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Highlights 

1. Top-down proteomics (TDP) of small tissue sections was demonstrated. 
2. Proteoforms specific to anatomical regions in rat brain were detected. 
3. An integrated informatics workflow for quantitative TDP was presented. 

 

Abbreviations: 

ABC(ammonium bicarbonate); ACN(acetonitrile); BCA(bicinchoninic acid); BUP(bottom-
up proteomics); CV(compensation voltages); DDM(n-dodecyl-beta-maltoside); 
DMSO(dimethyl sulfoxide); ETD(electron transfer dissociation); FA(formic acid); 
FAIMS(field asymmetric ion mobility spectrometry); GO(Gene ontology); HCD(higher-
energy collisional dissociation);  HEK293(human embryonic kidney 293 cell line); 
KEGG(Kyoto encyclopedia of genes and genomes); LCM(Laser Capture 
Microdisecction); LC-MS/MS(liquid chromotography with tandem mass spectrometry); 
MSI(mass spectrometry imaging); nanoPOTS(nanodroplet Processing in One pot for 
Trace Samples); PBS( phosphate buffer saline); PP (polypropylene); PPI(protein-protein 
interaction); ProMex(Protein Mass Extractor); PTM(post-translational modification); 
RT(retention time); SPE(solid phase extraction); STRING(Search Tool for the Retrieval 
of Interacting Gene/Proteins); TCEP(Tris(2-carboxyethyl)phosphine); TDP(top-down 
proteomics); TFA(tri-fluoroacetic acid); TopFD(Top-down mass spectrometry feature 
detection); TopPIC(Top-down mass spectrometry-based Proteoform Identification and 
Characterization) 
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Abstract  

Conventional proteomic approaches measure the averaged signal from mixed cell 

populations or bulk tissues, leading to the dilution of signals arising from subpopulations 

of cells that might serve as important biomarkers. Recent developments in bottom-up 

proteomics have enabled spatial mapping of cellular heterogeneity in tissue 

microenvironments. However, bottom-up proteomics cannot unambiguously define and 

quantify proteoforms, which are intact (i.e. functional) forms of proteins capturing genetic 

variations, alternatively spliced transcripts and post-translational modifications. Herein, 

we described a spatially resolved top-down proteomics (TDP) platform for proteoform 

identification and quantitation directly from tissue sections. The spatial TDP platform 

consisted of a nanoPOTS (nanodroplet Processing in One pot for Trace Samples)-based 

sample preparation system and an LCM (laser capture microdissection)-based cell 

isolation system. We improved the nanoPOTS sample preparation by adding benzonase 

in the extraction buffer to enhance the coverage of nucleus proteins. Using ~200 cultured 

cells as test samples, this approach increased total proteoform identifications from 493 to 

700; with newly identified proteoforms primarily corresponding to nuclear proteins. To 

demonstrate the spatial TDP platform in tissue samples, we analyzed LCM-isolated tissue 

voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms 

within the union of TopPIC and TDPortal identifications to match with features from 

ProMex.  Several proteoforms corresponding to the same gene exhibited mixed 

abundance profiles between two tissue regions, suggesting potential PTM-specific spatial 

distributions. The spatial TDP workflow has prospects for biomarker discovery at 

proteoform level from small tissue sections. 

Keywords  

Top-down proteomics, nanoPOTS, laser capture microdissection, proteoform, spatial 

proteomics, quantitation  
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Introduction 

Top-down proteomics (TDP) is a mass spectrometry (MS) strategy for characterizing 
“proteoforms”, which encompass the combination of post-translational modifications 
(PTMs), splice-isoforms, and amino acid variants occurring on a protein sequence(1). 
These variations at the proteoform level are not directly encoded in the genes. Still, they 
are critical to regulating cellular functions, particularly in the case of histones where co-
occurrence of PTMs is known to influence chromatin biology and epigenetic regulation of 
genes(2).  Combinatorial PTMs present a significant challenge for bottom-up proteomics 
(BUP) or antibody-based methods(3-5). TDP avoids ambiguity associated with 
proteoform inference from peptides by bypassing proteolytic steps(6, 7). Achieving high-
quality proteoform identification with TDP, however, is challenging as it requires sufficient 
protein sample amount, high MS performance, and efficient fragmentation for confident 
assignment of PTMs. Thus, TDP typically requires bulk-scale tissue or large quantities of 
cultured cells (~106) to obtain sufficient proteoform coverages. Encouragingly, recent 
developments in MS instrumentation, methods, and informatics have significantly 
improved attainable sensitivity and depth of coverage(8-12), and thus allowed for reduced 
sample requirement towards single-cell levels (13, 14). These advances have enabled 
the characterization of cellular heterogeneity among isolated cell populations or tissue 
regions (e.g., functional tissue units) that contain specific morphological and functional 
biomarkers (15-17). However, most of these advances were made for BUP analysis, 
obscuring the critical information needed for proteoform characterization. 

Several microsampling and MS detection methods have been developed to enable highly 
sensitive and spatially resolved TDP analysis. Most of these advances were achieved 
employing MS imaging (MSI) methods, including matrix-assisted laser desorption 
ionization (MALDI)(18), nanospray desorption electrospray ionization (nanoDESI),(19), 
(20) liquid extraction surface analysis (LESA)(21), and laser ablation electrospray 
ionization (LAESI)(22). However, directly identifying proteins with MS/MS fragmentation 
in MSI is not trivial due to overlapping signals, salt adducts, and low signal intensity(23). 
In MALDI MSI, an additional challenge is that ions typically have low charge states (≤3), 
which greatly reduces fragmentation efficiency(18). For this reason, intact protein 
databases or prior knowledge from MS profiles and fragmentation patterns are required 
for peak assignment(18). Additionally, because of the lack of separation, MSI methods 
are typically limited to detecting highly abundant or highly ionizable proteins. To address 
these challenges, liquid microjunction (LMJ) microextraction(24), parafilm-assisted 
microdissection (PAM)(24), and laser capture microdissection (LCM)(25) have been 
explored to isolate and characterize microstructures from tissue sections. For example, 
the integration of LCM and capillary electrophoresis with TDP has enabled identification 
of over 400 proteoforms from two different regions of zebrafish brain (25). 

Herein, we describe an improved spatial TDP platform that integrates LCM-based sample 
isolation with our previously developed nanoPOTS (nanodroplet processing in one-pot 
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for trace samples) sample preparation. We have demonstrated that nanoPOTS-based 
TDP can significantly improve the recovery of low amounts of samples by minimizing 
protein absorption on container surfaces(26). Over 150 proteoforms were identified from 
~70 cultured HeLa cells, and a variety of post-translational modifications and proteoforms 
assigned(26). In this work, we further improved the nanoPOTS protocol for enhanced 
proteoform coverage and extended the application from cultured cells to tissue sections. 
We added the nuclease benzonase in the extraction buffer to reduce sample viscosity 
and improve protein extraction efficiency as reported previously for bulk analyses(27, 28). 
To achieve deeper proteome coverage and more confident identifications, we developed 
several scripts that integrate qualitative and quantitative results from ProMex, TopPIC, 
and TDPortal (available at https://github.com/PNNL-HubMAP-Proteoform-Suite/spatially-
resolved-TDP). To demonstrate the spatial TDP analysis, we employed LCM to isolate 
cells from the cortex and hypothalamus regions in a rat brain section, and detected 
differential proteoform profiles between the two regions. We found varying proteoform 
abundance profiles for the same protein (gene), highlighting the need for proteoform-
centric measurements. Finally, we demonstrated the identified proteoforms from the 
LCM-nanoPOTS-TDP analyses can serve as a library to annotate intact protein peaks in 
MALDI-MSI spectrum. The workflow can be a valuable resource for spatial TDP of tissue 
sections for biomarker discovery at the proteoform level. 

 

Experimental Procedure 

Reagents and chemicals 

Deionized water (18.2 MΩ) was purified using a Barnstead Nanopure Infinity system (Los 
Angeles, CA). Tris(2-carboxyethyl)phosphine (TCEP), n-dodecyl-beta-maltoside (DDM) 
detergent, and protease/phosphatase inhibitor cocktails (catalog 78430) were purchased 
from ThermoFisher Scientific (St. Louis, MO, USA). Benzonase nuclease was purchased 
from EMD Millipore (Billerica, MA, USA). Magnesium chloride (MgCl2), formic acid (FA), 
1x phosphate buffer saline (PBS), dimethyl sulfoxide (DMSO), tri-fluoroacetic acid (TFA), 
ethanol (EtOH), FA, and ammonium bicarbonate (ABC) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). 

Cell culture 

Human embryonic kidney 293 (HEK293) cells were cultured under Dulbecco's modified 
Eagle's medium (DMEM) with 10% fetal bovine serum and 1% penicillin streptomycin at 
37°C and 5% CO2 atmosphere.   

Rat brain tissue sectioning  

Frozen female rat brain, purchased from BioIVT, was mounted on cryomicrotome chuck 
and then sectioned (10 µm thickness; CryoStar NX70, Thermo Fisher) using temperature 
of -18 oC and -20 oC,  for specimen and blade, respectively. Sections were thaw-mounted 
onto indium tin oxide (ITO)-coated glass slides (Bruker Daltonics) for MALDI imaging and 
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onto polyethylene naphthalate (PEN) membrane slides (Carl Zeiss Microscopy, Germany) 
for LCM coupled to nanoPOTS experiments.  

MALDI analysis 

Samples were vacuum desiccated for 30 minutes and then washed in fresh solutions of 
70% ethanol for 30 seconds, 100% ethanol for 30 seconds, Carnoy’s solution (6:3:1 v/v 
ethanol/chloroform/glacial acetic acid) for 2 minutes, 100% ethanol for 30 seconds, water 
with 0.2% TFA for 15 seconds, and 100% ethanol for 30 seconds. Samples were then 
dried by a stream of nitrogen gas prior to MALDI matrix application. HTX Technologies 
M5 Sprayer (Chapel Hill, NC) was used to deposit sonicated supernatant of 15 mg/mL 
2,5-DHA (2,5-dihydroxyacetophenone) in 90% acetonitrile with 0.2% TFA. The flow rate 
of the matrix was 150 µL/min with a nozzle temperature of 30.0oC, with a velocity set to 
1300 mm/min with 10 PSI of nitrogen gas. The matrix was then recrystallized with 5% 
acetic acid solution in water at 38.5oC and dried for 3.5 minutes and then immediately 
analyzed using an elevated pressure MALDI source (Spectroglyph LLC, Kennewick, WA) 
coupled to a Thermo Scientific Q Exactive HF Orbitrap MS upgraded with ultra-high mass 
range (UHMR) boards(29). Spectra were acquired over the m/z range of 3,500 to 20,000 
in positive polarity mode with a resolving power of 240k at m/z 200 (512 ms transient) 
and 250 laser shots per pixel. Scans in the .RAW file were summed as a single spectrum 
for proteoform assignment by accurate mass. 

LCM-nanoPOTS-TDP sample preparation 

NanoPOTS chips were fabricated on glass substrates using photolithography, followed 
by a wetting etching solution containing 1 M HF, 0.5 M NH4F, and 0.75 M HNO3 processed 
with procedures as described previously(12). Polypropylene (PP) chips were produced 
by an injection molding company (Proto Labs, Maple Plain, MN).  Glass or PP chips with 
an array of 4 × 12 nanowells were used throughout the study. Cells were collected in 1x 
PBS with protease and phosphatase inhibitor. After cell deposition, 100-nL lysis buffer 
containing 2 mM MgCl2, 10 mM TCEP, and 16 M urea with 0.4% DDM in 50 mM ABC was 
added into each well, followed by 1-hour incubation under room temperature. Next, 200 
nL of 2 mM MgCl2 with 2.5 unit/ µL of benzonase nuclease was added in each well and 
incubated at 37°C for 1 hour. Finally, the sample was acidified by adding 50 nL of 5% FA 
into each well and dried in a vacuum chamber.  

For tissue samples, the sections were fixed in 70% EtOH for 1 min and dehydrated in 
95% and 100% EtOH (1 min per wash). A PALM MicroBeam system (Carl Zeiss 
MicroImaging, Munich, Germany) was used to perform cell isolation from different regions 
of rat brain. For each replicate, tissue voxels with an area of 100,000 µm2 were excised 
and collected in PP microPOTS chip (same design as nanoPOTS chips, but with larger 
size well of 2.2 mm diameter instead of 1.2 mm) preloaded with 2 µL DMSO as capture 
liquid. Before protein extraction, DMSO was evaporated by heating the chip to 70°C. Next, 
we added 2 µL lysis buffer in each well that contained 2.5 unit/ µL benzonase nuclease, 
2 mM MgCl2, 10 mM TCEP, 0.2% DDM, and 4M urea in 50 mM ABC, followed by 1-hour 
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incubation at 37°C. The sample was acidified by adding 500 nL of 5% FA into each well 
and dried in a vacuum chamber. Dried microPOTS chips were frozen at -20°C or directly 
used for LC-MS/MS analyses. 

LC-MS/MS analysis 

SPE columns (150 μm i.d.,4 cm long) and the analytical columns (100 μm i.d., 50 cm long) 
were packed in-house using C2 particles (SMTC2MEB2-3-300) from Separation Methods 
Technologies (Newark, DE). A home-built autosampler system was used for direct 
sample injection from nanoPOTS chip (30). The injected samples were loaded and 
desalted on SPE column by infusing with 0.1% FA at 3 µL/min for 5 minutes. We used 
Dionex nanoUPLC pump (NCP-3200RS, Thermo Scientific, Waltham, MA) system with 
0.1% FA in H2O (buffer A) and 0.1% FA in acetonitrile (buffer B). The LC gradient was 
programmed as a 120 min gradient from 10% to 50% buffer B followed by a 5 min linear 
gradient to 80% solvent B. The column was then washed with 70% solvent B for 5 min 
and re-equilibrated with 5% solvent B for 15 min. The LC flow rates were set at 300 nL/min 
for the 100-μm column.  

Data were collected using Orbitrap Lumos Tribrid and Eclipse mass spectrometers 
(Thermo Scientific, San Jose, CA) in data-dependent acquisition mode. We applied field 
asymmetric ion mobility spectrometry (FAIMS) with compensation voltages (CV) of -30 V, 
-40 V, and -50 V(31) to improve signal-to-noise ratio and enhance proteoform 
coverage.(32, 33) Precursor ion mass spectra were acquired with a resolution of 120 000 
(at m/ z 200), a maximum injection time of 250 ms, a scan range of 600 < m/z < 2000, an 
AGC target of 5E5, and 5 microscans. Precursor ions with charges 5+ or higher and 
intensities above 2E4 were isolated using an isolation window of 2 m/z for MS/MS 
analysis. A single charge state was selected for each neutral mass (i.e., proteoform) 
within 120 s dynamic exclusion. Tandem mass spectra were acquired with a resolution of 
120K (at m/z = 200), using higher-energy collisional dissociation (HCD) with stepped 
collision energy levels (20%, 30%, and 40%), an AGC target of 1x 106, and a maximum 
injection time with 500 ms. MS raw data and search results were uploaded to MassIVE 
with accession MSV000089163. 

Proteoform identification and quantitation.  

The FAIMS datasets were separated into individual raw files by FreeStyle (Thermo 
Scientific) for each CV. All files were deconvoluted with TopFD (TOP-down mass 
spectrometry feature detection)(34) and searched by TopPIC (Top-down mass 
spectrometry-based Proteoform Identification and Characterization)(35) (ver. 1.4.13). All 
spectra were processed with the following parameters: mass error tolerance of 15 ppm, 
only one unexpected modification, proteoform error tolerance with 3.2 Da (for merging 
proteoforms with similar masses), and combined target and decoy search with an FDR 
(false discovery rate) threshold of 1%. MS/MS spectra were searched against 
UniProtKB/Swiss-Prot rat database (downloaded on August, 2021, containing 8,131 
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reviewed, 21,803 TrEMBL, and 1628 VarSplic sequences) or the human database 
(downloaded on June 29, 2019, containing 20,352 reviewed sequences).  

We performed FDR filtering at the protein level, resulting in a global FDR of < 1%. To 
describe ambiguity in proteoform identifications, we implemented a custom R function 
that determined a proteoform’s “level” of ambiguity, following the five-level classification 
system (from 1-5 and 1 being unambiguous and 5 being ambiguous in all metrics) defined 
by the Consortium for TDP.(36) Our function accounted for all forms of ambiguity apart 
from amino acid sequence ambiguity. Open-modification searches, while useful, can 
sometimes provide erroneous mass shift assignments.(37) To address these issues, we 
performed retention time alignment (LOESS regression) and mass error recalibration for 
proteoform spectrum matches (PrSMs) using the dataset with the larger number of PrSMs 
as a reference. Retention times were aligned using the apex spectrum (most intense) for 
each proteoform. Aligned and recalibrated datasets were then clustered using retention 
time and precursor mass for all PrSMs. We refer to these clusters as “Proteoform Clusters” 
(PfCs).  A minimum of 3 PrSMs were required per cluster, and PrSMs not meeting this 
criterion were pooled together as a “noise” cluster and ignored for quantitative analysis. 
Within each PfC, the proteoform with the highest number of PrSMs was selected to 
represent the entire cluster.  A newer implementation of the workflows for TopPIC post-
processing with additional functions are available on GitHub within the R package 
TopPICR.(38) In parallel, we also processed the same data (after splitting CVs) by 
TDPortal(39) with Rattus norvegicus protein data set (May 2016) and parameters, 
including high precursor resolution, filter by FDR, and TDPortal’s code set of standard 
4.0.0.  TDportal adopts a similar approach to the commercial software ProSightPD, which 
considers all known PTMs and isoforms in the UniProt database for proteoform 
identification. This is distinct from TopPIC which does not assume pre-knowledge on 
PTMs and can provide complementary results. The proteoform identifications were 
exported as tables using TDViewer for merging with TopPIC results. The script used to 
accomplish merging of the two search results can be found at https://github.com/PNNL-
HubMAP-Proteoform-Suite/spatially-resolved-TDP. 

For label-free quantitation of proteoforms, we relied on the feature abundances from 
Protein Mass Extractor (ProMex)(40) from the InformedProteomics suite. Retention time 
alignment of ProMex features was performed with ProMexAlign(40), with each CV 
separately aligned and missing features replaced with “NA”. We built a custom R script 
to align the accurate masses and retention times to the feature abundances and 
proteoform identifications. Redundant proteoforms were first collapsed by PfC in TopPIC 
results, and by accession number and monoisotopic mass in TDPortal results. Only the 
top-scored (lowest E-value) proteoform was used to represent each unique feature. Next, 
collapsed TopPIC and TDPortal proteoforms were matched individually to the aligned 
ProMex tables within 15 ppm m/z and +/- 4 minutes mass and retention time tolerances 
referred to as a “feature group.” We also checked for deisotoping error, and merged 
proteoforms if they fall into the window after shifting its mass by +/- 1 and 2 Da. 
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After concatenating all CVs together, we sorted low-high by mass, and assigned a mass 
group when each subsequent mass was within 1 Da and 15 ppm m/z of a previous mass. 
Within each mass group, we sorted by retention time and assigned an RT group when 
each subsequent retention time was within 4 minutes of the previous retention time. Mass 
and RT groups were then combined to generate a unique “feature group” in which we 
collapsed all detected features. When two proteoform IDs matched to the same feature 
group within 4 minutes elution window, we prioritized IDs without unknown modifications, 
with TopPIC PfCs not ending with “_0” (the “noise” cluster), and with smaller E-values 
(Fig.S1). The initial output from the scripts were further evaluated manually for merging 
ambiguous features/proteoforms. The final table includes count, max monoisotopic 
masses, mean retention times, and median intensities, along with TopPIC and TDPortal 
proteoform annotations. The features were annotated with proteoforms and filtered for 
downstream analyses, where each proteoform had to be identified in at least two samples. 
The proteoform abundances were normalized to the median of each sample (combined 
FAIMS CV), missing values were imputed randomly from a normal distribution with 0.3 
widths and downshift 1.8 standard deviations of each sample’s log2 intensity distribution 
by Perseus v.1.6.2.3 (41)and an unpaired t-test for determining abundance difference 
between cortex and hypothalamus . 

Pathway and network analysis  

Protein association networks for the identified proteins were analyzed by STRING 
database (version 11.5)(42) for high-confidence (score>0.7) and medium-confidence 
(0.4<score<0.7) protein-protein interaction networks. Functional enrichment analysis was 
performed by ClueGO plugin (version 2.5.8)(43) in Cytoscape (version 3.8.2)(44) against 
the gene ontology (GO)(45), tissue expression database (TISSUES)(46), and Kyoto 
encyclopedia of genes and genomes (KEGG) database(47, 48) using rat (Rattus 
norvegicus) proteins. 

Experimental Design and Statistical Rationale 

To compare the improvement of benzonase treatment, we identified proteoforms from ~ 
100 HEK293 cells with and without benzonase treatment (n=5 each) after LC-MS/MS 
analysis. We depict a scatter plot with cell numbers versus identified proteoforms for 
performing the slope differences after benzonase treatment.  

We applied the benzonase treatment to rat brain LCM tissue TDP analysis. We collected 
five spots from the rat cortex region and four from regions near the hypothalamus. After 
protein extraction and LC-MS/MS analysis, we used principal component analysis (PCA) 
to distinguish the protein characteristic from profile of proteoform abundance in each LCM 
section. PCA was performed by Perseus(41). We also performed PCA for non-imputed 
data with projection pursuit(49) (50).  Plots were created using by GraphPad Prism 9 
(GraphPad Software) and R. 
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Results 

Benzonase treatment improved proteoform identifications 

One of the main challenges with top-down proteomics is the extraction of intact proteins 
under conditions compatible with downstream analysis. Viscosity caused by DNA 
reduced protein extraction efficiency and reproducibility during sample handling/transfer. 
To address this, we evaluated the effect of benzonase, which has been shown to improve 
the recovery of nuclear proteins in proteomics preparation(51) by digesting nucleic acid 
polymers bound to these proteins. The benzonase was added to 100-200 HEK293 cells 
in nanoPOTS wells and analyzed by LC-MS/MS following previous methods.(26) Overall, 
benzonase addition improved nuclear protein recovery at higher cell counts (p-value = 
0.08) (Fig. 1). We fit linear regression models with the number of identified proteoforms 
as the response variable and the number of cells as the predictor per sample type (all or 
nuclear) and treatment type (with or without benzonase) (Fig. 1A). At 100 cells or less, 
the effect of benzonase on proteoform recovery was not significant (p = 0.2). At cell counts 
of 165 or greater, proteoform identification were significantly increased (p-value). 
Therefore, sensitivity at this level is likely restricted by LC-MS/MS and not the extraction 
step.  

Based on gene ontology (GO) annotation, we separately counted the changes of nuclear 
proteoforms from total proteoforms. Digestion of DNA strands released more nuclear 
proteoforms, and benzonase treatment increased proteoforms from cell nucleus 
significantly (p-value = 0.005) (Fig. 1B). In addition, we observed the reduced viscosity of 
sample solution after benzonase treatment, which was consistent with previous reports 
(51).  

We also investigated if the use of PP plastic chip could reduce non-specific binding-
related protein losses. Our previous evaluation indicated PP surface can improve the 
recovery of peptide samples(52). As shown in Fig. S2, we found the PP chips yielded a 
modest increase in the number of identified proteoforms using ~100 HEK cells as a test 
sample. With our optimized methodology, we implemented these improvements into our 
nanoPOTS protocol and applied them to small-scale tissue samples, which represent a 
more challenging test for protein extractions.  

LCM-NanoPOTS-TDP enabled the quantitation of 509 proteoforms from two rat 
brain regions with an area of ~100,000 µm2 each 

We applied the improved nanoPOTS TDP protocol to study LCM-derived rat brain tissues 
from cortex and hypothalamus regions. In these analyses, we employed FAIMS, which 
has been previously shown to improve proteoform coverage from bulk brain tissues.(31) 
The top-down workflow, illustrated in Fig. 2A, involved proteoform identification using two 
software tools (TopPIC(35) and TDPortal(39)); proteoform clustering to minimize 
redundancy using TopPICR; proteoform quantitation with ProMex; and data integration 
using custom R scripts.  

We sectioned and separately analyzed five spots in the cortex and four spots in the 
hypothalamus with an area of ~100,000 µm2 each (Fig. 2B), corresponding to roughly 200 
cells (a mixture of neurons and immune cells). In the raw data, we observed a cluster of 
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peaks with high intensities near 6.5 kDa in all analyses, which were not identified by the 
database search. With manual analysis of fragmentation data, we assigned these 
signatures to aprotinin, one of the ingredients from protease inhibitor cocktails we added 
in the lysis buffer. While these species did not directly interfere with the analysis, their 
high abundance suppressed endogenous proteoform signals and reduced MS/MS time 
available for their characterization, outweighing the benefit of protease addition. This 
finding corroborates a recent TDP study(31), which mentioned some protease inhibitor 
cocktails branded as MS-compatible contain small proteins and should be carefully 
considered for TDP applications. 

The initial output from TopPIC and TDPortal listed 621 and 925 proteoforms, respectively. 
The two search engines have complementary algorithms but also feature different scoring 
and formatting, making it difficult to directly compare the results. To leverage 
complementarity and enhance proteoform coverage, we combined identifications from 
TDPortal and TopPIC that passed 1% FDR as defined by each tool. In parallel, ProMex 
was used to quantify proteoform features at the MS1 level independent of the 
identifications from the MS/MS data. Detected features were also aligned across all the 
samples using ProMexAlign algorithm. This alignment step, which is similar to the 
commonly used match-between-run(53, 54) or accurate mass and time tag (55)approach 
in bottom-up proteomics, was particularly important for filling the missing values in 
quantitative analysis. The aligned feature abundances were then attached to the 
combined proteoform identifications based on accurate mass and retention time matching. 
With this data integration approach, we obtained 509 quantifiable proteoforms 
(Supplementary Table 1). These included 191 proteoforms identified by both TopPIC and 
TDPortal, 164 identified only by TopPIC, and 154 identified only by TDPortal (Fig. 2C). 
Our workflow relied on the generic data of accurate mass, retention time, and 
identification and it thus can be applied to other TDP software outputs (such as 
identifications by pTop(56) or ProSightPC(57), and feature abundances from 
FLASHDeconv(58)).  

Combining the identifications from these two complementary tools resulted in a higher 
number of total proteoform counts, but caution must be taken when merging the results. 
The major challenge is the split of proteoform abundance into multiple isotopologs for the 
same proteoform due to deisotoping error in the deconvolution step. To minimize 
redundancy, we chose to cluster LC-MS features within 15 ppm mass tolerance while 
considering deisotoping error, and +/- 4 minutes retention time to best accommodate the 
results from TopPIC and TDPortal with different distributions. The rationale for the 
selection of these parameters was described with more details in Fig. S3. A balance was 
needed to minimize redundant proteoforms, while not over-merging unique proteoforms 
with small differences in mass and RT. Open modification search tool such as TopPIC 
can be particularly susceptible to redundant proteoforms, because deisotoping error could 
be assigned as a unique proteoform with unexpected mass shifts. Using a large mass 
error tolerance window of +/-1 Da can minimize the redundancy from deisotoping error, 
but with added risk of merging unique proteoforms with small mass differences (Fig. S3A). 
Within TopPIC, an “adjusted mass” was reported in addition to the experimental 
“precursor mass”. This adjustment reduced the deisotoping error for proteoforms without 
unexpected mass shifts, but also introduced variations in the reported mass (Fig. S3B). 
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We tested the use of either adjusted mass or experimental precursor mass from TopPIC 
using otherwise identical parameters for merging redundant features. Our manual 
analysis revealed using the “adjusted mass” showed fewer redundant features than using 
the “precursor mass” (Fig. S3C). The two approaches showed decent overlap of matched 
features by intact mass (Fig. S3D).  Most unique features were due to deisotoping error 
and eventually matched to the same proteoforms (Fig. S3E), with only minor changes to 
the abundance values (Fig. S3F). Considering the narrow mass error tolerance of 15 ppm 
used in our filtering, we selected the “precursor mass” for comparing with masses 
reported by ProMex in the following discussion. The disadvantage was the additional 
redundant proteoforms that need to be manually merged primarily due to deisotoping 
error and occasionally also due to discrepancy in the proteoform identifications.  Improved 
deisotoping algorithms(58) (34) and more robust proteoform FDR definitions(59) are 
needed to more effectively handle the ambiguity that is often seen for low abundance 
MS1 features and low quality MS2 data. Using the defined parameters, the final list of 
quantified proteoforms were mostly showing mass error < 5 ppm (Fig. S3G), and retention 
time < 2 min (Fig. S3H).   

The region-specific LC-MS/MS data can be used to generate spatially resolved 
proteoform databases for assigning peaks in MALDI-MSI data(24), where MS/MS data 
are typically limited or absent.  Fig. 2D shows an example of the highly abundant doubly 
charged peaks near m/z 5653.81 in an averaged MALDI spectrum from rat brain, which 
can be assigned as H4c2[N-acetyl&dimethyl] (5650.69 monoisotopic, charge 2+) using 
the LCM-nanoPOTS-TDP data from similar rat brain sections (Fig. 2D blue dots). 
Encouragingly, all major peaks in the full MALDI spectrum could be annotated with 
proteoform identifications from nanoPOTS data (Fig. S4). In MALDI-MSI applications, the 
singly charged or doubly charged protein ions can be recalcitrant to fragmentation. Hence, 
proteoform assignments in MALDI-MSI often rely on global TDP data generated using 
bulk samples, or complementary data from in-situ digested peptides(60, 61). Recent 
human proteoform atlas building efforts have been fruitful in generating tissue and cell-
type-specific proteoform databases,(62-64) but they may not fully represent the 
proteoform subpopulations in specific tissue regions. The proteoform profile may change 
in different microenvironments, and these differences can remain hidden in bulk analyses 
due to “signal dilution”, where bulk analyses average the response of entire tissues, 
obscuring region and cell-specific responses. Therefore, a spatially resolved proteoform 
database from nanoPOTS (or microPOTS) TDP could be highly valuable for accurate 
assignment of proteoforms in different tissue functional units and cells. Our future work 
will investigate the quantitative correlation between MALDI-MSI and TDP data from 
matching LCM regions. 

LCM-NanoPOTS-TDP captured PTM and isoform information 

The majority (~70%) of our identified proteoforms were unmodified (not counting 
backbone cleavages and N-terminal acetylation), concurring with ~24% modified 
proteoforms in a recent TDP study of bulk human tissues(65). Nonetheless, several 
interesting modified proteoforms were confidently identified. For example, we identified 
Gng5 (guanidine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma) with S-
geranylgeranyl modification at C64 (Fig. 3A), in agreement with previous reports(66) and 
the UniProt protein database. The unassigned fragments with high intensity at m/z 400-
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600 had mass differences matching to hexoses. They were likely originated from co-
isolated species and cannot be easily explained by the assigned proteoform (Fig.S5). The 
unique benefit of TDP is the straightforward identification of proteoforms that can be 
challenging to differentiate using peptide-only data. In our results, myelin isoform 4 
(P02688-4) was the only proteoform confidently assigned among the 5 recorded isoforms 
in UniProt. The other isoforms are results of alternative splicing and are only missing 
segments of the canonical sequence. Several myelin isoform 4 proteoforms with known 
PTMs were also detected with high confidence (proteoform level 1 or 2A). Distinct spatial 
distribution of myelin isoforms has been reported by nanoDESI measurements(67-69). 
We found that Mbp-o-phospho has higher abundance in the cortex than in the 
hypothalamus, which is consistent with a previous study(68). These findings demonstrate 
TDP could play important role in deciphering proteoform-specific information, which is 
critical for understanding the contributions of proteoforms to cellular heterogeneity and 
function. 

LCM-NanoPOTS-TDP captured differential proteoform profiles in the cortex and 
hypothalamus regions of rat brain  

LCM-nanoPOTS-TDP captured different proteoform compositions in the cortex and 
hypothalamus regions based on the principal components analysis (PCA) where samples 
from the cortex and hypothalamus were grouped in blue and pink clusters, respectively 
(Fig. 4A). Variances in the nearby spots of the same tissue region implied potential 
heterogeneity even within the same region. The score plot of PCA (Fig. 4B) showed the 
differentiating proteoforms for the two tissue regions. Calm2-(1-149)O-phospho, Snca(1-
140)[Acetyl], Pcp4(2-62)[Acetyl], and Mbp(2-128)O-phospho were enriched with cortex 
region, while Sncb(84-134), Vgf(285-346), Gap43(188-226), and Gap43(48-90) were 
enriched with hypothalamus regions. PCA analysis without data imputation shows the 
same trends (Fig.S6).  

To investigate possible connections between PTMs, proteoforms, and spatial abundance 
differences, we mapped the proteoforms to the protein-protein interaction (PPI) database 
with the network plot in STRING (Fig. 5). Because some of the truncated proteoforms 
may be result of sample degradation, we further filtered the identified proteoforms to 
include only proteoforms covering over 60% of the canonical sequence from Uniprot 
protein database. In addition, only proteoforms from genes categorized as highly 
expressed in the brain were included. We selected one proteoform with the lowest p-
value (i.e., most significantly changed in abundance between the two tissue regions) to 
represent each protein (Fig. 5). Several proteins (e.g., Pvalb, Mbp) were known to be 
highly expressed in the prefrontal cortex (highlighted by green dash lines) in the tissue 
expression database(TISSUES)(46). We observed significantly higher abundances of 
their proteoforms in the cortex (blue circles in Fig. 5A), validating that our method captured 
the expected proteome differences between the two tissue regions. 

While many identified proteoforms derived from the same gene had similar abundance 
profiles, some proteoforms showed opposite patterns (e.g., circle filled with half red and 
blue  in Fig. 5A), Implying different proteoforms could have distinct functions in different 
tissue regions. For these genes, we selected two representative proteoforms with the 
lowest p-value in each direction of the abundance profile change (i.e., blue indicates 
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enrichment in cortex, and red indicates enrichment in hypothalamus). For example, two 
most significantly differentiating calmodulin proteoforms (Fig. 5B) showed different 
abundance profiles, with Calm1[N-acetyl&acetyl&446.96] being highly abundant in cortex 
(p = 0.0175) and Calm1[N-acetyl&2acetyl] being highly abundant in hypothalamus (p = 
0.194). Calm1 is known to interact with both Gap43 and Mbp (myelin basic protein), 
whose major proteoforms also showed opposite abundance profiles. Mbp N-methyl&O-
phospho] showed significantly higher abundance in cortex (p = 0.0044), suggesting a 
positive correlation with Calm1[N-acetyl&acetyl&446.96]. In contrast, Gap43[O-phospho] 
showed higher abundance in the hypothalamus (p = 0.0055). Both Calm1 and Gap43 are 
involved in filopodia growth in neurons(70). Phosphorylation of Ser41 on Gap43 
eliminates calmodulin binding(71) and stabilizes the interaction of Gap43 with actin 
filaments,(70) leading to increased membrane tension and promotion of filopodia 
growth(72). Therefore, the higher abundance of Gap43[O-phospho] may be related to the 
enhanced filopodia in hypothalamus relative to cortex. Moreover, calmodulin is a Ca2+ 
sensor, which means if its calcium binding pocket is blocked, the binding affinity of Ca2+ 
will reduce. The released calcium could stimulate phosphorylation on myelin protein(73) 
by calcium/calmodulin-dependent protein kinase(74). The lack of confident PTM 
assignment for Calm1[N-acetyl&acetyl&446.96] (Fig. S7) prevented us from interpreting 
the data under biological context. Yet, the spatially different abundance of Calm1[N-
acetyl&acetyl&[+446.956] and Calm1[N-acetyl&2acetyl] suggested the proteoforms 
derived from the same gene (protein) have different functional roles in the cortex and 
hypothalamus regions.  

Several other proteoforms and their interacting partners also had unknown PTMs (i.e., 
not assignable within the scope of this study). They were simply annotated as mass shifts 
here (see representative spectrum for Tmsb4x in Fig. S8). Some of the unknown shifts 
may originate from noncovalent adducts or labile PTM (which was lost during 
fragmentation; e.g., Fig. S9 describing Cox7c proteoforms), with their biological 
significance currently unknown. The ambiguities in PTM assignment and localization 
largely originated from insufficient sequence coverage in MS2 spectra, which can be 
improved by employing alternative fragmentation methods, such as electron transfer 
dissociation (ETD) or ultraviolet photodissociation (UVPD). A larger number of datasets 
is also needed to better define the statistical significance. For example, the Tmsb4x(2-42) 
Acetyl&[-56.05] proteoform showed significant difference in abundance between the two 
tissue regions, while the Tmsb4x(2-42) Acetyl proteoform showed a large variation in 
abundance within the cortex group and no significant difference with the hypothalamus 
group (Fig.5C). While experimental variation can simply explain the lack of statistical 
significance, microheterogeneity within the same tissue region may also play a role and 
could be further investigated in future studies. 

Another noteworthy pair of proteoforms with distinct abundant profile was the full-length 
and truncated Hmgn2 (MS2 spectra in Fig. S10). Hmgn2 (2-90) had higher abundance in 
the cortex and N-terminally truncated Hmgn2(30-90) was higher in hypothalamus (Fig. 
5D). Hmgn2 has been reported to have high abundance in the cortex in human protein 
atlas database(75). Hmgn2(30-90) lacking part of nucleosome binding domain could have 
altered activity related to regulation of chromatin structure, transcription, and DNA 
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repair(76). The truncation could have been regulated via specific proteases. TDP readily 
captured such events and may help elucidate new mechanisms. 

We compared our TDP data to a similar nanoPOTS-BUP study which had a total of 956 
protein identifications(77). (Fig. S11) Only 53 proteins were identified in both experiments. 
The low overlap was not uncommon as was previously reported(78). Additionally, BUP 
and TDP data were derived from different regions of the brain tissue in two independent 
studies. TDP covered ~20% of BUP identified proteins, with major gap in capturing bigger 
proteins. Combined use of multiple protease digests would be needed to confirm the 
PTMs identified in TDP when integrating TDP and BUP data. Among the overlapping 
proteins, TDP offered high coverage to define the starting/ending residues of proteoforms, 
whereas most BUP identifications had peptides covering <50% of the protein sequence. 
For the 162 uniquely identified proteins in TDP, ~50% were full length proteoforms and 
not simply degradation products, suggesting TDP is more sensitive in capturing small 
proteins and their proteoforms than BUP. Nonetheless, our current study demonstrated 
the potential of integrated LCM-nanoPOTS-TDP and MALDI-MSI platforms for 
quantifying proteoforms in a spatially resolved manner. The distinct abundance profiles 
for several proteoforms originating from the same gene reinforce the importance of 
proteoform-specific measurements to precisely define their functional roles.   

Discussion 

In this study, we improved our previous nanoPOTS-TDP protocol for small sample 
analysis and applied it to quantitative TDP study of LCM-derived rat brain tissue sections. 
The use of benzonase in the extraction step improved proteoform counts by efficiently 
digesting DNA polymers and releasing DNA binding proteins. We also streamlined the 
data analysis workflow by integrating several TDP software tools. The R scripts(38) 
combined and clustered proteoform identifications from TopPIC(35)and TDPortal(39) 
outputs to maximize proteoform coverage and minimize redundancy. Independently, 
proteoforms were quantified at the MS1 level using ProMex(40), and aligned across all 
datasets to reduce missing values. The proteoform identifications were then combined 
with their corresponding abundances for label-free quantitation. Our data analysis 
workflow is generic and can be readily adapted to other TDP software outputs. Overall, 
we obtained 509 quantifiable proteoforms across cortex and hypothalamus regions of rat 
brain. The abundance profiles facilitated elucidation of proteoforms’ function connecting 
with protein-protein interaction network databases. Notably, we observed different 
abundance profiles among several proteoforms derived from the same gene, highlighting 
the need for the proteoform-aware mapping of tissues. Our future work will involve 
integration of LCM-TDP with MALDI-MSI for enhanced throughput and spatial resolution 
for proteoform imaging from tissues. We envision that spatially resolved TDP will become 
an essential tool for generating high confidence identifications and quantitation necessary 
for biomarker discovery, e.g. higher throughput MSI experiments for precision diagnosis. 
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Figure legends 

Figure 1. Benzonase treatment enhanced both total (A) and nucleus (B) proteoform 
identifications at high cell counts. The scatter plots show the relationship of cell 
number to the number of identified proteoforms with benzonase (black dots) and 
without benzonase (gray triangles) treatment, where each point represents one 
experiment (n=5 for each condition).  

Figure 2. (A) Workflow of processing LCM-derived tissue samples with nanoPOTS-TDP 
platform. (B) Optical image of rat brain tissue section showing where the small 
LCM punches were taken in the cortex and hypothalamus regions. (C) Venn 
diagram showing the overlap of quantifiable proteoforms across all samples by 
TopPIC and TDPortal. (D) Zoom-in view of the MALDI intact protein spectrum 
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for the histone H4 proteoform, which was assigned based on identification by 
nanoPOTS LC-MS/MS. 

Figure 3. Representative tandem mass spectrum of modified Gng5 proteoform with (A) 
annotated fragments and (B) fragment error map. Despite the relatively low 
sequence coverage, the b/y ions supported assignment of N-terminal 
acetylation and S-geranylgeranyl modification at the cysteine near the C-
terminus (scan #3185 in Hubmap_Intact_Brain_C1_CV40.raw). The unlabeled 
peaks < m/z 600 were presumably from other co-isolated species (Figure S5). 

Figure 4. Principal component analysis (PCA) of proteoform abundances yields (A) two 
distinct clusters of cortex (blue) and hypothalamus (pink) samples, and (B) 
candidate proteoforms for differentiating brain tissue types. (C) Identified 
proteoform numbers in cortex (blue) and hypothalamus (pink). (D) Volcano plot 
for proteoform in cortex and hypothalamus. Proteoforms are named as gene 
name, followed by starting and ending residue numbers in parentheses, and 
PTM (if any). 

Figure 5. Figure 5. (A) Several proteoform clusters revealed significant differences in the 
protein-protein interaction network between the cortex and hypothalamus region. 
Proteins either had higher abundance in the cortex (light blue), hypothalamus 
(pink), or had mixed abundance profiles between the two regions. The box next 
to the circle corresponds to one representative proteoform for the protein with 
lowest p-value, which is colored with log2(C/H) with dark blue for higher 
expression in the cortex and red with higher abundance in the hypothalamus. In 
the case of proteins with mixed abundance profiles, two proteoforms with the 
lowest p-value and enriched in the cortex and hypothalamus were shown. Each 
line between proteins has interaction evidence in the String database. (B) Violin 
plots showing the abundances of Calm2-N-acetyl& 2 acetyl and Calm2-N-
acetyl&acetyl&[+446.956], (C) Tmsb4x N-acetyl and Tmsb4x N-acetyl & [-56.05], 
as well as (D) Hmgn2 (2-90) and Hmgn2 (30-90) in the cortex: C and 
hypothalamus: H regions. 
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Figure 1. Benzonase treatment enhanced both total (A) and nucleus (B) proteoform 
identifications at high cell counts. The scatter plots show the relationship of cell number 
to the number of identified proteoforms with benzonase (black dots) and without 
benzonase (gray triangles) treatment, where each point represents one experiment (n=5 
for each condition).  
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Figure 2. (A) Workflow of processing LCM-derived tissue samples with nanoPOTS-TDP 
platform. (B) Optical image of rat brain tissue section showing where the small LCM 
punches were taken in the cortex and hypothalamus regions. (C) Venn diagram showing 
the overlap of quantifiable proteoforms across all samples by TopPIC and TDPortal. (D) 
Zoom-in view of the MALDI intact protein spectrum for the histone H4 proteoform, which 
was assigned based on identification by nanoPOTS LC-MS/MS. 
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Figure 3. Representative tandem mass spectrum of modified Gng5 proteoform with (A) 
annotated fragments and (B) fragment error map. Despite the relatively low sequence 
coverage, the b/y ions supported assignment of N-terminal acetylation and S-
geranylgeranyl modification at the cysteine near the C-terminus (scan #3185 in 
Hubmap_Intact_Brain_C1_CV40.raw). The unlabeled peaks < m/z 600 were presumably 
from other co-isolated species (Figure S5). 
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Figure 4. Principal component analysis (PCA) of proteoform abundances yields (A) two 
distinct clusters of cortex (blue) and hypothalamus (pink) samples, and (B) candidate 
proteoforms for differentiating brain tissue types. (C) Identified proteoform numbers in 
cortex (blue) and hypothalamus (pink). (D) Volcano plot for proteoform in cortex and 
hypothalamus. Proteoforms are named as gene name, followed by starting and ending 
residue numbers in parentheses, and PTM (if any). 
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Figure 5. (A) Several proteoform clusters revealed significant differences in the protein-
protein interaction network between the cortex and hypothalamus region. Proteins either 
had higher abundance in the cortex (light blue), hypothalamus (pink), or had mixed 
abundance profiles between the two regions. The box next to the circle corresponds to 
one representative proteoform for the protein with lowest p-value, which is colored with 
log2(C/H) with dark blue for higher expression in the cortex and red with higher abundance 
in the hypothalamus. In the case of proteins with mixed abundance profiles, two 
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proteoforms with the lowest p-value and enriched in the cortex and hypothalamus were 
shown. Each line between proteins has interaction evidence in the String database. (B) 
Violin plots showing the abundances of Calm2-N-acetyl& 2 acetyl and Calm2-N-
acetyl&acetyl&[+446.956], (C) Tmsb4x N-acetyl and Tmsb4x N-acetyl & [-56.05], as well 
as (D) Hmgn2 (2-90) and Hmgn2 (30-90) in the cortex: C and hypothalamus: H regions.  

 

 

Reference 

1. Smith, L. M., Agar, J. N., Chamot-Rooke, J., Danis, P. O., Ge, Y., Loo, J. A., Paša-Tolić, 
L., Tsybin, Y. O., and Kelleher, N. L. (2021) The Human Proteoform Project: Defining the human 
proteome. Science Advances 7, eabk0734 
2. Bannister, A. J., and Kouzarides, T. (2011) Regulation of chromatin by histone 
modifications. Cell Research 21, 381-395 
3. Chen, L., and Kashina, A. (2021) Post-translational Modifications of the Protein Termini. 
Frontiers in Cell and Developmental Biology 9 
4. Rape, M. (2018) Ubiquitylation at the crossroads of development and disease. Nature 
Reviews Molecular Cell Biology 19, 59-70 
5. Michalak, E. M., Burr, M. L., Bannister, A. J., and Dawson, M. A. (2019) The roles of DNA, 
RNA and histone methylation in ageing and cancer. Nature Reviews Molecular Cell Biology 20, 
573-589 
6. Bludau, I., Frank, M., Dörig, C., Cai, Y., Heusel, M., Rosenberger, G., Picotti, P., Collins, 
B. C., Röst, H., and Aebersold, R. (2021) Systematic detection of functional proteoform groups 
from bottom-up proteomic datasets. Nature Communications 12, 3810 
7. Liu, Y. (2022) A peptidoform based proteomic strategy for studying functions of post-
translational modifications. PROTEOMICS 22, 2100316 
8. Kafader, J. O., Melani, R. D., Durbin, K. R., Ikwuagwu, B., Early, B. P., Fellers, R. T., Beu, 
S. C., Zabrouskov, V., Makarov, A. A., Maze, J. T., Shinholt, D. L., Yip, P. F., Tullman-Ercek, D., 
Senko, M. W., Compton, P. D., and Kelleher, N. L. (2020) Multiplexed mass spectrometry of 
individual ions improves measurement of proteoforms and their complexes. Nature Methods 17, 
391-394 
9. Fornelli, L., and Toby, T. K. (2022) Characterization of large intact protein ions by mass 
spectrometry: What directions should we follow? Biochimica et Biophysica Acta (BBA) - Proteins 
and Proteomics 1870, 140758 
10. Fornelli, L., Toby, T. K., Schachner, L. F., Doubleday, P. F., Srzentić, K., DeHart, C. J., 
and Kelleher, N. L. (2018) Top-down proteomics: Where we are, where we are going? J 
Proteomics 175, 3-4 
11. Melby, J. A., Roberts, D. S., Larson, E. J., Brown, K. A., Bayne, E. F., Jin, S., and Ge, Y. 
(2021) Novel Strategies to Address the Challenges in Top-Down Proteomics. J Am Soc Mass 
Spectr 32, 1278-1294 
12. Zhu, Y., Piehowski, P. D., Zhao, R., Chen, J., Shen, Y., Moore, R. J., Shukla, A. K., Petyuk, 
V. A., Campbell-Thompson, M., Mathews, C. E., Smith, R. D., Qian, W.-J., and Kelly, R. T. (2018) 
Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 
mammalian cells. Nat Commun 9, 882 
13. Woo, J., Williams, S. M., Markillie, L. M., Feng, S., Tsai, C. F., Aguilera-Vazquez, V., 
Sontag, R. L., Moore, R. J., Hu, D., Mehta, H. S., Cantlon-Bruce, J., Liu, T., Adkins, J. N., Smith, 
R. D., Clair, G. C., Pasa-Tolic, L., and Zhu, Y. (2021) High-throughput and high-efficiency sample 
preparation for single-cell proteomics using a nested nanowell chip. Nat Commun 12, 6246 



24 
 

14. Petelski, A. A., Emmott, E., Leduc, A., Huffman, R. G., Specht, H., Perlman, D. H., and 
Slavov, N. (2021) Multiplexed single-cell proteomics using SCoPE2. Nature Protocols 16, 5398-
5425 
15. Lubeckyj, R. A., and Sun, L. (2022) Laser capture microdissection-capillary zone 
electrophoresis-tandem mass spectrometry (LCM-CZE-MS/MS) for spatially resolved top-down 
proteomics: a pilot study of zebrafish brain. Molecular Omics 
16. Piehowski, P. D., Zhu, Y., Bramer, L. M., Stratton, K. G., Zhao, R., Orton, D. J., Moore, R. 
J., Yuan, J., Mitchell, H. D., Gao, Y., Webb-Robertson, B.-J. M., Dey, S. K., Kelly, R. T., and 
Burnum-Johnson, K. E. (2020) Automated mass spectrometry imaging of over 2000 proteins from 
tissue sections at 100-μm spatial resolution. Nature Communications 11, 8 
17. Martinez-Val, A., Bekker-Jensen, D. B., Steigerwald, S., Koenig, C., Østergaard, O., 
Mehta, A., Tran, T., Sikorski, K., Torres-Vega, E., Kwasniewicz, E., Brynjólfsdóttir, S. H., Frankel, 
L. B., Kjøbsted, R., Krogh, N., Lundby, A., Bekker-Jensen, S., Lund-Johansen, F., and Olsen, J. 
V. (2021) Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. 
Nature Communications 12, 7113 
18. Ryan, D. J., Spraggins, J. M., and Caprioli, R. M. (2019) Protein identification strategies 
in MALDI imaging mass spectrometry: a brief review. Curr Opin Chem Biol 48, 64-72 
19. Yang, M., Hu, H., Su, P., Thomas, P. M., Camarillo, J. M., Greer, J. B., Early, B. P., Fellers, 
R. T., Kelleher, N. L., and Laskin, J. (2022) Proteoform-Selective Imaging of Tissues Using Mass 
Spectrometry. Angewandte Chemie International Edition, e202200721 
20. Hale, O. J., and Cooper, H. J. (2021) Native Mass Spectrometry Imaging of Proteins and 
Protein Complexes by Nano-DESI. Analytical chemistry 93, 4619-4627 
21. Sarsby, J., Griffiths, R. L., Race, A. M., Bunch, J., Randall, E. C., Creese, A. J., and 
Cooper, H. J. (2015) Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field 
Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from Biological 
Substrates. Anal Chem 87, 6794-6800 
22. Kiss, A., Smith, D. F., Reschke, B. R., Powell, M. J., and Heeren, R. M. (2014) Top-down 
mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. Proteomics 14, 
1283-1289 
23. Hale, O. J., and Cooper, H. J. (2020) Native Mass Spectrometry Imaging and In Situ Top-
Down Identification of Intact Proteins Directly from Tissue. Journal of the American Society for 
Mass Spectrometry 31, 2531-2537 
24. Delcourt, V., Franck, J., Quanico, J., Gimeno, J. P., Wisztorski, M., Raffo-Romero, A., 
Kobeissy, F., Roucou, X., Salzet, M., and Fournier, I. (2018) Spatially-Resolved Top-down 
Proteomics Bridged to MALDI MS Imaging Reveals the Molecular Physiome of Brain Regions. 
Mol Cell Proteomics 17, 357-372 
25. Lubeckyj, R. A., and Sun, L. (2022) Laser capture microdissection-capillary zone 
electrophoresis-tandem mass spectrometry (LCM-CZE-MS/MS) for spatially resolved top-down 
proteomics: a pilot study of zebrafish brain. Mol Omics 18, 112-122 
26. Zhou, M., Uwugiaren, N., Williams, S. M., Moore, R. J., Zhao, R., Goodlett, D., Dapic, I., 
Paša-Tolić, L., and Zhu, Y. (2020) Sensitive Top-Down Proteomics Analysis of a Low Number of 
Mammalian Cells Using a Nanodroplet Sample Processing Platform. Analytical Chemistry 92, 
7087-7095 
27. Benedik, M. J., and Strych, U. (1998) Serratia marcescens and its extracellular nuclease. 
FEMS Microbiology Letters 165, 1-13 
28. Franke, I., Meiss, G., and Pingoud, A. (1999) On the Advantage of Being a Dimer, a Case 
Study Using the DimericSerratia Nuclease and the Monomeric Nuclease fromAnabaena sp. Strain 
PCC 7120*. Journal of Biological Chemistry 274, 825-832 
29. Zemaitis, K. V., Dusan; Kew, William; Fort, Kyle; Reinhardt-Szyba, Maria; Pamreddy, 
Annapurna; Ding, Yani; Kaushik, Dharam; Sharma, Kumar; Makarov, Alexander; Zhou, Mowei; 



25 
 

Paša-Tolić, Ljiljana (2022) Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney 
Through MALDI-MSI by High-Field UHMR Orbitrap Detection. ChemRxiv 
30. Williams, S. M., Liyu, A. V., Tsai, C. F., Moore, R. J., Orton, D. J., Chrisler, W. B., Gaffrey, 
M. J., Liu, T., Smith, R. D., Kelly, R. T., Pasa-Tolic, L., and Zhu, Y. (2020) Automated Coupling of 
Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-
Throughput Single-Cell Proteomics. Anal Chem 92, 10588-10596 
31. Fulcher, J. M., Makaju, A., Moore, R. J., Zhou, M., Bennett, D. A., De Jager, P. L., Qian, 
W.-J., Paša-Tolić, L., and Petyuk, V. A. (2021) Enhancing Top-Down Proteomics of Brain Tissue 
with FAIMS. Journal of Proteome Research 20, 2780-2795 
32. Kaulich, P. T., Cassidy, L., Winkels, K., and Tholey, A. (2022) Improved Identification of 
Proteoforms in Top-Down Proteomics Using FAIMS with Internal CV Stepping. Anal Chem 94, 
3600-3607 
33. Gerbasi, V. R., Melani, R. D., Abbatiello, S. E., Belford, M. W., Huguet, R., McGee, J. P., 
Dayhoff, D., Thomas, P. M., and Kelleher, N. L. (2021) Deeper Protein Identification Using Field 
Asymmetric Ion Mobility Spectrometry in Top-Down Proteomics. Anal Chem 93, 6323-6328 
34. Basharat, A. R., Zang, Y., Sun, L., and Liu, X. (2022) TopFD - A Proteoform Feature 
Detection Tool for Top-Down Proteomics. bioRxiv, 2022.2010.2011.511828 
35. Kou, Q., Xun, L., and Liu, X. (2016) TopPIC: a software tool for top-down mass 
spectrometry-based proteoform identification and characterization. Bioinformatics 32, 3495-3497 
36. Smith, L. M., Thomas, P. M., Shortreed, M. R., Schaffer, L. V., Fellers, R. T., LeDuc, R. 
D., Tucholski, T., Ge, Y., Agar, J. N., Anderson, L. C., Chamot-Rooke, J., Gault, J., Loo, J. A., 
Paša-Tolić, L., Robinson, C. V., Schlüter, H., Tsybin, Y. O., Vilaseca, M., Vizcaíno, J. A., Danis, 
P. O., and Kelleher, N. L. (2019) A five-level classification system for proteoform identifications. 
Nature Methods 16, 939-940 
37. Lysiak, A., Fertin, G., Jean, G., and Tessier, D. (2021) Evaluation of open search methods 
based on theoretical mass spectra comparison. BMC Bioinformatics 22, 65 
38. Martin, E. A. (2022) evanamartin/TopPICR: AMP-AD pilot(v0.0.1). zenodo 
39. Toby, T. K., Fornelli, L., Srzentić, K., DeHart, C. J., Levitsky, J., Friedewald, J., and 
Kelleher, N. L. (2019) A comprehensive pipeline for translational top-down proteomics from a 
single blood draw. Nature Protocols 14, 119-152 
40. Park, J., Piehowski, P. D., Wilkins, C., Zhou, M., Mendoza, J., Fujimoto, G. M., Gibbons, 
B. C., Shaw, J. B., Shen, Y., Shukla, A. K., Moore, R. J., Liu, T., Petyuk, V. A., Tolić, N., Paša-
Tolić, L., Smith, R. D., Payne, S. H., and Kim, S. (2017) Informed-Proteomics: open-source 
software package for top-down proteomics. Nature Methods 14, 909-914 
41. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and 
Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics 
data. Nature Methods 13, 731-740 
42. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, 
M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., and Mering, C. V. (2019) STRING v11: 
protein-protein association networks with increased coverage, supporting functional discovery in 
genome-wide experimental datasets. Nucleic Acids Res 47, D607-d613 
43. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, 
W. H., Pagès, F., Trajanoski, Z., and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher 
functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-
1093 
44. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., 
Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models 
of biomolecular interaction networks. Genome Res 13, 2498-2504 
45. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., 
Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., 



26 
 

Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000) 
Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25-29 
46. Palasca, O., Santos, A., Stolte, C., Gorodkin, J., and Jensen, L. J. (2018) TISSUES 2.0: 
an integrative web resource on mammalian tissue expression. Database 2018 
47. Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res 28, 27-30 
48. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. (2021) 
KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 49, D545-d551 
49. Croux, C., and Ruiz-Gazen, A. (1996) A Fast Algorithm for Robust Principal Components 
Based on Projection Pursuit. pp. 211-216, Physica-Verlag HD, Heidelberg 
50. Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J. (2007) pcaMethods—
a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164-
1167 
51. Li, Q., Jain, M. R., Chen, W., and Li, H. (2013) A multidimensional approach to an in-depth 
proteomics analysis of transcriptional regulators in neuroblastoma cells. J Neurosci Meth 216, 
118-127 
52. Dou, M., Tsai, C. F., Piehowski, P. D., Wang, Y., Fillmore, T. L., Zhao, R., Moore, R. J., 
Zhang, P., Qian, W. J., Smith, R. D., Liu, T., Kelly, R. T., Shi, T., and Zhu, Y. (2019) Automated 
Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth 
Proteome and Phosphoproteome Profiling of Nanoscale Samples. Anal Chem 91, 9707-9715 
53. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and Mann, M. (2011) 
Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 
10, 1794-1805 
54. Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., and Mann, M. (2014) Accurate 
proteome-wide label-free quantification by delayed normalization and maximal peptide ratio 
extraction, termed MaxLFQ. Mol Cell Proteomics 13, 2513-2526 
55. Paša-Tolić, L., Masselon, C., Barry, R. C., Shen, Y., and Smith, R. D. (2004) Proteomic 
analyses using an accurate mass and time tag strategy. BioTechniques 37, 621-639 
56. Sun, R.-X., Luo, L., Wu, L., Wang, R.-M., Zeng, W.-F., Chi, H., Liu, C., and He, S.-M. 
(2016) pTop 1.0: A High-Accuracy and High-Efficiency Search Engine for Intact Protein 
Identification. Analytical Chemistry 88, 3082-3090 
57. Zamdborg, L., LeDuc, R. D., Glowacz, K. J., Kim, Y.-B., Viswanathan, V., Spaulding, I. T., 
Early, B. P., Bluhm, E. J., Babai, S., and Kelleher, N. L. (2007) ProSight PTM 2.0: improved 
protein identification and characterization for top down mass spectrometry. Nucleic Acids 
Research 35, W701-W706 
58. Jeong, K., Kim, J., Gaikwad, M., Hidayah, S. N., Heikaus, L., Schlüter, H., and Kohlbacher, 
O. (2020) FLASHDeconv: Ultrafast, High-Quality Feature Deconvolution for Top-Down 
Proteomics. Cell Systems 10, 213-218.e216 
59. LeDuc, R. D., Fellers, R. T., Early, B. P., Greer, J. B., Shams, D. P., Thomas, P. M., and 
Kelleher, N. L. (2019) Accurate Estimation of Context-Dependent False Discovery Rates in Top-
Down Proteomics. Mol Cell Proteomics 18, 796-805 
60. Judd, A. M., Gutierrez, D. B., Moore, J. L., Patterson, N. H., Yang, J., Romer, C. E., Norris, 
J. L., and Caprioli, R. M. (2019) A recommended and verified procedure for in situ tryptic digestion 
of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser 
desorption/ionization imaging mass spectrometry. J Mass Spectrom 54, 716-727 
61. Groseclose, M. R., Andersson, M., Hardesty, W. M., and Caprioli, R. M. (2007) 
Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass 
spectrometry. J Mass Spectrom 42, 254-262 
62. Melani, R. D., Gerbasi, V. R., Anderson, L. C., Sikora, J. W., Toby, T. K., Hutton, J. E., 
Butcher, D. S., Negrão, F., Seckler, H. S., Srzentić, K., Fornelli, L., Camarillo, J. M., LeDuc, R. D., 
Cesnik, A. J., Lundberg, E., Greer, J. B., Fellers, R. T., Robey, M. T., DeHart, C. J., Forte, E., 



27 
 

Hendrickson, C. L., Abbatiello, S. E., Thomas, P. M., Kokaji, A. I., Levitsky, J., and Kelleher, N. L. 
(2022) The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells. 
Science 375, 411-418 
63. Hollas, M. A. R., Robey, Matthew T., Fellers, Ryan T., LeDuc, Richard D., Thomas, 
Paul M., and Kelleher, Neil L. (2021) The Human Proteoform Atlas: a FAIR community resource 
for experimentally derived proteoforms. Nucleic Acids Research 50, D526-D533 
64. Drown, B. J., K.; Melani, R.; Lloyd-Jones, C.; Camarillo, J.; Kelleher, N. (2022) Mapping 
the Proteoform Landscape of Five Human Tissues. ChemRxiv 
65. Drown, B. S., Jooß, K., Melani, R. D., Lloyd-Jones, C., Camarillo, J. M., and Kelleher, N. 
L. (2022) Mapping the Proteoform Landscape of Five Human Tissues. Journal of Proteome 
Research 21, 1299-1310 
66. Schwindinger, W. F., and Robishaw, J. D. (2001) Heterotrimeric G-protein betagamma-
dimers in growth and differentiation. Oncogene 20, 1653-1660 
67. Yang, M. H., H.; Su, P.; Thomas, P. M.; Camarillo, J. M.; Greer, J. B.; Early, B. P.; Fellers, 
R. T.; Kelleher, N. L.; Laskin, J. (2022) Proteoform-Selective Imaging of Tissues Using Mass 
Spectrometry. ChemRxiv 
68. Hsu, C.-C., Chou, P.-T., and Zare, R. N. (2015) Imaging of Proteins in Tissue Samples 
Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry 
87, 11171-11175 
69. Anderson, D. M., Van de Plas, R., Rose, K. L., Hill, S., Schey, K. L., Solga, A. C., Gutmann, 
D. H., and Caprioli, R. M. (2016) 3-D imaging mass spectrometry of protein distributions in mouse 
Neurofibromatosis 1 (NF1)-associated optic glioma. J Proteomics 149, 77-84 
70. He, Q., Dent, E. W., and Meiri, K. F. (1997) Modulation of actin filament behavior by GAP-
43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C 
site. J Neurosci 17, 3515-3524 
71. Chapman, E. R., Au, D., Alexander, K. A., Nicolson, T. A., and Storm, D. R. (1991) 
Characterization of the calmodulin binding domain of neuromodulin. Functional significance of 
serine 41 and phenylalanine 42. Journal of Biological Chemistry 266, 207-213 
72. Denny, J. B. (2006) Molecular mechanisms, biological actions, and neuropharmacology 
of the growth-associated protein GAP-43. Curr Neuropharmacol 4, 293-304 
73. Sulakhe, P. V., Petrali, E. H., Thiessen, B. J., and Davis, E. R. (1980) Calcium ion-
stimulated phosphorylation of myelin proteins. Biochemical Journal 186, 469-473 
74. Atkins, C. M., Yon, M., Groome, N. P., and Sweatt, J. D. (1999) Regulation of Myelin Basic 
Protein Phosphorylation by Mitogen-Activated Protein Kinase During Increased Action Potential 
Firing in the Hippocampus. Journal of Neurochemistry 73, 1090-1097 
75. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., 
Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, 
S., Szigyarto, C. A.-K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, 
P.-H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., 
von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, 
J., and Pontén, F. (2015) Tissue-based map of the human proteome. Science 347, 1260419 
76. Nanduri, R., Furusawa, T., and Bustin, M. (2020) Biological Functions of HMGN 
Chromosomal Proteins. Int J Mol Sci 21 
77. Zhu, Y., Dou, M., Piehowski, P. D., Liang, Y., Wang, F., Chu, R. K., Chrisler, W. B., Smith, 
J. N., Schwarz, K. C., Shen, Y., Shukla, A. K., Moore, R. J., Smith, R. D., Qian, W. J., and Kelly, 
R. T. (2018) Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with 
Automated Sample Transfer to Nanodroplets. Mol Cell Proteomics 17, 1864-1874 
78. Schaffer, L. V., Millikin, R. J., Shortreed, M. R., Scalf, M., and Smith, L. M. (2020) 
Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and 
Top-Down Data. Journal of Proteome Research 19, 3510-3517 



28 
 

 



1 
 

Supporting Information 

 

Spatially resolved top-down proteomics of tissue sections based 
on a microfluidic nanodroplet sample preparation platform 

Yen-Chen Liao1, James M. Fulcher1, David J. Degnan2, Sarah M. Williams1, Lisa M. 
Bramer2, Dušan Veličković1, Kevin J. Zemaitis1, Marija Veličković1, Ryan Sontag2, 
Ronald J. Moore2, Ljiljana Paša-Tolić1, Ying Zhu1,3*, and Mowei Zhou1,* 

1. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 
Innovation Boulevard, Richland, Washington 99354, United States. 

2. Biological Sciences Division, Pacific Northwest National Laboratories, 902 Battelle Boulevard, 
Richland, Washington 99354, United States. 

3. Present address: Department of Microchemistry, Lipidomics and Next Generation Sequencing, 
Genentech, 1 DNA Way, South San Francisco, 94080, United States. 

*Correspondence: Dr. Mowei Zhou, mowei.zhou@pnnl.gov  

       Dr. Ying Zhu, zhu.ying@gene.com  

 

Includes Figure S1-S11. 

 

  



2 
 

 

Supporting Figure S1. Workflow for data process with detailed parameters. The programs are 
in the links below: TopPIC (https://www.toppic.org/software/toppic/index.html), TDProtal 
(https://nrtdp.northwestern.edu/tdportal-request/), ProMex(https://github.com/PNNL-Comp-
Mass-Spec/Informed-Proteomics/tree/master/ProMex) , TopPICR 
(https://zenodo.org/record/5826349#.Yy8ft3bMKuc), and align with ProMex features 
(https://github.com/PNNL-HubMAP-Proteoform-Suite/spatially-resolved-
TDP/tree/main/ProMexAlign_Proteoforms). The final proteoform list and intermediate lists during 
the processing steps were included in the Supporting Table 1. Manual curation further reduced 
the redundancy in the output from 742 to 509 proteoforms. Ambiguous PTM assignments were 
also corrected to unknown mass shifts. 

  



3 
 

 

 

Supporting Figure S2. Polypropylene (PP) chips delivered higher number of 
proteoform identifications than glass chips from samples containing ~100 HEK cells 
(n=5 for each condition). The improvement is due to reduced absorptive losses on PP 
surface in comparison to glass surface.   
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Supporting Figure S3. Evaluation of parameters for merging redundant proteoform features. (A) 
When using a broad mass tolerance window of  +/- 1 Da to minimize redundant isotopologues, a 
small distribution of ProMex features were matched with high mass error in 20-60 ppm range. (B) 
TopPIC reports two different masses for each proteoform identification – “adjusted mass” and 
“precursor mass”. The absolute mass difference between these two are plotted for proteoform 
without and with unexpected mass shifts. The proteoforms without unexpected mass shifts 
showed a cluster near 1 Da mass shift, suggesting the “adjusted mass” attempted to correct some 
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deisotoping error after considering the identified proteoforms. For proteoforms with unexpected 
mass shifts, there was no obvious cluster near 1 Da but instead a relatively broad distribution of 
mass differences.  (C) Manually checking the merged features identified additional redundant 
proteoforms. Using the adjusted mass yielded fewer redundant proteoforms from deisotoping 
error. (D) Venn diagram showing the overlapping of matched ProMex features using the 
“precursor mass” and “adjusted mass” from TopPIC. (E) Venn diagram showing the overlap of 
assigned proteoforms to the uniquely matched ProMex features, showing 84 common proteoform 
assignments. Many unique mass matches were simply from deisotoping error (i.e., differet 
isotopologs of the same proteoform). (F) For the 84 shared proteoforms with different ProMex 
feature masses, the abundance values were linearly correlated, suggesting the isotopologs 
introduce relatively small change to the quantitative analysis. (G) The mass error distribution of 
the assigned proteoforms in the final reported list from our workflow, most of which were < 5 ppm. 
(H) The retention time window distribution (reported by ProMex) of the reported proteoforms, 
which are mostly < 2 min. 

  



6 
 

 

 

 

 

Supporting Figure S4. Representative MALDI spectrum of intact proteins from rat 
brain section. The data were acquired in MSI mode as described in the Experimetal 
section, and all pixels were summed to yield the spectrum shown. Major peaks were 
annotated with gene names (green text) based on the proteoforms identified in LCM- 
nanoPOTS. Truncated forms were labeled with the starting – ending residues in 
parentheses. PTMs were noted in brackets. Because multiple histones proteoforms 
corresponding to one or more histone genes were detected with similar masses, only 
the family names were labeled (blue text) for simplicity in this demonstration. The inset 
shows the zoom-in region of the MALDI spectrum (red trace) overlapping with the 
theoretical isotopic distribution of histone H4 N-ac, dimethyl proteoform (blue trace).  
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Supporting Figure S5. In the MS2 spectrum of Gng5(2-152)S1[Acetyl]C64[S-
geranylgeranyl], the un-matched base peak from scan#3185, including 565.29(2+), 
484.74(2+), and 403.71(2+) could be fragments from co-eluting species. In another MS2 
spectrum from C2_CV40.raw, we did not see the unassignable fragments at 565.29(2+), 
484.74(2+), and 403.71(2+). The mass difference between these base peaks could be 
hexose(162.05 m/z), suggesting the co-eluting species may be related to glycans.  
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Supporting Figure S6. (a) PCA analysis without imputation. (b) The loadings of PC1 
and PC2. The loadings drove the separation to hypothalamus with Gap43(48-90), Vgf(180-
209), Nme2(2-152), and Ptma(31-113); enriched in cortex with Mbp(2-74)[Acetyl], Hmgn2(27-
89), and Atp5if1(27-107).The PCA separated the cortex and hypothalamus with PC2 as same 
as data-imputed PCA in Fig.3. Most protoefomrs in the loading plot , such as Gap43(48-90) and 
Vgf(180-209),  have the same trend as the data-imputed PCA.  
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Supporting Figure S7. (a) MS spectrum of Calm1-N-acetyl&acetyl &[+446.96]. (b) MS2 
spectrum of Calm1-N-acetyl&acetyl, (c) MS2 spectrum of Calm1-N-acetyl&acetyl 
&[+446.96] (d) MS2 spectrum of Calm1-N-acetyl-2acetyl. Calm1[N-acetyl&acetyl at 
1120.393 m/z existed in the same MS1 spectrum with Calm1[N-acetyl&acetyl &446.956] 
(at 1150.27, Fig. S7a). From the accurate mass in the MS1 spectrum, an extra mass of 
446.959 Da could confirmed matched to 1150.270 m/z (15+), yet the MS2 spectrum 
was insufficient to identify the PTM/potential noncovalent adduct (Fig. S7c). Similar 
challenge of PTM localization was seen for Calm1-N-acetyl-2acetyl. Thus only total 
PTM composition was reported for these proteoforms.  
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Supporting Figure S8. Annotated spectra for Tmsbx4 N-acetyl (top) and N-acetyl-[-
56.0498] (bottom) proteoforms. Both spectra showed good sequence coverage, large 
number of matched fragments, and good signal for precursor ions. For the proteoform 
with mass shift of -56.05 at the C-terminus, truncation of residues alone cannot explain 
the observed mass difference.  
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Supporting Figure S9. Annotated spectra for two Cox7c proteoforms with unknown 
mass shifts. Both spectra had high sequence coverage and good isotope fit for 
precursor matches. Mass shift of 71.98 Da may represent a combination of PTMs in the 
middle of the protein. Mass shift of 510.30 Da likely represents a noncovalent adduct or 
a labile PTM. The fragment spectra matched well to the unmodified protein, but the 
precursor ion contained an extra mass of 510.30 Da, implying the PTM was lost during 
fragmentation. 



13 
 

 

 

Supporting Figure S10. Annotated spectra for Hmgn2(2-90) (top) and Hmgn2(30-90) 
(bottom) proteoforms. Both spectra showed good sequence coverage, large number of 
matched fragments, and good signal for precursor ions. 
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Supporting Figure S11. Comparison of our TDP study with a recent BUP study of rat 
brain tissue also using nanoPOTS. (A) Overlap of protein identifications. There were 956 
proteins identified in the previous BUP data and only 53 proteins were shared in this study. 
(B) In the 53 overlapped proteins, 32 proteins with their proteoforms had over 90% 
coverage over the UniProt full sequences, indicating near complete characterization (not 
with special consideration for signaling peptides, etc). In contrast, most proteins showed 
< 50% peptide coverage over full amino acid sequences in BUP. (C) Among the 162 
unique protein identification in TDP, 50% had >90% coverage, suggesting there were 
(near)-full-length proteoforms and not small degradation products. (D) Amino acid length 
of full sequences in UniProt for all detected proteins in TDP data. A majority of them were 
within the detectable range of our TDP method (<30 kDa). Some high mass proteins were 
also detected, which should be attributed from low mass fragments. (E) Amino acid length 
of full sequences in UniProt for protein only identified in BUP data. Most of proteins are 
around 200~ 1000 amino acids. Overall the high mass proteins were underrepresented 
in TDP. 
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