–59, while folate has 
been negatively associated with inflammation60. Similarly, even in large human population 
studies, associations between breast cancer and a high inflammation diet show contradictory 
findings. In a prospective study of 49,258 women in Sweden, a dietary inflammatory index (DII) 
was positively associated with breast cancer incidence, with slightly higher risk observed in 
postmenopausal women61. Breast cancer risk in 34,700 women in the US was positively 
associated with DII, with slightly higher risk in obese women62.  In the Sister Study cohort of 
43,563 participants, breast cancer risk was only associated with a high inflammation diet for 
triple-negative breast cancer cases63 or when combined with low oxidative balance diets. In 
addition, a high inflammatory diet score was positively associated with breast cancer risk in the 
318,686 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) 
cohort. However, here, the association was strongest among premenopausal women compared 
to postmenopausal women64. Finally, DII was not associated with breast cancer risk in the 
prospective study of 122,788 postmenopausal women in the Women’s Health Initiative65. These 
results further highlight the complexity of the role of dietary factors in inflammation pathways 
related to breast cancer and the need for further studies to investigate these interacting 
exposures on a molecular level.  



 
Figure 6.  Association between lifestyle, breast cancer and DiHODE involved BC-AMN 
metabolites. Edges between metabolites and lifestyle factor or breast cancer risk indicate 
associations while edges among metabolites indicate correlation. Black edges depict paired 
mass differences (PMDs) that can be explained by PMDs in KEGG reactions. 

Conclusion  
We constructed a breast cancer-active molecular network (BC-AMN) to identify metabolites and 
pathways that link between breast cancer and lifestyle factors. In this way, we have used a 
dimension-reduction technique to focus on the functional metabolome of breast cancer. Using 
this workflow, we found that supplement usage of beta-carotene and folate, alcohol usage and 
meat intake were the most influential lifestyle factors on metabolites associated with breast 
cancer, with B12 supplement usage also contributing, but to a lesser degree. Further, these 
lifestyle/dietary factors likely influence the metabolome through synergistic or interactive 
pathways, suggested by the multiple associations observed between specific metabolites and 
several lifestyle factors. In particular, the metabolite DiHODE emerged as a metabolite linking 
beta-carotene, folate, and meat intake to breast cancer, supporting the role of dietary-induced 
inflammatory compounds in breast cancer.  
 
There are several limitations to this study. This study used a cross-sectional design with a 
moderate sample size of 100 women. Therefore, causality cannot be addressed. In addition, 
this study focused only on postmenopausal women residing from two New York State counties, 



and included mostly white women. Therefore these findings may not be representative of 
premenopausal women or women from different geographical or racial/ethnic backgrounds. 
Only a single blood sample was analyzed, and the results may not reflect fluctuations in 
metabolite profiles. Nevertheless, this study was conducted using the richly characterized 
participants from the LIBCSP, including extensive lifestyle and dietary characterization. Finally, 
we could confidently annotate, via MS/MS confirmation, only a limited number of metabolites in 
the BC-AMN. The absence of many common metabolites that are typical to our in-house library 
in the BC-AMN, suggests that future studies that utilize a panel of only the most common 
metabolites are likely to miss the relationships. Additional large-scale studies that include 
untargeted panels and targeted analysis of inflammation metabolites and biomarkers are 
needed to further investigate these relationships.  
 
Interestingly, we found no direct significant associations between breast cancer and lifestyle 
factors in our study population, which is a small subset of the LIBSCP. This is likely due to 
reduced power in the modest sample size of women. Nevertheless, several gatekeepers linked 
lifestyle factors to breast cancer were identified, even when direct associations were absent, 
demonstrating that the metabolites can be used as a read out for lifestyle choices. This may be 
because direct associations were masked by antagonist relationships, and molecular level 
changes such as in the BC-AMN are more sensitive than testing direct exposure biomarkers to 
health outcomes when study power is limited. Meanwhile, other machine learning models could 
be used to build the links between molecular and lifestyle habits/disease status as long as they 
can tell the associations or show the importance between exposure and certain metabolites. 
 
In conclusion, AMN showed that lifestyle factors influence breast cancer through metabolite 
level changes, especially through the active metabolites connected by correlation networks. 
Thus, AMN is a powerful tool to build molecular connections and generate hypotheses between 
exposures and health outcomes. 

Supporting Information 
The Supporting Information is available free of charge at ACS websites.  
Details: Table about population demographics and associations among gatekeepers, breast 
cancer, and selected lifestyle factors.  
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