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Abstract:  14 
Background: Improved understanding of what sources and processes drive exposure contrast of 15 
fine particulate matter (PM2.5) is essential for designing and interpreting epidemiological study 16 
outcomes.  17 
Objective: We investigate the contribution of various sources and processes to PM2.5 exposure 18 
contrasts at different spatial scales across the continental United States. 19 
Methods: We consider three cases: exposure contrast within a metro area, nationwide exposure 20 
contrast with high spatial resolution, and nationwide exposure contrast with low spatial 21 
resolution. These three cases correspond to common epidemiological study designs. Using high 22 
spatial resolution (census-block-level) national empirical model estimates of source- and 23 
chemically-specific PM2.5 concentration predictions, we quantified the contribution of various 24 
sources and processes to PM2.5 exposure contrasts in these three cases.  25 
Results: At the metro level (i.e., metropolitan statistical area; MSA), exposure contrasts of PM2.5 26 
vary between -1.8 to 1.4 µg m-3 relative to the MSA-mean with about 50% of within-MSA 27 
exposure contrast of PM2.5 caused by cooking and mobile source primary PM2.5. For the national 28 
exposure contrast at low-resolution (i.e., using MSA-average mean concentrations), exposure 29 
contrasts (relative to the national mean: -3.9 to 3.2 µg m-3) are larger than within an MSA with 30 
~80% of the variation due to secondary PM2.5. National exposure contrast at high resolution 31 
(census block) has the largest absolute range (relative to the national mean: -4.7 to 3.7 µg m-3) 32 
due to both regional and intra-urban contributions; on average, 65% of the national exposure 33 
contrast is due to secondary PM2.5 with the remaining from the primary PM2.5 (cooking and 34 
mobile source 26%, other 9%).  35 
Discussion:  While national epidemiological studies that use high-spatial-resolution exposure 36 
estimates maximizes the exposure contrast of total PM2.5, other study designs may offer advantages 37 
to investigate health impacts of specific components. City/metro scale studies better isolates the 38 
health impacts of primary PM2.5 from local sources while national studies with low-spatial 39 
resolution can help to infer the health impacts of secondary PM2.5.  40 
 41 
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1. Introduction 48 
 49 
Airborne fine particulate matter (PM2.5; particles with diameter < 2.5 µm) is a complex mixture 50 
of chemical species that span a wide range of sizes. PM2.5 is directly emitted by sources (primary 51 
PM2.5) and forms in the atmosphere from oxidation products of precursor gases (secondary 52 
PM2.5). Numerous epidemiological studies report health risks of PM2.5 by comparing spatial 53 
patterns in PM2.5 exposure with health impacts1–7. Although adverse health effects of PM2.5 total 54 
mass concentration are well established5, less is known about health risks of size, source, and 55 
chemically specific PM2.5 components8–11. Multiple epidemiological and toxicological studies 56 
have investigated the health effects of different sources and chemically specific PM2.5 57 
components8,12–14. To date, these studies have not revealed consistent results15. 58 
 59 
PM2.5 epidemiological studies have been conducted at different spatial scales5 ranging from a 60 
single city16,17 to national and even continental scales. The spatial scale of exposure estimates 61 
used by these studies also varies from relatively low-resolution (average concentrations in cities 62 
or metropolitan statistical areas; MSAs)1,13,18,19 to high-resolution (e.g., zip code level, census 63 
tract level) 14,20–22. City-scale analysis in Los Angeles suggests substantially higher mortality 64 
risks than national studies, which suggests that the excess risk is likely associated with the local 65 
component of PM2.5 exposure16,17. The observed health risk in New York City was lower than in 66 
Los Angeles, which implies that cities can differ markedly in their local exposure conditions16.  67 
 68 
To estimate the impacts of air pollution on human health, epidemiological studies investigate the 69 
correlation of adverse health outcomes with variations in PM2.5 concentrations, which are 70 
commonly referred to as exposure contrasts. These contrasts are caused by the complex 71 
interactions of different sources, processes, and components.  For example, primary emissions 72 
are responsible for local (e.g., ~100 m – 1 km scale) variations, whereas secondary PM2.5 is more 73 
regional and therefore creates city-to-city and region-to-region differences23–26.  Improved 74 
quantification of the contribution of different sources and processes to drive exposures at 75 
different lengths scales is needed to better design and interpret epidemiological studies. 76 
 77 
In this paper, we use national high-spatial-resolution (census block level) predictions of source-78 
specific PM2.5 to investigate what sources and components create PM2.5 exposure contrasts at 79 
different scales and their implications for the design and interpretation of epidemiological 80 
studies. We show that cooking and mobile source primary PM2.5 are important drivers for intra-81 
urban exposure contrast of total PM2.5. At the regional and national scale, secondary PM2.5 82 
dominates the total PM2.5 exposure contrast. Our analysis provides valuable insights for 83 
epidemiological study design focusing on isolating the effects of source- and chemically-specific 84 
PM2.5 components. 85 
 86 
2. Methods 87 
 88 
We used national-scale high-spatial-resolution (census block level) empirical models to 89 
investigate exposure contrasts of source-specific and total PM2.5 mass across the continental US.  In 90 
this paper we use the term “exposure” to refer to outdoor concentrations.  Exposure contrast is 91 
defined as the spatial difference in long-term average concentrations. The models are described 92 
in section 2.1.   93 
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The analysis is performed using predicted concentrations for different geographic units defined 94 
by the US Census Bureau. We used the models to predict concentrations at each census block, 95 
which is the smallest geographic unit defined by the US Census Bureau.  There are ~6 million 96 
residential census blocks with a non-zero population in the continental United Sates.  In urban 97 
areas, census blocks vary in size and shape but typically cover an area of ~0.01 km2.  We also 98 
analyzed data for metropolitan statistical areas (MSA), which are centered around a city 99 
(minimum population of 50,000) and includes surrounding counties, townships, and suburban 100 
areas.  There are 363 MSAs in the continental United States. 101 
 102 
We consider three cases: (1) exposure contrast within a metropolitan statistical area (MSA) using 103 
census block level concentrations, (2) nationwide exposure contrast using MSA-averaged (low 104 
spatial resolution) concentrations, and (3) nationwide exposure contrast using census block level 105 
(high spatial resolution) concentrations. These three cases correspond to common types of 106 
epidemiological studies 5:  single city16,17, national using low-spatial-resolution exposure data1,19, 107 
and national with high-spatial-resolution exposure data14,20.  108 
 109 
We define exposure contrast within a metropolitan statistical area (MSA) as (CBlock – CMSA). 110 
CBlock is the model concentration of total PM2.5 or source-specific PM2.5 components at a given 111 
census block. CMSA is the population-weighted mean concentrations of all block centroids 112 
located within an MSA spatial boundary. To quantify national exposure contrast with MSA-113 
average concentrations, we used (CMSA – CNational), where CNational is the population-weighted 114 
mean concentration of all census blocks nationwide. To quantify national exposure contrast 115 
using census block level concentration data, we used (CBlock – CNational). 116 
 117 
2.1 National Estimates of Source-specific PM2.5 Components 118 
The analysis focuses on two important urban sources of primary PM2.5, traffic and cooking. We 119 
also estimate two other categories of PM2.5: other primary, and secondary PM2.5. Primary PM2.5 120 
emissions from traffic or mobile sources is comprised of tailpipe and non-tailpipe emissions.  121 
Here we only consider tailpipe emissions, which includes hydrocarbon-like organic aerosol 122 
(HOA) and black carbon (BC) particles27.  Cooking-emitted particles are mostly organic or 123 
cooking organic aerosol (COA)27,28. We define other primary PM2.5 as (POAother + BCother), 124 
where POAother and BCother are, respectively, primary organic aerosol (POA) and black carbon 125 
(BC) particles from other sources. Biomass burning (e.g., wildfires and home heating) is the 126 
most important source of other primary PM2.5 at a national scale.  127 
 128 
We used our published24 empirical models to predicts national estimates of primary organic 129 
aerosol concentrations from emissions for cooking (COA) and mobile sources (HOA) at high 130 
spatial resolution. Briefly, the models were derived by performing land use regression (LUR) 131 
analysis of High-Resolution Aerosol Mass Spectrometer (HR-AMS) measurements from across 132 
the continental US. COA and HOA concentrations were estimated using positive matrix 133 
factorization (PMF) of the HR-AMS data using positive matrix factorizatoin29. COA and HOA 134 
LUR models explain more than 60% of the spatial variability of the measured data (R2 = 0.63 for 135 
the COA model and 0.62 for the HOA model). Restaurant density, commercial land use, and 136 
urbanicity are the main predictor variables for the COA model. Road density, transportation land 137 
use, and urbanicity are the main predictor variables for the HOA model. Saha et al.24 presents 138 
extensive evaluation (e.g., 10-fold cross-validation, a systematic spatial holdout, and comparison 139 
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with chemical transport model simulation) to demonstrate model robustness and transferability. 140 
We applied the models to predict COA and HOA concentrations at ~6 million residential census 141 
blocks with a non-zero population.  142 
 143 
BC is another important primary PM2.5 component of traffic emissions.  Following the approach 144 
of Saha et al.24, we derived a national land-use regression model for BC using a combination of 145 
mobile and fixed-site data (details are described in the SI: Section-S1, Fig. S1-S7, Table S1-S3). 146 
The data set of measured BC concentrations includes high spatial resolution mobile 147 
measurements from three cities (Pittsburgh, PA, Oakland, CA, and Baltimore, MD) and data 148 
from the US-EPA’s PM2.5 speciation networks. These data were fit using the same land use and 149 
source activity data set as the COA and HOA models and a supervised linear regression 150 
approach based on the ESCAPE protocol30,31. The BC LUR model explains about 70% of the 151 
spatial variability of the measured data with road density, urbanicity, transportation, and 152 
residential land use as the predictor variables (model fit R2: 0.74; random 10-fold CV R2: 0.71; 153 
systematic spatial holdout R2:  0.66). Like COA and HOA, the cross-validated BC model was 154 
applied to predict the census block-level concentrations across the continental US. Our COA, 155 
HOA, and BC estimates are the annual average concentrations in 2017. 156 
 157 
Our BC model predicts total BC concentrations. To apportion the predicted BC concentration 158 
into mobile (BCmobile) versus other (BCother) sources, we utilized elemental carbon (EC) emission 159 
data from mobile versus other sources from National Emission Inventory (NEI, 2017)32. Details 160 
are described in the SI: Section S2, Figs. S8-S9. Briefly, BCother = BC (county average) × 161 
fraction of county-average EC emission from other sources. NEI emission data are aggregated to 162 
the county level. Therefore, we used the county average BC concentration to estimate BCother and 163 
assign this value to all census blocks within the county boundary. This is reasonable because 164 
BCother is dominated by biomass burning (wildfires), which shows smaller variation within a 165 
county. We estimated census block level BC from mobile sources as BCmobile = (BC - BCother). 166 
 167 
HOA and COA are major contributors to POA, especially in urban areas27,33,34. However, there 168 
are other sources of POA, for instance, biomass burning organic aerosol. We estimated POA 169 
from other sources (POAother) as POAtotal – (HOA+COA).  We estimated total POA using the 170 
OC/BC ratio technique35,36 (i.e., POAtotal = BC × [OC/BC] primary × [OA/OC] primary  and census 171 
block predictions of BC concentrations).  We used values for [OC/BC] primary (typical value: 1.7 – 172 
2.0) and [OA/OC] primary (typical value: 1.3 – 1.4) from the literature37,38 Details are in the SI: 173 
section S3 and Fig. S10 174 
 175 
Secondary PM2.5 is formed via atmospheric chemistry, and includes secondary organic aerosol 176 
(SOA), sulfate, nitrate, and ammonium. We estimated the secondary PM2.5 in each census block 177 
as the total PM2.5 minus primary PM2.5. The predicted total PM2.5 mass concentrations are from 178 
the national empirical model of Kim et al39. These are census block-level annual-average 179 
concentrations in 2015 across the contiguous US, derived from regulatory monitoring, land use 180 
characteristics, satellite-based estimates of air pollution, and empirical regression modeling.  181 
 182 
The primary PM2.5 concentrations discussed above are from combustion sources only. However, 183 
there could be non-combustion primary PM2.5, such as resuspended road dust, tire, and brake 184 
wear particles from mobile sources40,41. Since we estimated secondary PM2.5 as total PM2.5 minus 185 
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combustion primary PM2.5, these non-combustion primary particles will be part of secondary 186 
PM2.5 in our analysis. However, their contribution is much lower compared to secondary PM2.5 187 
species40,42. 188 
 189 
2.2 Comparison of Source-Specific PM2.5 Concentrations Against Chemically Speciated 190 
PM2.5 Monitoring Data 191 
 192 
To assess the robustness of our source- and chemically-specific PM2.5 concentration estimates, 193 
we compared predicted concentrations to US-EPA’s speciated PM2.5 monitoring networks data. 194 
We used 2015-annual average speciated PM2.5 concentrations from 240 monitoring sites across 195 
the continental US. This includes sites from both urban (US EPA’s Chemical Speciation 196 
Network: CSN) and rural (Interagency Monitoring of PROtected Visual Environments: 197 
IMPROVE network) locations across the country.  The comparisons were made using the 198 
predicted concentration estimates at the census-block centroid nearest to each monitoring site. 199 
Details are given in the SI: Section S4, Figs. S11-12.  200 
 201 
The comparison included (i) predicted primary PM2.5 from cooking, mobile, and other sources 202 
versus measured primary PM2.5 species (EC + POA), (ii) predicted secondary PM2.5 (total PM2.5 203 
minus primary PM2.5) versus measured secondary PM2.5 species (SO4+NO3+NH4+SOA), and (iii) 204 
predicted total PM2.5 versus the sum of speciated measured PM2.5 (SO4, NO3, NH4, SOA, POA, 205 
and EC). The measured and predicted concentrations agreed within 10-15% in all cases (Fig. 206 
S12).  207 
 208 
3.0 RESULTS 209 
 210 
3.1 National Spatial Variability in Source-specific PM2.5 Components 211 
Figure 1 shows the predict source-specific PM2.5 concentrations. Fig.1A shows nationwide 212 
concentrations of cooking plus mobile source primary PM2.5. As expected, primary PM2.5 from 213 
mobile and cooking sources show substantial spatial variability with hotspots in urban areas and 214 
near roadways.  215 
 216 
The interquartile range of census-block level concentrations of cooking primary PM2.5 is 0.08 – 217 
0.44 (population-weighted national mean: 0.4) µg m-3; for mobile source primary PM2.5: 0.14 – 218 
0.57 (0.52) µg m-3, and other primary PM2.5: 0.55 – 0.73 (0.71) µg m-3. Other primary PM2.5 is 219 
relatively less spatially variable than cooking and mobile source primary PM2.5 (Fig. 1B). This is 220 
expected because biomass burning (a regional source) is likely an important source of other 221 
primary PM2.5.  222 
 223 
As expected, secondary PM2.5 is less spatially variable than primary PM2.5 (Fig. 1C). The 224 
interquartile range of the national secondary PM2.5 concentration surface is 5.38 -7.34 µg m-3 225 
(population-weighted national mean 6.37 µg m-3). Secondary PM2.5 is the dominant contributor 226 
to total PM2.5 mass exposure in the US, even in highly populated urban areas. Nationally, ~ 80 % 227 
of the national population weighted average total PM2.5 mass comes from secondary PM2.5. 228 
Cooking primary PM2.5 contributes 5%, mobile source primary PM2.5 contributes 6%, and other 229 
primary PM2.5 contributes 9%. 230 
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 231 
Fig. 1: Census block level concentration estimates of source-specific PM2.5 components 232 
across the continental US. (A) cooking plus mobile source primary PM2.5, (B) other primary 233 
PM2.5, and (C) secondary concentrations. Color scales are in log-scale and differ across panels. 234 
 235 
3.2 Intra-Urban Exposure Contrast  236 
Single-city epidemiological studies depend on intra-urban exposure contrast. To quantify the 237 
drivers for intra-urban variability of PM2.5, we investigated the spatial variation in source-238 
specific PM2.5 within each metropolitan statistical area (MSA) in the continental US. Our 239 
analysis reveals that primary PM2.5 strongly drives within-MSA exposure contrast of total PM2.5 240 
with a major contribution from cooking and mobile source primary PM2.5. 241 
 242 
To illustrate the spatial pattern of cooking and mobile source primary PM2.5 across an MSA, Fig. 243 
2A shows a concentration map for the Pittsburgh MSA. There is substantial within-MSA spatial 244 
variability for cooking and mobile primary PM2.5. For example, census block level cooking and 245 
mobile source primary PM2.5 vary by a factor of nine across the Pittsburgh MSA.  In contrast, 246 
other primary PM2.5 vary by a factor of 2.5 and secondary PM2.5 by a factor of 1.3.  247 
 248 
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To further illustrate the variability of source-specific PM2.5 components across the Pittsburgh 249 
MSA, Fig. 2B shows concentrations along a transect that passes through the central business 250 
district. The contribution of cooking and mobile source primary PM2.5 to total PM2.5 is highest in 251 
downtown and gradually decreases as one moves away from the city center (Fig.2B). Although 252 
cooking and mobile source primary PM2.5 contribute less than 20% of the total PM2.5 mass 253 
concentrations, they largely drive spatial variability of total PM2.5 across the Pittsburgh MSA. 254 
Along the transect line, other primary PM2.5 is less variable than cooking and mobile source 255 
primary PM2.5. Whereas secondary PM2.5 shows minimal variability. 256 
 257 
To quantify what fraction of within-MSA spatial variability of total PM2.5 can be explained by 258 
the cooking and traffic primary PM2.5, we compare the within-MSA spatial variability of census-259 
block level background subtracted PM2.5 (ΔPM2.5) versus cooking and mobile source primary 260 
PM2.5. We defined the ΔPM2.5 as block-level PM2.5 minus 5th percentile of block-level PM2.5 261 
within the MSA boundary (Fig. 2B). In Pittsburgh MSA, the slope of within-MSA ΔPM2.5 versus 262 
cooking and mobile source primary PM2.5 regression is ~ 0.51, indicating cooking and source 263 
primary PM2.5 explain about 50% of within-MSA spatial variability of total PM2.5. The 264 
remaining variability comes from other primary and secondary PM2.5. 265 
 266 
While Fig. 2B illustrates the important contribution of primary PM2.5 for within-MSA spatial 267 
variability, the overall PM2.5 mass exposure is dominated by secondary PM2.5, even at the city 268 
center. We examined the chemical speciation data from an urban background CSN site in 269 
Pittsburgh (Lawrenceville, AQS # 42-003-0008; Fig. 2B, right bar plot). Our estimate of 270 
secondary PM2.5 in Pittsburgh is comparable with the sum of speciated secondary PM2.5 271 
measurements (SO4, NO3, NH4, and SOA).  272 
 273 
Fig. 2C shows the within-MSA exposure contrast (CBlock - CMSA) along the transect line. The 274 
exposure contrast for cooking and mobile primary PM2.5 and total PM2.5 peak in the city center 275 
(downtown). The spatial distribution of exposure contrasts for cooking and mobile primary PM2.5 276 
versus total PM2.5 look similar (Fig. 2C). This implies that these two primary sources are 277 
important for the overall exposure contrast for total PM2.5 within the MSA. On average, 50% of 278 
within-MSA exposure contrast for total PM2.5 in Pittsburgh comes from the exposure contrast in 279 
cooking and mobile source primary PM2.5.  280 
 281 
To demonstrate that the results from the Pittsburgh MSA are broadly representative, Fig. 3A-C 282 
summarizes the within-MSA exposure contrasts for all MSAs within the continental US (n= 363) 283 
rank ordered by MSA population (Fig.3D). Within-MSA exposure contrasts of PM2.5 relative to 284 
the MSA-mean vary between -1.8 to 1.4 µg m-3. Our analysis indicates that cooking and mobile 285 
source primary PM2.5 explain between 22% and 94% of within-MSA exposure contrasts of PM2.5 286 
across the 363 MSAs (SI: Section S5, Fig. S13). On average they explain 51% with the reminder 287 
due to other primary and secondary PM2.5.  288 
 289 
Our mobile sources primary PM2.5 does not account for non-tailpipe primary PM2.5, such as 290 
traffic-related brake wear, tire wear, and resuspended road dust. These components are lumped 291 
within the secondary PM2.5 and could contribute to within-MSA exposure contrast. Currently, the 292 
relative important of non-tailpipe primary PM2.5 is growing40. Past studies also reported evidence 293 
of an intra-urban gradient of secondary PM2.5

34. Therefore, local secondary PM2.5 production can 294 
contribute to within-MSA exposure contrast.  295 
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  296 
Fig. 2: Exposure contrast within the Pittsburgh Metropolitan Statistical Area (CBlock - 297 
CMSA). (A) Map showing the distribution of cooking and mobile source primary PM2.5 298 
concentrations across the Pittsburgh Metropolitan Statistical Area (MSA). (B) The concentration 299 
of source-resolved PM2.5 components along a transect line (x-z-y) that passes through the city 300 
center (downtown Pittsburgh). The transect line (x-z-y) is shown in Panel-A. The rightmost bar 301 
plot on panel-B shows the 2015 annual average chemical composition of PM2.5 in Pittsburgh 302 
using data from an urban background CSN site in Lawrenceville (AQS#42-003-0008). (C) 303 
Exposure contrast (CBlock - CMSA) of total and source-specific PM2.5 components along the 304 
transect line x-z-y.  305 
 306 
3.3 National Exposure Contrast with Low Spatial Resolution  307 
National/multi-city epidemiological studies often use low-spatial resolution exposure estimates 308 
(e.g., MSA-average, county-average). Our analysis indicates that about 70-90% of between-309 
MSA exposure contrast using MSA-average concentrations is due to secondary PM2.5 (Fig. 3F-310 
J). Primary PM2.5 contributes little to these between-MSA exposure contrasts. Relative to the 311 
national mean, between MSA exposure contrast varies between -3.9 to 3.2 µg m-3. The between 312 
MSA exposure contrast is larger than within MSA exposure contrast. 313 
 314 
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Fig. 4 presents between-MSA exposure contrast for total and source-specific PM2.5 components 315 
by region. There is substantial variability in MSA-average total PM2.5 exposures within and 316 
between regions, which are largely due to secondary PM2.5 concentrations. Maps in Fig. 4C show 317 
the nationwide spatial distribution of between-MSA exposure contrasts for total and source-318 
specific PM2.5 components. There are regional hotspots in the Midwest/northeast and the 319 
southern US.  These are due to inorganic sulfate and nitrate in the Midwest/northeast and 320 
(biogenic) secondary organic aerosol in the southeast43.  321 
 322 

   323 
Fig. 3: Within- and between-MSA (Metropolitan Statistical Area) exposure contrasts 324 
across the continental US (n= 363). MSAs are ranked by the total MSA population (as shown 325 
in panels E and J). (A) Boxplots of within-MSA exposure contrast (CBlock- CMSA) for cooking and 326 
mobile source primary PM2.5 (the inset in panel-A shows the zoom-in view of the small red 327 
rectangle area). (B-D) Similar to panel-A, within-MSA exposure contrasts for (B) other primary 328 
PM2.5, (C) secondary PM2.5, and (D) total PM2.5. (F-I) Sticks show MSA-average exposure 329 
contrast relative to nation mean (CMSA- CNational); (F) cooking and mobile source primary PM2.5, 330 
(G) other primary PM2.5, (H) secondary PM2.5, and (G) total PM2.5 (G). 331 
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 332 

 333 
Fig. 4: Exposure contrast between MSA average PM2.5 (CMSA- CNational). (A) Stacked bars of 334 
MSA-average concentrations of cooking and mobile source primary PM2.5, other primary PM2.5, 335 
and secondary PM2.5. The total height of the bar is the MSA-average total PM2.5 concentration. 336 
(B) Exposure contrast between MSAs (CMSA- CNational) for cooking and mobile source primary 337 
PM2.5, other primary PM2.5, secondary PM2.5, and total PM2.5. (C) Maps of the exposure contrast 338 
between MSAs for total PM2.5, primary PM2.5 (sum of cooking and mobile source primary PM2.5 339 
and other primary PM2.5), and secondary PM2.5. In panels A and B, MSAs are grouped by region 340 
(West, Mountain West, South, Midwest, and Northeast) and then rank-ordered within a region by 341 
MSA-average total PM2.5 concentrations.  342 
 343 
3.4 National Exposure Contrast with High Spatial Resolution 344 
In the last decade, researchers have begun used high-spatial-resolution PM2.5 estimates for 345 
national epidemiology studies14,20–22.  To better understand the drivers of exposure contrast in 346 
these types of studies, Fig.5 presents the nationwide exposure contrast of source-specific PM2.5 347 
components using high spatial resolution (census-block-level) concentration estimates (CBlock – 348 
CNational).  349 
 350 
Compared to intra-urban (Fig. 3) and intra-MSA (Fig. 4), national census block concentrations 351 
have the largest absolute variation (relative to the national mean: - 4.7 to 3.7 µg m-3) due to both 352 
regional and intra-urban contributions. Fig. 5 indicates that cooking and mobile source primary 353 
PM2.5 and secondary PM2.5 all contribute to total PM2.5 exposure contrast. In comparison, other 354 
primary PM2.5 has a much smaller contribution to exposure contrast. 355 
 356 
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Hotspots for cooking and traffic primary PM2.5 are in cities (Fig. 5A). These hotspots are 357 
important contributors to exposure contrast in high-resolution national studies (Fig. 5A), but 358 
mostly disappear in a national comparison of MSA average concentrations (see Fig. 4C). High 359 
spatial resolution national studies also capture the hotspots of secondary PM2.5 (Fig. 5C). 360 
 361 

 362 
Fig. 5: Census block level exposure contrast (CBlock – CNational) across the continental US. 363 
Maps of exposure contrast for (A) cooking and mobile source primary PM2.5, (B) other primary 364 
PM2.5 (B), and (C) secondary PM2.5. (D) Census-block-level exposure contrasts for cooking and 365 
mobile source primary PM2.5, other primary PM2.5, secondary PM2.5, and total PM2.5 rank ordered 366 
by total PM2.5 exposure contrast and grouped into 100 bins.  367 
 368 
Fig.5D summarizes the nationwide census block-level exposure contrast (CBlock – CNational). While 369 
secondary PM2.5 dominate the total PM2.5 exposure contrast across the country, cooking and 370 
traffic primary PM2.5 are important in certain locations. In addition, the contributions of cooking 371 
and traffic primary PM2.5 to overall exposure contrast are largest in census blocks with high 372 
PM2.5 exposure contrast; these census blocks are typically in urban areas. 373 
 374 
We conducted a similar analysis using directly measured speciated PM2.5 data from US-EPA’s 375 
speciated PM2.5 monitoring sites across the country (Fig. S14) using 2015-annual average 376 
concentrations of major PM2.5 species (SO4, NO3, NH4, SOA, POA, EC). Similar to the model-377 
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based results (Fig. 5), the measured composition data indicate that secondary species (SO4, NO3, 378 
NH4, SOA) dominate nationwide exposure contrast for total PM2.5. However, primary 379 
components (EC, POA) have a significant contribution in total PM2.5 exposure contrast in many 380 
urban locations (Fig.S14).  381 
 382 
4. Discussion 383 
 384 
Using census-block level concentration estimates, our study provides insight into the drivers of 385 
exposure contrast for source-specific PM2.5 components across the continental US. Fig. 6 386 
summarizes the results for the three different cases. Since we estimated exposure contrast 387 
relative to the national-mean and MSA-mean, it can be positive and negative. Therefore, to 388 
compare an average exposure contrast for different spatial scenarios, we calculated the root mean 389 
square (RMS) difference, instead of arithmetic mean; specifically, we calculated the RMS of 390 
(CBlock – CNational), (CMSA – CNational) and (CBlock – CMSA). For the within-MSA case, we used an 391 
arithmetic average of RMS (CBlock – CMSA) across all MSAs. Details on this calculation are given 392 
in Table S-4.  393 
 394 

 395 
Fig. 6:  Contribution of source-specific PM2.5 components to average exposure contrast of 396 
total PM2.5 mass. Bars show the contribution of cooking and traffic primary PM2.5, other 397 
primary PM2.5, and secondary PM2.5 to total PM2.5 exposure contrast. The full height of each bar 398 
indicates exposure contrast for total PM2.5.  399 
 400 
Fig. 6 indicates that the largest exposure contrast is high resolution national estimate, followed 401 
MSA-average and then within-MSA cases. In the national-average of census-block-level 402 
exposure contrast (CBlock – CNational), 26% of total PM2.5 exposure contrast comes from cooking 403 
and mobile source primary PM2.5, 9% from other primary PM2.5, and 65% from secondary 404 
primary PM2.5. In national-average of MSA-level exposure contrast of total PM2.5, cooking and 405 
mobile source primary PM2.5 contribute 15%, other primary PM2.5 contributes 7%, and secondary 406 
PM2.5 contributes 78%. For the within-MSA exposure contrast, about 50% of total PM2.5 407 
exposure contrast comes from cooking and mobile source primary PM2.5. 408 
 409 
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Our results have implications for the design and interpretation of epidemiological studies 410 
investigating the health impacts of PM2.5 sources and components. While high spatial resolution 411 
national studies provide maximum exposure contrasts, city and MSA-average designs better 412 
isolate individual components. MSA-average exposure contrasts are largely driven by secondary 413 
PM2.5. For example, Fig. 6 indicates that secondary PM2.5 contributes about 80% to total PM2.5 414 
exposure contrast for exposure contrast estimated using MSA-average concentrations. Therefore, 415 
a national-scale epidemiological study using MSA-, or country-average exposure concentrations 416 
can help to infer the health impacts of secondary PM2.5 while minimizing the influence of 417 
primary PM2.5. In contrast, city/metro scale epidemiological studies maximize the exposure 418 
contrast of primary PM2.5. Although primary PM2.5 is a relatively minor component of total PM2.5 419 
exposure (even at the city center), it drives the majority of the within-MSA exposure contrast of 420 
total PM2.5. Therefore, a city/metro scale study using high-resolution exposure data may better 421 
isolate the health effects of primary sources.  422 
 423 
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