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Abstract
We evaluate neural network coarse-grained force fields compared to traditional CG molecular
mechanics force fields. We conclude neural network force fields are able to extrapolate and
sample from unseen regions of the free energy surface free energy surfaces when trained with
limited data. Our results come from 66 trained force fields trained on different combinations
of clustered free energy surfaces across three proteins. We used total variation similarity as
our metric, which assesses agreement between free energy surfaces of force fields. Additionally,
force matching error was found to only be weakly correlated with a force field’s ability to
reconstruct the correct free energy surface. These conclusions support the common hypothesis
that constructing force fields on one region of the protein free energy surface can extrapolate
well.

1 Introduction

Coarse-grained (CG) molecular dynamics (MD) is a tool to complement experiments. [1,2] A CG model can
be considered a “reduced model” as not all degrees of freedom are not considered explicitly. According to
Noid [3], CG models provide a foundation to most scientific efforts by focusing over “essential” features of a
system. CG MD enables sampling of thermodynamic systems at larger spacial and temporal scales, which
are inaccessible at the all-atom resolution. As a result, CG MD is a useful tool to study phenomena such
as protein folding pathways and multi-protein structure assemblies which require sampling at larger length
or timescales. [4,5] CG models are based on the separation of time of complex systems, thereby providing a
practical alternative to uncover the underlying Hamiltonian of these reduced models [6]

One such model consist of two main components – a CG representation (mapping) and a CG forcefield (FF).
The first is a “coarser” representation of the all-atom system in the reduced CG phase space. CG atoms can
be perceived as pseudo atoms which define the physicochemical character of given groups of atoms. [3,7] The
CG FF represents the interactions between these pseudo CG atoms. [8] These interactions must be able to
capture the eliminated atomistic level details. [3] Therefore, it can be defined as a potential of mean force
(PMF) – a function of weighted averages of energies of the atomistic configurations. [9] This PMF must be
able to compute any equilibrium property that is expressed as an ensemble average of the CG coordinates. [10]

Finding a fitting approximation of this PMF is one of the key challenges associated with CG modeling.
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Traditionally, two common approaches are used in developing CG FF, 1) bottom-up approaches [2,11] and
2) top-down approaches. [12] A bottom-up approach relies on information from fine-grained models, while a
top-down approach aim to reproduce macroscopic properties. [13] Both these approaches are based on the
hypothesis that a CG model must reflect the “correct physics” of the all-atom system. [3] The study by Kidder
et al. [14] provides a thorough perspective on CG FFs and the impact of entropic contributions.
The recent advances of deep learning have shown promising results in the field of CG molecular dynamics,
where deep learning is used in CG mapping predictions [7] and in developing CG FFs. [15,16,16,17] Work by
Behler and Parrinello [18] is one of the first in this research direction, where a generalized neural network
(NN) was used to construct a DFT based potential energy surface (PES). Recent work by Majewski et al. [19]

show that NN CG forcefields are transferrable among proteins - showed that one general NN FF is able to
recover native conformations of multiple proteins. In this work, we focus on the applicability of NN as CG
FFs and their limitations.
During training, we desire that the NN FF learn the underlying PMF as a function of the CG coordinates by
generating forces based on CG bead positions which agree with the atomic forces mapped onto CG sites,
using the following loss function [20,21] :

𝐿𝐹𝑀 = ∑
𝑡

‖∇m ̂𝐹 (Mxt, 𝜃) + 𝑓m(xt)‖ (1)

Here, M is the mapping matrix which takes the 𝑁 atomic coordinates into 𝑛 CG sites. ∇m ̂𝐹 (Mxt, 𝜃)
represents the gradient of the learned free energy function (effective CG forces) where m are the CG variables.
Instantaneous CG forces mapped from the all-atom trajectory are represented by the last term in the equation
1. Based on this, we may notice that, although NNs have shown to be promising as molecular FFs, [22–24]

their performance is viewed as highly dependent on available training data. [21,25] Hence, it is a somewhat
open question on how well they can extrapolate beyond training data, especially as newer NN FFs depart
in functional form from molecular mechanics FFs. Zeni, et al. [25] explain that it is not trivial whether NN
potentials are able to exploit the extrapolation regime, specifically when the potential energy surface is
smoothened by CG representations.
In this work, we investigate the key question “are NN FFs able to extrapolate to unseen regions of the Free
energy surface (FES)?”. Furthermore, we investigate how to evaluate the impact of the amount of data used
in training. We aim to discuss if NN are suitable to replace traditional, physics informed models to sample
from low data regions of the FES. Additionally, we question if forces are an adequate benchmark to train CG
FFs and if these FFs learn to sample only from “physically plausible” regions in the FES.
To study these research problems, we selected three proteins based on structural properties [26] – 1) a folded
protein: P-Element somatic inhibitor miniprotein (PDB ID:2BN6) [27] 2) a half folded protein: Miniature
Esterase (PDB ID: 1V1D) [28] and, 3) an unfolded protein: 𝛽-amyloid peptide residues 10-35 (PDB ID:
1HZ3) [29] 𝛼-Carbons of the backbone were used to represent each residue (CG representation). The data
rich protein trajectories were processed using a Markov State Models (MSM) based approach which extract
prominent clusters (meta stable states) from a given protein trajectory. Finally, various subsamples of
the meta-states were used to train two NN FFs (CGSchNet [9,16] and, TorchMD-Net [24]) and to produce
CG simulations. To evaluate the performance of the trained FFs we use a metric named total variation
similarity [30] (TVS),

TVS = 1 − (
𝑏

∑
𝑥=𝑎

𝑃𝑚𝑎𝑝𝑝𝑒𝑑(𝑥) − 𝑃𝐶𝐺(𝑥) + 𝜁) (2)

Here, 𝜁 is a penalty term which accounts for the number of frames in the CG trajectory that are beyond the
regions of the mapped trajectory. This TVS metric is a system agnostic metric to evaluate the performances
of trained FFs.

2 Methods

2.1 Simulation methods

For each protein, all-atom MD simulation inputs with the forcefield AMBER99SB*-ILDN [31,32] and TIP3P
water model [33] were produced using GROMACS tools, with neutralizing potassium ions added. All simulations
were performed in GROMACS 2020.4. [34]
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All-atom simulations: Minimization and equilibration were performed according to a standard protocol [35]

which involves up to 50000 steps of steepest descent minimization, followed by 100 ps of NVT equilibration
with backbone atoms restrained. Production 15𝜇𝑠 NPT simulations were performed for each protein, at
𝑇 = 300K for 2BN6, 𝑇 = 310K for 1HZ3 and 𝑇 = 290K for 1V1D. These temperatures were selected
empirically to ensure simulation temperature is below the melting point of each protein. [36–38] Production
simulations used a 2 fs timestep, a 1 nm cutoff for electrostatics, the v-rescale thermostat [39] with a 0.1 ps
time constant, and Parrinello-Rahman barostat, [40] using a 2 ps time constant. From these production runs,
training data frames were generated by restarting from fixed points along these trajectories using the same
MD parameters, but with velocities resampled for each run. Starting points for restart trajectories were
checkpoint files separated every 50 ns starting after 2.5 microseconds. From these 250 checkpoint files, four 10
ns simulations were performed, where positions and forces were saved in double precision every 20 ps. Hence,
for each protein we had 500,000 snapshots available for training (250 starting points x 4 simulations/point x
500 frames/simulation).
CG simulations: After training NN FFs (CGSchNet and TorchMD-Net models), each was used to conduct
NVT CG simulations with Langevin dynamics at same temperatures as the all-atom simulations. (300K,
290K and 310K). A time step of 2fs were used for all FFs. Each CG trajectory was started from the centroid
configuration of one of the testing clusters. We used this approach to avoid the impact of the starting
configuration during the CG production. With CGSchNet FFs we were able to run 50 independent trajectories
which were 0.02 ns - 0.2 ns long. Most simulation were not stable beyond 0.2ns. With TorchMD-Net we
produced 2 ns long CG trajectories with 10 replicas. To perform NVT CG simulations with MARTINI FF,
we employed the GROMACS simulation engine with leap-frog algorithm for integrating Newton’s equations of
motion. Each CG simulation was run for 2 ns with explicit water. For the CG simulations with OpenAWSEM
FF, we used Langevin dynamics at constant temperatures 300K, 310K and 290K for 2BN6, 1V1D and 1HZ3
miniproteins. The CG mappings used in these analyses were the default mappings of MARTINI [41] and
AWSEM [42] FFs. Each CG simulation was run for 1 ns. All simulations from MARTINI and OpenAWSEM
FFs were stable and ran to completion. More details can be found in SI.

2.2 Training data

Firstly, the all-atom trajectories of 2BN6, [27] 1V1D [28] and 1HZ3 [29] miniproteins were mapped into a CG
representation, where each residue was represented with its 𝛼-carbon atom. Then each mapped trajectory
was clustered into four meta stable states based on a Hidden-Markov State Model (HMSM). [43,44] using the
PyEMMA python library as described next. [45,46] Finally, configurations (snapshots from the trajectory)
from various subsets of the meta states were used for training separate FFs.

Figure 1: Meta stable clusters of the miniproteins in the low dimensional space projected using the TICA
method. [47] P-Element somatic inhibitor miniprotein (PDB ID:2BN6), Miniature Esterase (PDB ID: 1V1D),
and, 𝛽-amyloid peptide residues 10-35 (PDB ID: 1HZ3) were used in this study.

Clustering of protein trajectories to meta stable states in the FES is based on a MSMs. These are a powerful
toolkit for analyzing dynamic data from MD simulations. [48,49] The main steps involved in building a MSM
are, 1) featurization 2) dimensionality reduction 3) clustering and 4) estimation of the transition matrix. [50]

They are extensively discussed in literature on approximating observables from MD simulations. [51–55]

We selected the 𝛼-Carbon pairwise distances to featurize mapped trajectories for the dimensionality reduction.
Time-lagged independent component analysis (TICA) [47,56] was used for this step. Next, these projected
spaces were discretized using K-means [57] clustering to estimate an initial Markov State Model (MSM). 50,
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Table 1: Cluster combinations used for training

Cluster
Percentage

100% 75% 50% 25%

FF label:
clusters
used in
training

FF0:
1,2,3,4

FF1:
2,3,4
FF2:
1,3,4
FF3:
1,2,4
FF4:
1,2,3

FF5:
1,2
FF6:
3,4

FF7: 1
FF8: 2
FF9: 3
FF10:
4

75 and 200 cluster centers were used for 2BN6, 1V1D and 1HZ3 miniproteins respectively. These cluster
numbers were selected based on the VAMP2 scores. [58] This is the sum of singular values of the symmetrized
MSM transition matrix. Respective lags of 100, 100 and 10 were selected to build MSM. Lags were selected
such that the implied timescales were constant with the statistical error (See SI). Furthermore, we validated
the MSMs using Chapman–Kolmogorov tests. [59,60]

Finally, HMSMs were estimated based on the reference MSMs where each trajectory was clustered into four
meta stable states – each frame of the trajectories were assigned to a cluster. Christoforou et al. [61] describe a
HMSM as a “kinetic” coarse-graining model which group the microstates identified by the k-means clustering
algorithm. We followed a similar approach as Christoforou et al. [61] to assign meta stable clusters. Figure 1
shows the four meta clusters of the reduced dimensional spaces along the first two independent components
(IC1 and IC2) identified with TICA. [47] Further details for this procedure are given in the SI.

2.3 Training forcefields and running CG simulations

In this study, we selected two NN-based CG FFs; CGSchNet [9] and TorchMD-Net. [24] CGSchNet [9] is a
modified version of the CGNet model [16] which learns the CG PES based on the force matching approach. In
CGNet model, the inputs are hand-selected features such as bond distances, angles and dihedrals. However,
in the CGSchNet model, the features are “learned” during training by leveraging the SchNet model. [62,63]

TorchMD-Net [24] package provide a state-of-the-art graph neural network (GNN) and equivariant transformer
(ET) based NN potentials for molecular simulations. Additionally, TorchMD [64] is a Python API for
performing molecular dynamics. In this work, we used TorchMD-Net’s GNN model and TorchMD for training
CG FFs and for conducting CG simulations respectively.
The key objective of this work is to investigate if NN CG FFs are able to extrapolate to sample from
unseen regions of the FES. Therefore, during training we subsampled different sets of meta-stable states
and trained multiple independent FFs per miniprotein (listed in Table 1). For example, to train “FF1” we
used 75% of clusters, those labeled as 2,3 and 4 – data from cluster 1 were withheld. We followed the same
nomenclature for all three miniproteins and both CGSchNet [9] and TorchMD-Net FFs. The number of frames
from each cluster were kept constant through downsampling. Other hyperparameters used in training and
train-validation error plots can be found in SI. Finally, the trained FFs were used to produce CG simulation.
See Simulation methods section for more details. Note that, due to the smoothness of the underlying CG
FES, similar amount of sampling is obtained in these “ns” long simulations as compared to the original
microseconds of training data, as well be shown shortly.

3 Results and discussion

First, we compared the performances of the FF0 from CGSchNet and TorchMD-Net (trained with data
from all four meta states) with state-of-the-art physics informed FFs MARTINI [41,65] and OpenAWSEM. [66]

MARTINI is possibly the most popularly used FF in CG simulations [67] of lipids, [68,69] proteins, [70,71]

sugars [72] and other biomolecules. [73,74] OpenAWSEM is the implementation of AWSEM [42] CG FF for
proteins within the GPU compatible OpenMM framework. AWSEM contains physics informed many-body
effects and employ an implicit solvent environment. [42] This FF has been successfully applied to study protein
structure prediction. [75–77]
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Figure 2: Comparison with state-of-the-art methods. Higher TVS refers to high similarity between mapped
and CG simulation distributions in the projected TICA spaces.

Based on the comparison illustrated in Figure 2 we observe the following; a) Performance of the OpenAWSEM
FF increases significantly with the increasing structural disorder of the miniproteins, b) CGSchNet has the
lowest overall performance among all four FFs c) TorchMD-Net has the highest average performance. Note
that MARTINI and OpenAWSEM mapped trajectories in the Figure 2 are visually different to CGSchNet
and TorchMD-Net trajectories due to the differences in CG representations.
CG trajectories from forcefields FF0 from CGSchNet, TorchMD-Net, MARTINI and OpenAWSEM were
featurized and projected into a FES using TICA. [30] Figure 3 show the cartoon representations of the 3
miniproteins along with their projected trajectories. We observe in 3 that the TVS between the mapped
and CG simulations from CGschNet FF0 is low because the trajectories explore a broader region in their
2D projected spaces. This observation indicates that the CGSchNet-FF0 tend to sample from physically
non-meaningful regions. This hypothesis is further confirmed as the CG simulations from CGSchNet FFs did
not run to completion for 2 out of 3 miniproteins. Total trajectory times were between 0.02 ns - 0.2 ns and
none of the CG simulations were stable beyond 0.2 ns. However, with TorchMD-Net we were able to produce
longer simulations for 2 ns each. We selected this cut off due to time and resource constraints. Additionally,
we notice that TorchMD-Net FFs strictly explores the region around the mapped trajectories, thus avoiding
physically non-plausible regions. With these observations, we conclude that TorchMD-Net outperforms
CGSchNet, MARTINI and OpenAWSEM FFs when trained with all available data – TorchMD-Net has the
highest average TVS between mapped and CG FES. Therefore, we proceeded to focus on the impact of
training data only on the performance of TorchMD-Net FFs.
Figure 4 illustrates the performances of TorchMD-Net FFs trained with various combinations of meta-states.
Surprisingly, we observe that the percentage of meta stable clusters used in training does not strongly impact
the performance of the FFs. For example, we see that the TVS of FF0 trained with data from all 4 meta-states
is comparable to FF7-10 trained with data from only one meta-cluster. Note the number of frames is kept
constant for each example by downsampling. This shows that exploration of configurational space has little
impact on the FF quality – the FFs can extrapolate.
Finally, to study if training on force matching error is a predictor for NN FF correctness, we compared the
force error (validation error) of all 11 CGschNet FFs and 11 TorchMD-Net FFs per miniprotein. Figure 5
shows that force errors from both CGschNet TorchMD-Net models only differ by ±0.2 kcal/(mol.). However,
their TVS differ by ∼ 20%. Based on this observation, we can conclude there is weak or no correlation
between force matching error and configuration free energy surface – even within the same model architecture.
This observation aligns with the findings by Fu et al. [20], which showed that the models having best force
matching error are not necessarily the best at predicting properties like diffusivity or radial distribution
function agreement.

4 Conclusions

Based on our results, we observe that TorchMD-Net significantly outperforms the two physics informed
FFs (MARTINI [41] and OpenAWSEM [66]) and CGSchNet FFs. Unlike the other FFs, TorchMD-Net FFs
strictly explore around the same FES as the mapped trajectories indicating TorchMD-Net FFs tend to avoid
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Figure 3: Mapped and CG FES from FF0 – FFs trained with all 4 meta-states. Top: projected miniprotein
trajectories from CGSchNet, TorchMD-Net, MARTINI and OpenAWSEM FFs. Bottom: cartoon repre-
sentations of miniprotein trajectories annotated with approximate melting and simulation temperatures.
Conformational ensembles are 20 random frames after a weighted iterative alignment following the procedure
of Ref. 78.
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Figure 4: Impact of data in training of forcefields. Labels of the FFs indicate the Meta-states used in training.
See Table 1.

Figure 5: Variation of TVS with force matching error of all CGSchNet and TorchMD-Net FFs. The x-axis
denotes average validation error of the last 3 epochs. TVS indicates the similarity between mapped and CG
trajectories from the trained FFs.

physically improbable configurations. Mainly, we observe that the number of meta stable clusters used in
training does not impact the overall performance of FFs trained with TorchMD-Net, for proteins ranging
from fully ordered to fully disordered. Therefore, we conclude that NN FFs are able to extrapolate to unseen
regions of the FES. Furthermore, we note that these NNs are comparable to the physics informed FFs or
even able to outperform them. Additionally, we find support that maximizing agreement between forces is
not a strong predictor of model accuracy in other metrics, as supported by other recent findings [20,79]
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