- **1** Resolution of MoS₂ nanosheets-induced pulmonary inflammation driven by nanoscale
- 2 intracellular transformation and extracellular-vesicle shuttles
- 3
- 4 Nathaly Ortiz Peña, Kondareddy Cherukula, Benjamin Even, Ding-Kun Ji, Sarah
- 5 Razafindrakoto, Shiyuan Peng, Amanda K. A. Silva, Cécilia Ménard Moyon, Hervé
- 6 Hillaireau, Alberto Bianco, * Elias Fattal, * Damien Alloyeau, * Florence Gazeau*
- 7

8 N. Ortiz Peña, D. Alloyeau

- 9 Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice
- 10 Domon et Léonie Duquet, Paris 75205 Cedex 13, France
- 11 E-Mail: <u>damien.alloyeau@u-paris.fr</u>
- 12 K. Cherukula, S. Razafindrakoto, A. K. A. Silva, F. Gazeau
- 13 E-Mail: <u>florence.gazeau@u-paris.fr</u>
- 14 Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères,
- 15 Paris 75006 France
- 16 B. Even, H. Hillaireau, E. Fattal
- 17 E-Mail: elias.fattal@universite-paris-saclay.fr
- 18 Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
- 19 D.-K. Ji, S. Peng, C. Ménard Moyon, A. Bianco
- 20 E-Mail: <u>a.bianco@ibmc-cnrs.unistra.fr</u>
- 21 CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
- of Strasbourg, ISIS, 67000 Strasbourg, France
- 23
- 24
- 25 Keywords: 2D materials, transition metal dichalcogenides, graphene, biodegradability,
- 26 toxicity
- 27
- 28 Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result
- 29 of unresolved inflammation. Among two-dimensional (2D) nanomaterials and graphene,
- 30 MoS₂ have received tremendous attention in optoelectronics and nanomedicine. Here we
- 31 propose an integrated approach to follow up the transformation of MoS₂ nanosheets at the
- 32 nanoscale and their impact on the lung inflammation status over one month after a single
- 33 inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles,
- 34 and cytokine profiling in bronchoalveolar lavage fluid (BALF) showed that MoS₂ nanosheets

1 induced initiation of lung inflammation that was rapidly resolved despite the persistence of 2 various biotransformed molybdenum-containing nanostructures in alveolar macrophages and 3 extracellular vesicles up to one month. Using *in situ* liquid phase transmission electron 4 microscopy experiments, we could evidence the dynamics of MoS_2 nanosheets transformation 5 triggered by reactive oxygen species. Three main transformation mechanisms were observed 6 directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of 7 nanoscrolls and folded patches, 2) etching releasing soluble MoO_4^- , and 3) oxidation 8 generating oxidized sheet fragments. Extracellular vesicles released in BALF were also 9 identified as a potential shuttle of MoS₂ nanostructures and their degradation products and 10 more importantly as mediators of inflammation resolution.

11

12 **1. Introduction**

13 Inorganic two-dimensional (2D) materials particularly transition metal dichalcogenides 14 (TMDs) have raised significant attention due to their exceptional electronic, optical, mechanical, and chemical properties.^[1,2] Notably, the large surface area with tunable 15 electronic properties, the intercalable layers and bio- functionalization holds great promise in 16 biosensing,^[3-5] bioimaging,^[6,7] and drug delivery,^[8-10] among others applications.^[11] In 17 particular, molybdenum disulfide, a graphene analogue consisting of S-Mo-S covalent 18 19 arrangements^[12] is one of the commercially attractive materials used as catalyst, lubricant, welding, and combustion.² Furthermore, MoS₂ nanosheets have shown to have better 20 21 biocompatibility and stability in comparison with their carbon-based analogues,^[13,14] and other TMD materials,^[15] as well as degradation capacity in an aqueous environment.^[16] Prior 22 23 studies evaluated the adverse effects of MoS₂ in vitro^[17] or in vivo^[18] highlighting the MoS₂ biotransformation into the oxidized form, like molybdenum oxide (MoO₄⁻), and the 24 25 incorporation of molybdenum into molybdenum enzymes, affecting liver metabolism.^[18-21] 26 Heavy metals and particularly molybdenum exposure has been related to health hazards such as fetal growth disturbance,^[22] systemic sclerosis,^[23] or chronic kidney disease.^[24] Depending 27 on the form of TMD and the exfoliation degrees, in vitro studies demonstrated different levels 28 of cytotoxicity.^[25,26] Additionally, differences in the antibacterial activity were observed 29 30 between exfoliated MoS₂ and annealed MoS₂ in combination with ethylenediaminetetraacetic 31 acid (EDTA) as an electron donor. The exfoliated MoS_2 form was demonstrated to have a 32 better performance in the inactivation of Escherichia coli biofilm production, this difference 33 being attributed to an enhanced creation of reactive oxygen species (ROS) due to their higher electron conductivity when in 2D form.^[27] 34

1 There are several factors affecting the toxicity and degradation capacity of 2D materials 2 including layered structures, degree of exfoliation, surface area, active edge sites etc. 3 However, the mechanisms involved in cell processing of 2D materials and restoration of 4 homeostasis after an inflammatory insult remain little understood. In the context of tissue 5 injury induced by exposure to xenobiotics or nanoparticles, mechanisms of inflammation self-6 resolution can be deployed to avoid chronic inflammation. This is particularly important in a 7 dynamic immune environment such as the lung, as continuous induction of inflammatory 8 signals could produce irreversible damage to the organs. It is found that foreign agents, 9 damaged/aggregated proteins, misfolded proteins as well as nanoparticles are diverted by cell 10 either to lysosomes that present a harsh acidic and oxidizing environment favorable for transformation and degradation of nanoparticle^[39] and/or exocytosed in the extracellular 11 medium with the release of extracellular vesicles (EVs).^[29-33] Inorganic nanostructures such as 12 13 gold nanoparticles or carbon nanotubes can undergo massive degradation and restructuration in lysosomes mediated by ROS.^[34,35] However, such intracellular transformation of MoS₂ 14 15 nanosheets has not been investigated in detail and over a long period after exposure in vivo. 16 Furthermore, EVs can also spread nanoparticles and aggregated proteins, contributing, for 17 instance, to the progression of neurodegenerative diseases with the active propagation of amyloid peptide and tau protein^[33] or disseminating carbon nanotubes or iron oxide 18 nanoparticles to naive cells.^[29,31,36] EVs released by cells under different conditions, including 19 20 nanoparticle exposure produce a multitude of effects such as pro-inflammatory, anti-21 inflammatory, antigen presentation or cancer growth signals. For example, EVs play a role in shuttling RNA to influence the recipient cell response to external stress.^[37] Under 22 23 pathophysiological conditions, EVs can also transfer defense machinery from one cell to 24 another such as antioxidant molecules enriching the cellular defense mechanisms against 25 specific stress.^[38] 26 In this context, we have first investigated whether MoS₂ nanosheets instilled into the trachea 27 of mice could pose a potential hazard to the lung environment and how it can be related to the 28 fate and biotransformations of these nanomaterials in the bronchoalveolar fluid over one 29 month. Transient oxidative stress and a pro-inflammation environment was observed upon 30 MoS₂ lung installation, which was rapidly resolved despite the persistence of intracellular Mo 31 nanostructures in different forms within alveolar macrophages. We thus investigated the 32 mechanisms of nanotransformation of MoS₂ patches both in primary macrophages and in 33 intracellular biomimetic media using *in situ* liquid phase transmission electron microscopy. 34 Secondly, we studied the EVs released in BALF and investigated their role in the resolution

1 of nanoparticle-induced inflammation. Overall, our multiscale investigation provides insight

2 into the dynamic of the cellular transformations of exfoliated MoS₂ nanosheets at the

3 nanoscale in the lung environment and sheds light on their role in resolving the initial

4 inflammation insult related to MoS₂ nanosheet exposure.

5

6 2. Results and Discussion

7 2D MoS₂ nanosheets were prepared through liquid phase exfoliation of bulk MoS₂ crystals in 8 an aqueous solution of bile salts. TEM showed MoS₂ nanosheets with a narrow lateral size 9 ranging from 50 to 150 nm (Figure 1a, Figure S1a). The HRTEM images suggested the 10 formation of thin layer MoS₂, illustrating the hexagonal symmetry of the material (Figure 11 **S1b**). The resulting 2D MoS_2 nanosheets own superior dispersibility in aqueous solution. 12 Colloidal stability was confirmed by the low value of ζ -potential, corresponding to – 38.1 mV. The UV-Vis and Raman spectra also confirmed the successful preparation of 2D MoS₂ 13 nanosheets (Figure S2).^[39] The chemical composition of 2D MoS₂ was investigated by X-ray 14 15 photoelectron spectroscopy (XPS). The two strong peaks in the high resolution spectrum, 16 located at 229.3 and 232.5 eV, correspond to Mo 3d_{5/2} and Mo 3d_{3/2}, respectively. XPS also 17 confirmed that the Mo element was mainly present as Mo (IV) in MoS₂ (Figure S3). The peaks at 162.2 and 163.3 eV in S 2p spectra were ascribed to the S²⁻ state. TGA showed that 18 19 the amount of bile salts adsorbed on the 2D MoS₂ nanosheets was 13%, corresponding to 325 20 μ mol/g (**Figure S4**). 21 These MoS₂ nanosheets suspended in 5% glucose at a concentration of 1 mg/mL were

nebulized into the trachea of healthy mice. Mice were sacrificed at days 0.5, 1, 2, 7, 14 and 28

after this single nanoparticle exposure and the BALF were collected and analyzed for their

24 immune cell distribution, protein content, inflammatory cytokines and extracellular vesicles

25 (Figure 1b). All these components can be involved as pro- and anti-inflammatory mediators

to regulate lung inflammation in case of injury.^[40] Particularly cells of the innate immune

27 system such as macrophages or neutrophils play major roles in the early process of

28 inflammation and also influence other cells in driving pro-resolution against such

29 inflammation.^[41] Total cells isolated from BALF increased at 12 h post-exposure to MoS₂

30 (pvalue = 0.0642), but were not significantly increased over one-month post-exposure to

31 MoS₂ compared to vehicle (Figure S5a). The adherent alveolar macrophages comprised the

32 majority of isolated BALF cells (around 95%) (Figure S5d), with an increase at 12 h

33 compared to the vehicle (pvalue = 0.0773) (Figure S5c). Neutrophils rapidly migrate towards

34 inflamed tissue upon inflammatory insult and can change their phenotype depending on the

1 inflammatory status. In the first hours after MoS₂ exposure, we observed a significant increase 2 of neutrophils in BALF, but this increase is not maintained after 1 day (Figure S5b), their 3 percentage in total cell population being rapidly reduced to near vehicle numbers (Figure 4 **S5f**). We did not observe any significant increase in total protein levels in BALF in 5 comparison to the vehicle controls (Figure S5g) nor higher leukocytes mortality (Figure 6 **S5h**). By contrast, experiments on the same model using lipopolysaccharide as positive 7 control, demonstrated that after intratracheal administration of 2 mg/kg of LPS a significant 8 increase in cell count was measured in the BALF 24 and 48 h after administration compared 9 to vehicle-instilled mice $(2 \times 10^7/\text{mL} \text{ at } 48 \text{ h})$, with a significant mortality $(1 \times 10^7/\text{mL})$, together with a large proportion of neutrophils (80-90% at 24 and 48 h) (data not shown). However, 10 11 the cytokine profile revealed an impact of MoS₂ exposure which depends on the time after 12 exposure (Figure S6a-b). Notably, as shown in the heat map of mean fold-change signal 13 intensity versus control of cytokine array (Figure 1c), several proteins expression were 14 increased at 12 h post-exposure (e.g., Leptin, MIG, MIP-1-gamma and TIMP-1 have a fold 15 change > 1.5) or decreased (e.g., Axl has a fold change < 0.5), showing a trend to an 16 inflammatory profile at this time point, which is consistent with the increase of inflammatory 17 cells observed previously. Particularly, leptin could modulate neutrophil activity and function, 18 which correlates with the increased number of neutrophils at this time point. In contrast, at 19 day 1 and day 2 soon after exposure the expression of most of the proteins implicated in 20 inflammatory response were decreased compared to the control (e.g., Axl, Eotaxin, IGF-BP-5, 21 Il-1beta, IL12p40/p70, Leptin, L-Selectin, MIG, SCF, TIMP-1 and VEGF have a fold change 22 < 0.5). Globally, these results indicate a pro-inflammatory insult detected in the first 12 h after 23 MoS₂ nebulization, followed by rapid anti-inflammatory mechanisms that reduced the 24 production of pro-inflammatory mediators in mice BALF from 24 h and 48 h post-exposure. 25 For the later time points up to one month, there were few differences of protein expression as 26 compared to vehicle conditions, although the expression of some proteins were increased 27 (e.g., II-2, IL-17 and KC with a fold >1.5). Consistent with the cellular and protein analysis, 28 we can conclude from cytokine analysis that MoS₂ lung exposure induces onset of 29 inflammation during the first 24 h, which is resolved in a couple of days after exposure 30 through a potent anti-inflammatory mechanism. At longer time points up to one-month post-31 exposure, we observed a normalization of the BALF immune microenvironment, indicating 32 the durable resolution of inflammation and recovery of lung homeostasis.

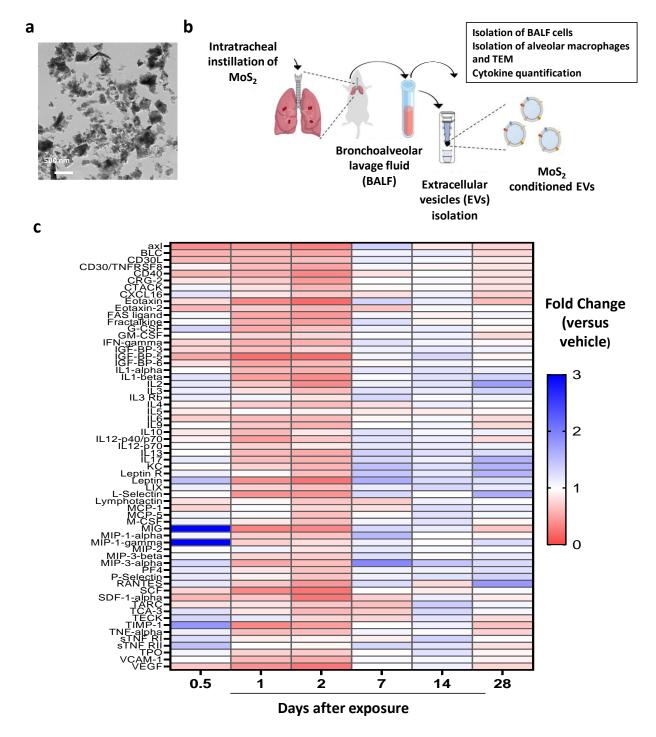


Figure 1. (a) TEM image of MoS₂ nanosheets before inhalation in mouse. (b) Experimental design of MoS₂ nanoparticles intratracheal instillation in mice and recovery and analysis of BALF. (c) Heatmap representing the mean fold change signal intensity of cytokine array in BALF of MoS₂-exposed mice versus non-exposed (vehicle) mice for each time-point after instillation. Number of mice: n=2 (0.5 day); n=3 (1 and 2 days); n= 1 (7, 14 and 28 days).

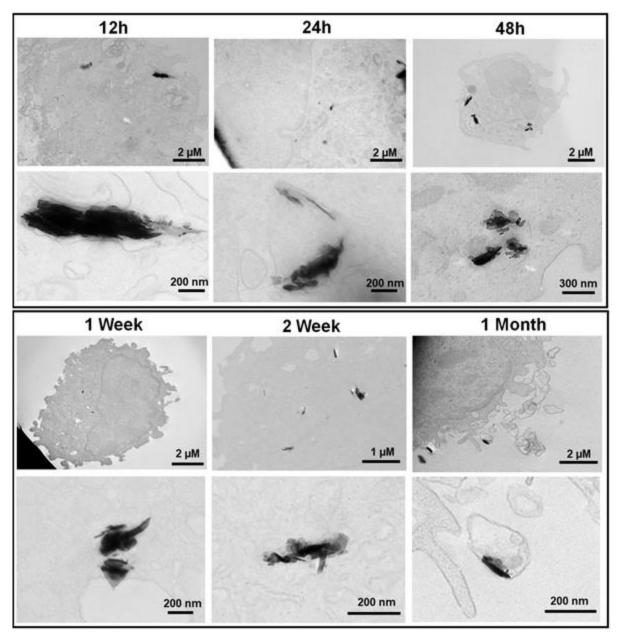


Figure 2. TEM images of alveolar macrophages recovered in BALF of MoS₂-exposed mice at
different time-points after exposure. An extracellular vesicle containing MoS₂ is highlighted
by a blue arrow.

- 5
- 6 To get insights into the mechanisms of nanoparticle processing and resolution of
- 7 inflammation, we have combined a multiscale investigation looking both at the lung
- 8 microenvironment response and at the (intracellular) transformation of the 2D nanoparticles.
- 9 We isolated alveolar macrophages from BALF at predetermined time points after MoS₂
- 10 exposure and observed the nanoparticle distribution and morphology by TEM (**Figure 2**).
- 11 Immediately after the first 24 h of exposure up to 1 month, we found internalized structures
- 12 that are no longer flat MoS₂ nanosheets but rather different types of intracellular transformed

1 MoS₂, such as fully scrolled, half scrolled and fully folded sheets. Interestingly, we also 2 observed the exocytosis of nanoscrolls via extracellular vesicles indicated by the blue arrow in 3 Figure 2. As such biotransformation has not been described before, we investigated in more 4 details the role and mechanisms of intracellular transformation of MoS₂ nanosheets and 5 extracellular vesicle release in the lung homeostasis restoration following MoS₂ exposure. 6

7 2.1. MoS₂ nanoscroll formation in alveolar macrophages: a mechanism to mitigate the 8 inflammatory insult?

9 In light of our observations we hypothesize that intracellular transformation of MoS₂,

10 particularly nanoscroll formation, could serve as a cellular defense mechanism against the

11 MoS₂-driven insult. MoS₂ is a layered structure, in which the number of layers and their

orientation could have toxicological implications, depending on the surface area and active 12

13 edge sites that interact with the biological environment. Indeed, in vitro study conducted with

14 MoS₂ nanosheets proved that the extent of exfoliation is correlated with the cytotoxicity of the

nanosheets.^[39] Therefore, we thought to investigate the dynamic interactions of MoS₂ 15

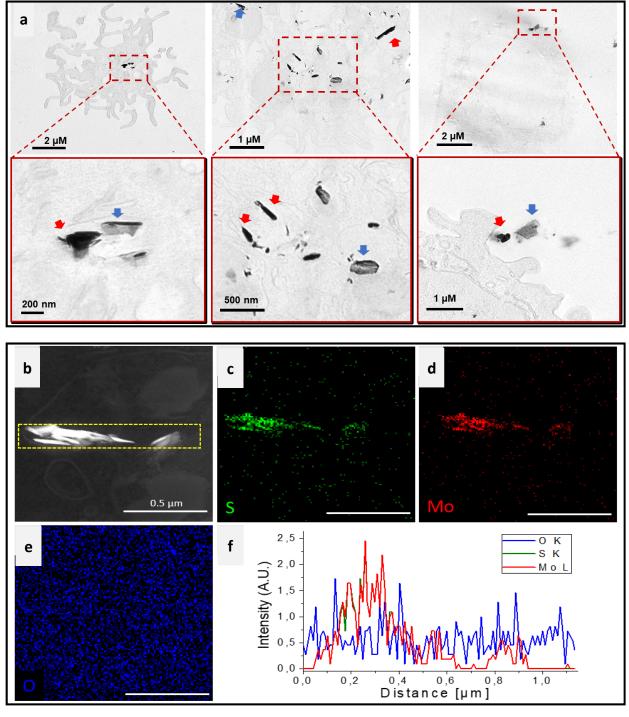
16 nanosheets with alveolar macrophages that were isolated from BALF of unexposed mice.

17 AMs are tissue resident macrophages which are directly exposed to the environment and thus

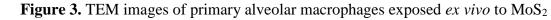
play an important role in immune regulation occurring due to inhaled foreign pathogens.^[42] 18

19 These primary AM were exposed ex vivo with 20 µg/mL MoS₂ for 12 h. In line with AM

20 observations after MoS₂ inhalation in vivo, cells exposed ex vivo showed the same type of


21 scrolled sheets embedded within intracellular structures, presumably endo-lysosomes (Figure

22 3a). Scrolling was complete (red arrow) or partial (blue arrow), finding some sheets scrolled


23 only at the edges. EDX elemental mapping shows that the nanoscrolls are composed of Mo

24 and S, with no increase in the amount of oxygen over the scrolls. Thus, EDX analysis did not

25 point to the oxidation of the surface (Figure 3b-f).

3 nanoparticles for 12 h. Intracellular or extracellular fully scrolled (red arrows) or half-scrolled

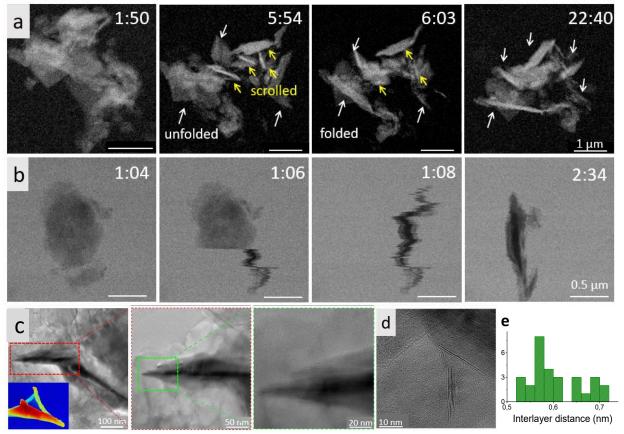
 $4 \qquad (blue \ arrow) \ MoS_2 \ can \ be \ observed. \ (b-f) \ EDX \ elemental \ mapping \ of \ an \ intracellular \ MoS_2$

5 scroll: (b) bright field image of the intracellular nanoscrolls, (c) sulfur, (d) molybdenum, (e)

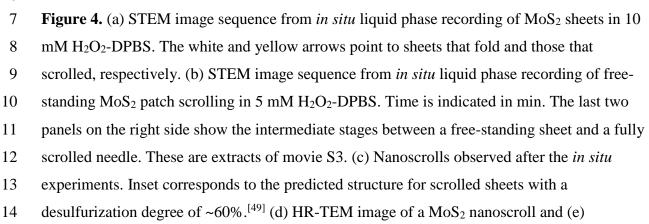
6 oxygen map, and (f) relative intensity profile.

- 7
- 8
- 9

1 2.2. Tracking oxidative stress-induced MoS₂ transformation *in situ* with liquid TEM

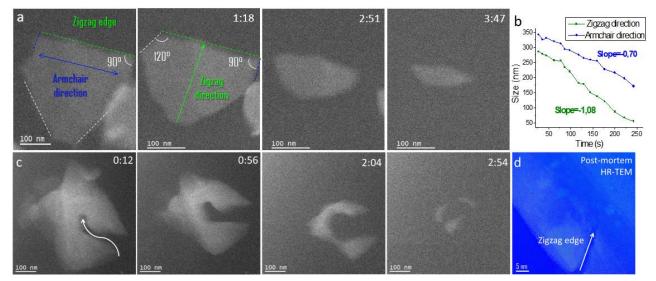

2 To mimic the mechanisms driving MoS₂ biotransformation within intracellular organelles, we 3 decided to track the dynamic behavior of MoS₂ at the nanoscale using in situ liquid TEM 4 under conditions that are relevant to the harsh environment of degradation compartments such 5 as lysosomes. We considered the elevated production of ROS including superoxide (O₂⁻), and hydroxy radicals (HO^{\cdot}) in inflamed tissues,^[43,44] and typical concentrations of H₂O₂ 6 7 around 0.05 - 0.1 mM, within the lysosomes that are responsible for the degradation of 8 xenobiotics and undesirable proteins or protein aggregates. However, degradation of MoS₂ has shown to take several weeks up to a month tracked by *in vivo* studies.^[15] Therefore, for 9 10 the in situ studies H₂O₂ concentration in the biomimetic media has been set to be around 11 hundred times higher, 5-10 mM, to have a faster degradation process traceable in a shorter 12 timespan within the microscope. Additionally, a DPBS solution was used to simulate the 13 saline conditions in biological systems.

14 2.2.1. Scrolling


15 When dispersed in the DPBS- H_2O_2 solution, early observation of stacked patches revealed a 16 further spreading of the few layers of MoS₂ stacks (Figure 4a, Movie S1). This increase of 17 interlayer distance is probably promoted by the presence of different cations coming from the buffer mixture known to intercalate in between the MoS₂ layers.^[45] The further spreadsheets 18 19 tend to fold and scroll in a very fast process that takes place in a few seconds as evidenced in 20 Figure 4a pointed by the yellow arrows or in Figure 4b (Movie S2) for a single nanosheet. 21 The initial exfoliation-intercalation process can be at the origin of the rolling up. Similar 22 intercalation using organic solvents has been described to promote the scrolling of MoS₂ flakes.^[46] Free standing sheets in the liquid have a low folding barrier.^[47] Furthermore, strain 23 energy can be induced more easily by a dynamic behavior of sulfur atoms at the surface of the 24 freestanding sheets.^[48] Molecular dynamics simulations have evidenced the impact of 25 desulfurization percentage in the morphological changes of freestanding MoS₂,^[49] that fully 26 27 coincide with the scrolling process we have observed in situ as well as in the alveolar 28 macrophages exposed to MoS_2 in vivo and ex vivo. The previous simulation predicted that the 29 sheets tend to form scrolls to minimize the surface energy when there is a high depletion 30 (>40%) of S atoms. Indeed, post-in situ HR-TEM observations show some structures that 31 match the simulated structure for scrolled sheets with a desulfurization degree of $\sim 60\%$ (Figure 4c).^[49] Interlayer distances in the scrolls vary from 0.55 to 0.61 nm (Figure 4d-e), 32 which is in the range between typical nanotubes and bulk MoS₂.^[50] The *in situ* liquid 33

34 experiments and *post-in situ* TEM in Figure 4 put in evidence that the sheets tend to wrinkle,

- 1 fold and finally scroll from the corners rather than the edges. Nonetheless, scrolls tend to be
- 2 found in partially unfolded sheets as well, which might be related to the degree of
- 3 desulfuration. The scrolling process showed to be reversible (Movie S3). The reversibility of
- 4 the scrolling points to preservation of the MoS₂ structure, since there is not an appreciable
- 5 increase in the oxygen content as confirmed by the *ex vivo* TEM analysis (Figure 3).



- 15 histogram of interlayer distance.
- 16
- 17 Thereby, we have shown that MoS₂ nanosheets form dynamic nanoscrolls as filmed in Movie
- 18 S3. In the literature, this scrolling process has been described primarily in CVD-deposited
- 19 sheets.^[48] Controlled scrolling of MoS₂ has been achieved by different approaches including

- 1 plasma bombardment, solvent drying and electrochemical folding. ^[46,47, 50] However, this
- 2 process has never been observed concomitantly *in situ* in biomimetic oxidizing medium and
- 3 *in vivo* or *ex vivo* in alveolar macrophages as a mechanism of intracellular processing.
- 4 2.2.2. Etching
- 5 In addition to the scrolling, we found that the unfolded sheets can undergo oxidation and
- 6 etching which is the typical degradation pathway of MoS_2 in the presence of H_2O_2 .^[51] MoS_2
- 7 has been shown to dissolve in oxygenated aqueous media releasing molybdate ions as
- 8 described in equation (1):^[15,16]
- 9 $MoS_2 + 9/2O_2 + 3H_2O \rightarrow MoO_4^{2-} + 2SO_4^{2-} + 6H^+$ (1)

Here we were able to track in real-time the etching process within the biomimetic media. A 10 11 representative sequence of the etching is presented in Figure 5. The etching speed observed in 12 the *in situ* experiments is probably exacerbated by the electron beam illumination. The patch 13 edges are etched gradually from edges inwards evidencing a change in the aspect ratio from 14 1.26 at 33 s up to 3.47 by 227 s (Figure 5a, Movie S4). Notably, the etching is faster in the 15 direction perpendicular to the zigzag edges as evidenced in **Figure 5b**. Oppositely, facets developed at 90° which correspond to the armchair edges, tend to disappear upon etching 16 17 progression. This observation is in agreement with DFT studies and previous controlled 18 etching experiments pointing to higher stability for the zigzag edges in comparison with the 19 armchair.^[52,53] Furthermore, the sheets can also etch internally through defects at the surface 20 (Figure 5c, Movie S5). The internal etching path is probably dominated by the presence of 21 defects at the surface of the layers leading to the further exposure of new zigzag edges in the 22 inner regions (Figure 5d).

23

solution. (b) Size change in the zigzag and armchair directions of a sheet over time. (c)

Sequence from *in situ* liquid STEM displaying internal etching from edge defects of a single
 MoS₂ sheet. (d) Post-*in situ* HRTEM image of the etching pathway exposing zigzag edges.

3

4 *2.2.3. Oxidation*

5 The etching is likely induced by the oxidation mechanism described in the previous section 6 leaching ions into the liquid. However, we evidenced another oxidation process. In contrast 7 with the etching described above, the layered structure can remain upon surface oxygen 8 adsorption leaving oxidized fragments like those found in samples degraded in our 9 experiments *in situ* (Figure S7a). The corresponding Fast Fourier transformation of HRTEM 10 of such fragments confirmed the oxidation to MoO₃ which has been shown to be the product of MoS₂ oxidation by different synthesis methods,^[54,55] and by a previous study on the 11 enzymatic degradation of MoS₂.^[15,19] Interestingly we observed the same diffraction patterns 12 13 of MoO₃ in fragments found within extracellular vesicles of ex vivo AMs after 24 h exposure 14 to MoS₂ (Figure S7b). Such oxidation has been described in the literature to take place in the presence of low concentrations of H_2O_2 (1%, 3% and 6%).^[15,19,51] This observation suggests 15 16 that in conditions closer to those of biological media, the MoS₂ sheets could also preserve its 17 layered structure and get oxidized on the surface.

18 To sum up, three main transformation mechanisms were observed directly at the nanoscale

19 thanks to the *in situ* liquid phase STE experiments: 1) scrolling of the dispersed sheets; 2)

20 etching releasing soluble degradation products in solution; and 3) oxidation generating

- 21 oxidized sheet fragments or nanoparticles.
- 22 We would like to underline that our experiments were performed at room temperature and in
- buffered conditions (e.g., 25°C, pH 6-7). We expect that changes in the temperature and pH of
- 24 the solution would have different effects on the in situ transformation of MoS₂ depending on
- 25 the process induced by the presence of H_2O_2 . At temperatures below 60° C the
- disproportionation of H_2O_2 is slow,^[56] so the etching and oxidation following equation (1)
- 27 will be probably constant with a continuous influx of H_2O_2 , and above this temperature the
- 28 etching rate would slow down upon disproportionation. Furthermore, it has been shown that at
- 29 higher temperatures, upon etching the exposed facets of MoS_2 can change from triangles to
- 30 shapes with hexagonal holes above 600 °C.^[53] In regards to the impact of different pH
- 31 conditions, studies tackling the colloidal stability of MoS₂ at various pH values have shown
- 32 that MoS₂ stability diminished only in solutions at pH below 1.9.^[16] Therefore, even in
- 33 typically acidic lysosomal medium where the pH can be around 4.5-5, we do not expect a
- 34 significant impact on the overall observed processes. On the other hand, if the change in the

1 pH is due to higher concentrations of H₂O₂, we could expect an exacerbation of the etching and oxidation processes. Based on our and other observations,^[57] hydrogen peroxide tends to 2 3 spontaneously induce the exfoliation of MoS₂ enabling probably more free-standing sheets to 4 scroll and fold up. We also showed in the *in situ* STEM experiment that the scrolling, etching 5 and oxidation of free-standing sheets have accelerated kinetics, where the concentration of 6 H_2O_2 is up to 100 times higher than that of biological media. Thus, while these processes take 7 from days to several weeks in cellular organelles, the in situ STEM observations were carried 8 out only on in the time frame of tens of min.

9 Considering the similar observations of MoS_2 scroll, etching and oxidation in *in vivo* or *ex*

10 vivo exposed alveolar macrophages, the *in situ* dynamic observations of these processes could

11 be relevant to the intracellular transformation of MoS_2 in the lysosome environment. The

12 scrolling process was not observed so far. On the other hand, while etching and oxidation

13 processes were expected as a consequence of the interaction of MoS_2 with the different ROS

14 and especially with H₂O₂, deepened structural insight was accessed into the etching and

15 oxidation processes. Considering that such intracellular fate of MoS₂ in alveolar macrophages

16 was associated with a rapid and concomitant resolution of the initial acute inflammation,

17 intracellular ROS could indeed be used by cells as a detoxification mechanism to pronounce

18 scrolling, etching, and oxidation and to significantly reduce the active surface area,

19 dimensions, and edge sites, where the presence of dangling bonds can be highly active

20 sites.^[58-60] This hypothesis is reinforced by our data showing the nanoscroll formation from

21 the edges and low surface oxidation.

22 2.3. 2D MoS₂ exerts transient oxidative stress and pro-inflammatory effects *in vitro*

23 To get deeper insight into the cellular effect of MoS₂ on the monocyte/macrophage system,

24 we investigated the inflammatory response of THP-1 cells, an in vitro model cell line of

25 human monocytes that can be also differentiated into macrophages. Particularly, THP-1 dual

26 reporter cells possess inducible reporter constructs allowing to investigate both NFkB (nuclear

27 factor kappa light chain enhancer of activated B cell) and interferon (IFN) inflammatory

28 pathway activation. NFkB is one of the key regulatory pathways in nanomaterial-induced

29 oxidative stress, which could lead to cell damage and apoptosis. Toll-like receptor 4 (TLR4)

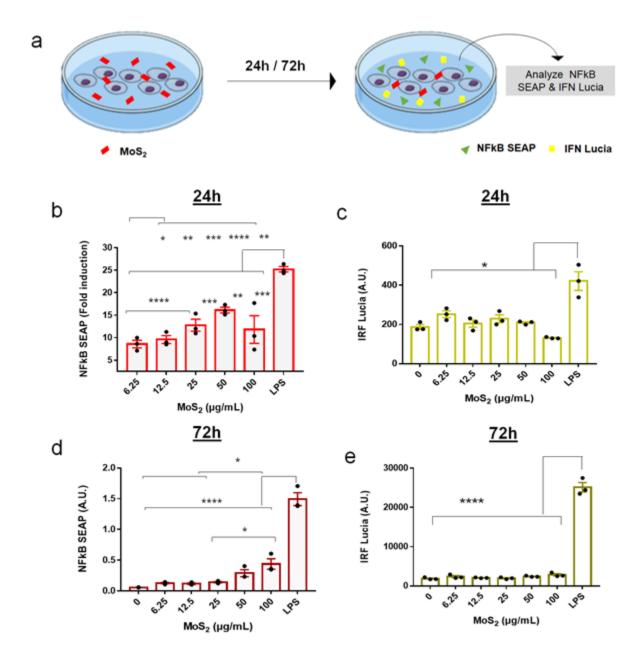
30 signaling initiates translocation of NFkB into the nucleus from the cytoplasm to induce gene

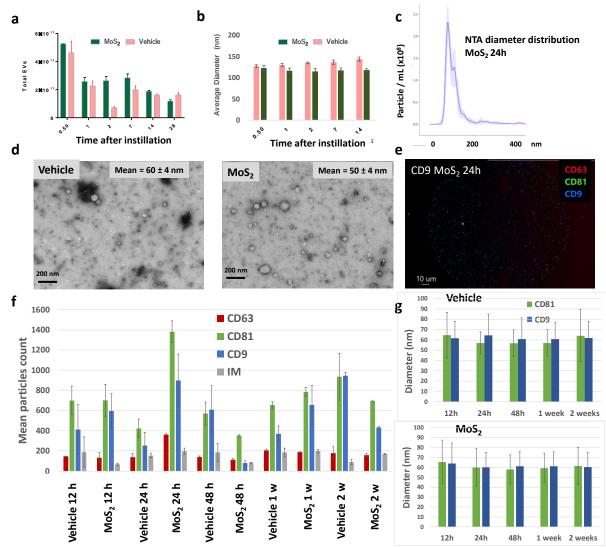
31 transcription contributing to the pattern of inflammatory gene expression. In addition, IFN

32 regulatory factor 3 (IRF3) is a crucial transcription factor implicated in promoting systemic

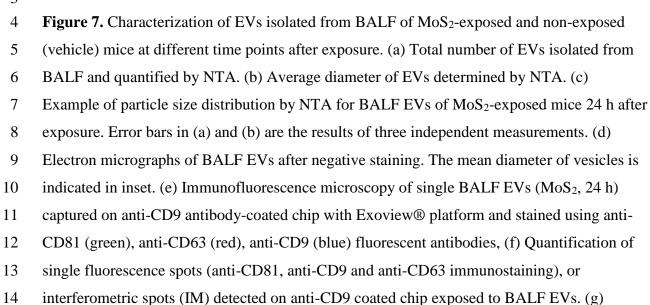
33 pro-inflammatory responses.

1 Firstly, the metabolic mitochondrial activities of THP-1 macrophages (Figure S8a) and THP1 2 dual monocytes were assessed by Alamar Blue assay after 24 h exposure to different 3 concentrations of MoS₂. None of the tested concentrations could directly affect the cell 4 metabolic activity. We thus examined the immunostimulatory activity of MoS_2 on THP-1 dual 5 monocytes. Positive controls of NFkB and IFN activation were represented by LPS exposed 6 cells in Figure 6. Dual THP-1 monocytes were exposed to MoS₂ nanosheets for 24 h to 72 h 7 (Figure 6a) inducing a concentration-dependent NFkB activation at 24 h post-exposure in a 8 significant manner (Figure 6b). Importantly, the dose-dependent NFkB activation was 9 reduced after 72 h incubation (Figure 6d). IFN pathway was instead not significantly triggered even at higher concentrations of MoS₂ (Figure 6c, e). Oxidative stress is one of the 10 11 key mechanisms by which inhaled particles mediate pulmonary inflammation. In vitro oxidative stress experiments were thus conducted using a 2',7'- dichlorofluorescein diacetate 12 13 (DCFH-DA) assay to measure intracellular ROS on THP-1 macrophages (Figure S9). We 14 observed increasing ROS generation due to the aging of macrophages over time, which was 15 however exacerbated by MoS₂ nanosheets (2 folds) at 24 h incubation. However, at later incubation time points, the increase of ROS generation over time was mitigated by MoS₂ (up 16 17 to 50% lower than for control) independently of the nanosheet concentration. These protective 18 effects on ROS generation together with the reduction at 72 h of NFkB activation suggest that 19 self-defense pathways and pro-resolutive mechanisms against inflammation could be 20 activated upon MoS₂ internalization, intrinsically related to the intracellular transformations 21 (scrolling, edging and oxidation) reported above. In particular, we evidenced with in situ 22 liquid phase STEM that oxidative species were used for scrolling and etching of MoS_2 23 nanosheets. It is known that the transcription of NFkB-dependent genes influences the levels 24 of ROS in the cells, and in turn, NF κ B activity can be regulated by the levels of ROS. Here 25 the interplay of NFkB signaling pathways, ROS generation, and consumption for MoS₂ 26 intracellular transformations can be considered as an efficient mechanism of defense against 27 MoS₂ nanosheet-induced cell injury. Such mechanisms of self-defense against nanoparticles through ROS-induced intracellular transformation and degradation into safer forms have been 28 demonstrated before for carbon nanotubes,^[31] and gold nanoparticles.³⁵ 29




Figure 6. (a) Schematic showing the experimental plan for determining the inflammatory
status of THP-1 dual monocytes upon MoS₂ treatment at different doses for 24 h or 72 h.
NFκB & IRF3 pathway induction were analyzed by quantifying NFκB SEAP (b, d) and IFN
Lucia (c, e) in the supernatant 24 h after incubation. The positive control was represented by
LPS-exposed cells for 24 h or 72 h. Statistical significance was calculated using one-way
ANOVA (Tukey's multiple comparison test). * represents p< 0.05; ** represents p< 0.005;
*** represents p=0.0005, and **** represents p<0.0001.

- . .
- 11


1 2.4. Alveolar extracellular vesicles as mediators of inflammation resolution

2 In the outcome of MoS₂ exposure, we noticed the presence of EVs released in BALF or by 3 alveolar macrophages, some of them containing transformed MoS₂ nanoparticles (Figures 2, 4 **3a** and **Figure S7**). EVs are recognized as key mediators in cell-to-cell communication in 5 response to xenobiotics and infection with the ability to shuttle biological signals playing a central role in lung inflammatory response.^[61] We and others also discovered that EVs 6 7 released by nanoparticle-exposed cells can transfer carbon nanotubes, iron oxide, gold or 8 titanium dioxide nanoparticles to naïve cells, with nanoparticle specific outcomes on recipient 9 cells.^[29,31,36] Hence we made the hypothesis that EVs in BALF could play a role in the dissemination and/or detoxification of MoS₂ from alveolar macrophages and could also 10 11 modulate the inflammation process in addition to soluble factors such as cytokines. In order to 12 investigate the role and quantity of EVs in BALF, EVs were isolated from BALF at different 13 time points after exposure using ultrafiltration (Figure 1b). EV concentration and size 14 distribution were determined by nanoparticle tracking analysis (NTA) (**Figure 7a**, **b**, **c**) 15 showing a decreasing number of BALF EVs with increasing time after inhalation, both in 16 MoS₂ exposed and non-exposed mice, and similar average EV sizes over time. NTA diameter 17 distribution ranged from 60 nm to 200 nm as illustrated in Figure 7c for BALF EVs from 18 MoS₂ exposed mice at 24 h. EVs were also observed by TEM with negative staining showing 19 a similar vesicular aspect in exposed and non-exposed mice and an average diameter of 50±4 20 nm for MoS₂ exposed mice compared to 60 ± 4 nm for control mice at 24 h (Figure 7d). Such 21 small EVs (<60 nm) observed by TEM are not detected by NTA and could contribute to an 22 unquantified proportion of the EV population. Overall, there was a tendency to lower sizes of 23 MoS₂ exposed BALF EVs compared to EVs of control mice. Specific transmembrane 24 tetraspanin markers of EVs were also characterized using the Exoview® platform, which 25 detects both the interferometric signal and fluorescence signal of EVs that bind to specific 26 antibody spots printed onto a microarray chip (Figure 7e-g). Figure 7e illustrates the specific 27 immuno-capture of EVs from BALF of MoS₂-exposed mice at 24 h on an anti-CD9 chip and 28 the presence of CD9 (blue), CD63 (red) and CD81 (green) tetraspanin markers stained by 29 their associated fluorescence antibody. Figure 7f displays the quantitative comparison 30 between the EV groups deposited on the chip at the same concentration based on NTA 31 measurement. All BALF EVs express CD9 and CD81 antibodies regardless of the time points 32 after exposure. We note a tendency towards a higher expression of CD9 and CD81 for BALF 33 EVs of MoS₂ at 24 h. The EV mean diameter determined from the interferometric signal on

- 1 anti-CD9 or anti-CD81 chip is consistent with the diameter determined by TEM around 60
- 2 nm whatever the conditions (**Figure 7g**).

3



Average diameter of BALF EVs captured on anti-CD9 or anti-CD81 chip and detected by
 interferometric signal.

3

4 To investigate the role of BALF EVs and the intercellular communication in the modulation 5 of inflammation, we tested the inflammatory NFkB and IFN pathways of Dual THP-1 6 monocytes in response to BALF EV exposure. We first examined the impact of BALF EVs 7 on THP-1 Dual monocytes (1×10^9 EVs for 80000 cells) in the absence of inflammatory 8 activation (Figure 8a). Positive control corresponds to LPS-exposed cells. The results 9 indicate that the NFkB pathway in THP-1 monocytes was activated by BALF EVs at 10 intermediate time-points (2 and 7 days) (Figure 8b), but not the IFN pathway (Figure 8c). 11 However, the data point out a tendency towards reduced NF κ B activation effect of EVs from 12 MoS₂-exposed mice compared to control EVs in the first two weeks after MoS₂ exposure. 13 Next, we tested the effect of the same EV dose incubated for 4 h on THP-1 dual monocytes 14 before subsequent activation by LPS for 24 h mimicking inflammatory insult (Figure 8d). 15 Interestingly, in comparison with LPS alone, the pre-treatments with EVs from MoS₂-exposed 16 mice at 12 h and 24 h post-exposure significantly counteract the inflammatory effect of LPS 17 (Figure 8e, f). This anti-inflammatory effect was not observed at these early time-points with 18 EVs of non-exposed mice. The inflammatory inhibition activity of EVs from MoS₂ exposed 19 mice could reach 50 % for NFkB activation in comparison to non-exposed mice (Figure 8e). 20 Similarly, there was a significant reduction in IFN pathway activation at the early time points 21 in comparison to non-exposed mice (Figure 8f). It is important to note that this defense 22 mechanism mediated by EVs from exposed mice is particularly revealed in combination with 23 external stress such as LPS, but less in bare treatment with EVs alone on inactivated 24 monocytes. This reveals that EVs from MoS₂-exposed mice can exert anti-inflammatory 25 properties that are particularly potent at 12 h and 24 h after exposure compared to the control 26 mice. Although EVs from exposed and non-exposed mice have a similar concentration in 27 BALF and share rather similar morphology, sizes, and tetraspanin markers (except at the 24 h 28 time-point), nanoparticle insult changes the immunomodulatory properties of BALF EVs on 29 monocytes *in vitro*. This suggests that EVs in BALF (some of them with MoS₂ cargo) could 30 also play a role *in vivo* in driving inflammation resolution and re-establishing the homeostasis 31 via transfer of EV-mediated defense machinery. As we observed MoO₃ fragments as well as 32 partially or totally scrolled MoS₂ nanosheets in EVs found close to the alveolar macrophages 33 by electron microscopy, we cannot exclude that molybdenum EV cargo could shape the EV 34 immunomodulatory properties. Exocytosis efflux of MoS₂ nanosheets from cancer cells was

- 1 previously observed, and an anti-exocytosis strategy could enhance the anti-cancer
- 2 photothermal efficacy of MoS₂ nanosheets both *in vitro* and in cancer model *in vivo*.^[62]
- 3 Moreover, it was reported that Raman spectroscopy follow-up of the fate of MoS₂ nanosheets
- 4 in macrophages pointed out an increase in the production of lipid bodies as a mechanism of
- 5 defense following exposure to MoS₂.^[63] However, we could not detect molybdenum traces by
- 6 EDX in EVs retrieved from BALF at the different time points, indicating the scarcity of
- 7 molybdenum cargo in EVs. Therefore, it is more likely that the majority of EVs in BALF do
- 8 not transport MoS₂ nanosheets or their degradation products but are reshaped in their
- 9 molecular content to exert anti-inflammatory properties in response to MoS₂ exposure.

1 Figure 8. (a) Experimental design to assess the modulation of inflammatory pathway in THP-2 1 dual monocytes by BALF EVs. EVs from BALF of MoS₂ exposed and non-exposed 3 (vehicle) mice at different time points after exposure were incubated for 24 h with THP-1 dual 4 monocytes and the NFkB & IRF3 pathway induction were analyzed by quantifying NFkB 5 SEAP (b) and IFN Lucia (c) in the conditioned medium. The positive control consists of 6 THP-1 monocytes activated by LPS for 24 h. (d) Experimental design to assess the role of 7 BALF EVs in regulating inflammation induced by LPS. EVs were first incubated with THP-1 8 dual monocytes for 4 h and rinsed before activation by LPS for 24 h and quantification of 9 NFkB SEAP (e) and IFN Lucia (f) in the conditioned medium. LPS control represents THP-1 10 activated with LPS for 24 h without pre-incubation with EVs. Statistical significance was 11 calculated using one-way ANOVA (Tukey's multiple comparison test).

12

13 **3. Conclusion**

14 In conclusion, we have examined the inflammatory status of the lungs of healthy mice up to 15 one month after a single inhalation of MoS₂ nanosheets. We have proposed an integrated 16 multiscale approach following simultaneously the fate and biotransformation of MoS₂ flakes 17 at the nanoscale in the lung environment and the biological response to the nanoparticle 18 exposure by a comprehensive analysis of BALF components. Our study demonstrates that 19 MoS₂ nanosheets at a dose of 50 µg stimulate a rapid initiation of an acute inflammation, 20 followed by its fast resolution in mouse lungs a few days after administration. BALF has been 21 analyzed up to one-month post-exposure, showing the fast decrease of neutrophil population 22 and persistent biotransformed molybdenum-containing nanostructures in alveolar 23 macrophages and extracellular vesicles. To get insight into the dynamics of MoS_2 intracellular 24 biotransformation at the nanoscale, in situ liquid phase STEM experiments were performed 25 revealing three different ROS-dependent transformation mechanisms, consistent with the 26 observation of nanostructure transformation in alveolar macrophages and EVs: 1) scrolling of 27 the dispersed sheets leading to the formation of nanoscrolls and folded sheets; 2) etching 28 releasing soluble degradation products in solution, most likely oxide ions (MoO_4^-) ; and 3) 29 oxidation generating oxidized fragments. These mechanisms are representative of some of the 30 various transformation products depicted from *in vivo* observations. Such direct and dynamic 31 observation of the scrolling, etching and oxidation processes of MoS_2 nanosheets in a 32 biological mimicking environment provides a direct insight into the intracellular processing of 33 such 2D materials. It also suggests that the biotransformation processes rapidly consume 34 reactive oxygen species in an attempt to manage cytotoxicity and withstand the internalization

- of MoS₂ by alveolar macrophages transforming the nanosheets into less reactive and probably
 safer forms while resolving inflammation.
- 3 Besides, it is still not clear if the transformed nanosheets are eliminated from the lung in the long term and what would be the outcome of a repeated or chronic exposure in the lung, and 4 5 in the organs of the reticuloendothelial system, for example in the liver. Cao et al. have shown 6 that the biotransformation of MoS₂ nanodots leads to incorporation of molybdenum into 7 molybdenum enzymes, increasing their specific activities in the liver. This behaviour suggests 8 that long-term biotransformation of nanomaterials may have undesired effects on the 9 metabolism of this organ.^[18] Our study only focused on the primary response of lung to a single dose of MoS₂ as we observed this rapid resolution of inflammation and the unexpected 10 11 pro-resolving roles of EVs. Further studies are needed to explore the impact of repeated 12 exposure to MoS₂ and long-term effects (up to 6 months), to acquire more information on the 13 risk assessment (e.g., toxicity, pro-inflammatory effect, systemic effect, etc.) concerning 14 potentially exposed people. 15 The present study cannot conclude on the innocuity of the material or even on its long-term
- 16 fate. However, we have evidenced unprecedented mechanisms of intracellular
- 17 biotransformations and exportation via EVs of immunomodulatory signals from nanoparticle-
- 18 exposed cells. It might happen that under repeated exposure and/or higher doses, those
- 19 mechanisms of nanoparticle transformation and inflammation regulation, that are efficient
- 20 after a single exposure in our experimental set up to resolve inflammation, could be
- 21 overwhelmed. Nevertheless, such mechanisms are important to better understand the
- 22 processing of such nanoparticles and eventually promote them.
- 23 In a different context, complex systems containing MoS₂ sheets were demonstrated to
- 24 provoke inflammatory responses eventually exploited to trigger oxidative damages on
- 25 bacteria or cancer cells towards the development of efficient antibacterial and cancer
- 26 therapies.^[64, 65] Scrolling MoS₂ sheets in biomimetic and biological media could be harnessed
- 27 for future applications. Further studies enquiring on the stability of the nanoscrolls should be
- 28 conducted to prove that this can constitute a protective mechanism of the structure and be at
- 29 the source of the inertness of the materials. In addition to intracellular transformation, we also
- 30 highlighted the role of EV release in resolving the inflammatory environment in the lungs.
- 31 EVs from BALF of MoS₂-exposed mice share most of the EV characteristics in terms of sizes
- 32 and tetraspanin exposure with the EVs of non-exposed mice, but show more potent protective
- 33 effect against inflammation, particularly at the early time points after exposure. The secretion
- 34 of EVs has been proposed as a protective mechanism to prevent autophagy and lysosomal

1 dysfunction. EVs play a major role in disposing of the pathogenic protein load in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.^[33] In addition. 2 3 EVs can also bind to the extracellularly released pathogenic cargo and facilitate their uptake 4 by phagocytic cells. Although we did not quantify to what extent EVs can shuttle the MoS_2 5 nanosheets or their degradation products and contribute to their propagation or clearance, we 6 have shown that BALF EVs are reshaped by this 2D material to exert anti-inflammatory 7 effects. This can be an alternate pathway to dispose of the nanomaterials and/or restore 8 homeostasis in the lung environment. Our results open also interesting perspectives to better 9 know how the intracellular processing of nanoparticles and the generation of pro-resolving 10 EVs are linked and might participate as defense mechanisms developed by cells to manage 11 different types of nanomaterials. Moreover, future studies need to focus on the EV packaging 12 and specific cargo as function of the (nanoparticle) inflammatory stimulus and decipher their 13 role in the inflammation resolution. Finally, our study serves as a preliminary proof to further 14 consolidate the usage of EVs as a therapeutic option, and would help as first-of-kind study to 15 demonstrate the role of nanoparticle-induced EVs in anti-inflammatory applications.

16

17 **4. Experimental Section**

18 Synthesis & characterization of 2D MoS₂ nanoparticles. Layered MoS₂ was obtained through 19 liquid phase exfoliation of bulk MoS₂ crystals in an aqueous solution of bile salts. Bulk MoS₂ 20 (400 mg, Sigma-Aldrich) was firstly well mixed with bile salts (200 mg, Sigma-Aldrich) via ball milling (3 h). Exfoliation of MoS₂ was then carried out directly in MilliQ[®] water (200 21 mL) through bath sonication for 2 h in an ice bath. The resulting dispersion was centrifuged at 22 23 1500 rpm (402 rcf) for 90 min to remove the bulk MoS_2 . The supernatant containing the exfoliated layers of MoS₂ was collected and filtered on a 0.2 µm cut-off membrane. The filter 24 25 cake was washed with the mixture of water/EtOH (v/v=1:1) for 3 times and MilliQ[®] water for five times to remove the excess of bile salts. The solid was then sonicated for 10 min in 10 26 mL of MilliQ[®] water to obtain the final MoS₂ aqueous dispersion at a concentration of 0.15 27 28 mg/mL. The morphology and the lateral size dimension of 2D MoS₂ were studied by TEM 29 (JEM-2010F, JEOL, Japan). UV-Vis absorption spectrum was recorded on a Cary 5000 UV-30 Vis-NIR spectrophotometer and was corrected for the baseline and the solvent. 31 Thermogravimetric analyses were performed on a TGA1 (Mettler Toledo) with a ramp of 32 10°C/min under N₂ using a flow rate of 50 mL/min and platinum pans. Zeta-potential 33 measurements were performed on a Beckman Coulter "Delsa Nano Submicron Particle Size 34 and Zeta Potential" instrument, working at ambient conditions. 2D MoS₂ was dispersed at 20

µg/mL in MilliQ[®] water. Raman spectra were recorded under ambient conditions using a
 Renishaw invia spectrometer with a 532 nm laser. The samples were prepared by simply drop
 casting the dispersions onto an SiO₂-Si substrate. XPS was performed using Thermo
 Scientific KAlpha X-ray spectrometer with a mono X-Ray source Al Kα excitation (1486 eV).

6 Intratracheal instillation of nanoparticles in mice. In vivo experimental procedures were 7 approved by the C2EA – 26J Ethics Committee in Animal Experimentation of IRCIV, under 8 the protocol APAFIS #21089-2019061714166305 v1. Eight-to-ten-week-old healthy male 9 C57BL/6JRj mice (Janvier Laboratories, Saint-Berthevin, France) were used in this study. 10 Mice were exposed to MoS₂ nanosheets by intratracheal instillation using a MicroSprayer® 11 Aerolizer system (MicroSprayer Aerozolizer-Model IA-1C and FMJ-250 High Pressure 12 Syringe, Penn Century, Wyndmoor, PA). A volume of 50 µL of 5% glucose (vehicle) or with 13 a suspension containing 1 mg/mL of MoS₂ in 5% glucose was nebulized in each mouse. The administered dose was based on the work by Wang et al,^[66] that assessed lung exposure 14 in workplaces manufacturing well known NPs.^[67,68] Supposing a human exposure of 8 h/day, 15 5 day per week for 4 months, the authors estimated a total exposure of 92 mg which is 16 17 equivalent to 903 μ g/m² in the lung. Thus, after transposition to the mouse, we choose a dose 18 of 2 mg/kg administrated by a single intratracheal instillation of a quantity of 50 µg of 19 NPs/25g mice. This choice is also motivated by the lack of official limit values for these 20 specific nanomaterial's inhalation exposure observed in human. For the nebulization, mice 21 were suspended by the upper teeth at a 45° angle, in the supine position, on an intubation 22 platform (Hallowell EMC, Pittsfield, MA). The mouth was opened, and the tongue was 23 displaced with the help of a forceps and a mouse intubation speculum (Hallowell EMC) 24 attached to an otoscope (WelchAllyn Inc., Skaneateles Falls, NY) was inserted for 25 oropharyngeal visualization. Once a clear view of the trachea was obtained, with the 26 visualization of the vocal cords, the MicroSprayer tip was endotracheally inserted and 50 µL 27 of the solution or suspensions were sprayed. The tip was withdrawn and the mouse was taken 28 off the support and allowed to recover under visual control before being placed back in the 29 cage. Mice (n=3-8/group) were euthanized at different time points after a single nebulization 30 (0.5 to 28 days) and the bronchoalveolar lavage fluid was collected.

31

Bronchoalveolar lavage fluid collection. BALF was collected at different times points (0.5, 1,
2, 7, 14, and 28 days) to analyze cellular and biochemical inflammatory and toxicity markers,
cellular uptake of nanoparticles and EVs. The procedure was performed under anesthesia with

1 a mix of xylazin and ketamin at a final concentration of 1 mg/ml. Briefly, the trachea was 2 surgically exposed and a small incision was made between tracheal rings to allow the 3 insertion of a polyethylene tube attached to a 21G syringe needle, which was secured with a 4 suture thread. Then, the lungs were instilled with saline ice-cold saline solution. The first two 5 lavages (300 and 400 µL) were collected in a 1.5 mL tube and 6 other lavages (700 µL each) 6 in a 15 mL tube, which rendered about 5 mL of BALF. After centrifugation at 500 g for 10 7 min at 4°C, the supernatant from the first two lavages was stored at -20°C for later 8 biochemical analysis, and the cell pellets were pooled and resuspended in 500 µL of saline 9 solution for cell count, using Trypan Blue.

10

11 Inflammatory cell counts in BALF. Differential cell count was performed after a cell aliquot 12 from BALF (50 000 cells) was smeared onto slides using Cytospin-4 cytocentrifuge 13 (ThermoFisher Scientific, Saint Aubin, France) at 600 rpm for 10 min, with a break, at room 14 temperature. Cytoslides were stained using the Pappenheim coloration method, with May-15 Grunwald and Giemsa staining solution (Sigma, Saint-Quentin Fallavier, France), according 16 to the manufacturer's instructions. Then, 400 total cells were manually counted by optical 17 microscopy. Macrophages, neutrophils, eosinophils, basophils, and lymphocytes were 18 identified by their characteristic shapes. Light microscopic images of stained cells were taken 19 with a Leitz Diaplan microscope (Leica Microsystems Wetzlar GmbH, Wetzlar, Germany). 20

21 Total protein concentration in BALF. Total protein content in BALF was measured 22 spectrophotometrically at 595 nm according to the Bradford method using bovine serum 23 albumin as standard. The manufacturer's protocol for Bio-Rad Protein Assay (Bio-Rad 24 Laboratories GmbH, Munich, Germany) performed on microtiter plate was followed, and 25 each sample was run in triplicate.

26

27 Cytokine array assay. Cell-free BALF of MoS₂ exposed and unexposed mice were processed 28 to assess the levels of various cytokines using the RayBiotech mouse cytokine antibody array 29 C3 (RayBiotech, Tebu-Bio, Le Perray-en-Yvelines, France) according to the manufacturer's 30 instructions. This assay was performed on the BALF pool sample (2-3 BALF from 2-3 mice 31 of the same exposure group were pooled together at (120 µg) final quantity). Briefly, BALF 32 pool samples were added to antibody-coated membranes, and detection of immunoreactive 33 cytokines was performed after sequential incubations of the membranes with biotinylated 34 anti-cytokine antibodies and streptavidin-horseradish peroxidase and visualization by

enhanced chemiluminescence. Images were obtained using a ChemiDoc[™]Touch Imaging
 system (Bio-Rad Laboratories). Semiquantitative analysis by densitometry was performed on
 captured images using Gilles Carpentier's Dot-Blot-Analyzer macro on ImageJ (The macro is
 available at http://rsb.info.nih.gov/ij/macros/toolsets/Dot%20Blot%20Analyzer.txt). Spots of
 interest were normalized to an internal positive control after subtraction of representative
 background sample.

7

8 Cell isolation from BALF and transmission electronic microscopy (TEM) characterization. 9 Cell aliquot from BALF of mice exposed or not to MoS₂ and sacrificed at different time 10 points were seeded onto 6 well plates with complete RPMI medium. After culturing for 12 h, 11 the medium was replaced with fresh RPMI to isolate only the alveolar macrophages (AM) 12 that adhered on the culture flask. For ex vivo exposure studies, alveolar macrophages from 13 non-exposed mice were treated with 20 µg/mL MoS₂ for 12 h followed by PBS wash. Then, 14 cells were fixed with 5% glutaraldehyde (Sigma Aldrich, St. Louis, MO, USA) in 0.1 M 15 cacodylate buffer (Sigma Aldrich, St. Louis, MO, USA) for 1 h at room temperature followed 16 by preservation of cells samples in cacodylate buffer. The cells were treated with 1% osmium 17 tetroxide followed by gradient ethanol dehydration. Samples were sectioned and observations 18 were performed using a Hitachi HT7700 microscope (Plateforme Microscopie et Imagerie des 19 micro-organismes, animaux et aliments 2 [MIMA2], UMR1313, INRAE/AgroParis Tech, 20 Jouy-en-Josas, France) operating at 80 kV.

21

Extracellular vesicle isolation from BALF. EVs from BALF were isolated following a 22 23 previous protocol.^[69] Briefly, BALF isolated from mice of a similar group were pooled to a 24 final volume of 8 mL and centrifuged at 400g for 5 min to remove dead cells and debris. The 25 supernatant was centrifuged at 1500g for 5 min, and the supernatant was filtered using a 0.2 26 µm syringe filter and stored in ice before isolation. The Amicon Ultra 15 centrifugal filter 27 (100kDa) (Merck, KGaA, Darmstadt, Germany) was equilibrated with PBS at 1500g for 5 28 min. After discarding the PBS, the filter unit was placed with the BALF sample and 29 centrifuged at 3000g for 30 min, and the BALF EVs were collected and resuspended in 1 mL 30 PBS and stored at -80°C.

31

BALF EV characterization. EVs isolated were characterized using Nano Tracking Analysis
 (NTA) instrument (Nanosight NT300, Malvern, UK) for particle concentration determination
 and size distribution. Samples were diluted with sterile PBS and measurements were made

1 once EVs were around 100 events per frame, and averaged based on five videos of 0.5 min 2 each. For TEM observation, EV samples were directly adsorbed onto a carbon film membrane 3 on a 300-mesh copper grid, stained with 1% uranyl acetate, dissolved in distilled water, and 4 dried at room temperature. Grids were examined with a Hitachi HT7700 electron microscope 5 operated at 80kV (Milexia – France), and images were acquired with a charge-coupled device 6 camera (AMT). EV preparations were analyzed by the ExoView® platform (NanoView 7 Biosciences, USA). ExoView® enables the characterization of single EVs captured on a 8 silicon chip layered with an array of antibody spots, anti-CD9 and anti-CD81 for mouse EVs. 9 Interferometric imaging provides size measurements of immobilized particles down to 50 nm, 10 in combination with immunostaining with three fluorescent antibodies targeting 11 transmembrane tetraspanin (anti-CD9, anti-CD63, anti-CD81). All samples were diluted in 12 PBS with 0.05% Tween-20 (PBS-Tw). The samples were incubated on the ExoView 13 Tetraspanin Chip for mouse EVs and placed in a 24-well plate for 16 h at room temperature. 14 The chips were washed 3 times with PBS-Tw. Chips were then fixed and directly incubated 15 with ExoView Tetraspanin Labelling antibodies that consist of anti-CD81 Alexa Fluor®555, 16 anti-CD63 Alexa Fluor®647, and anti-CD9 Alexa Fluor®488. The antibodies were diluted at 17 1:5000 in PBS-Tw with 2% BSA. The chips were incubated with 250 µL of the labeling 18 solution for 2 h, washed in ultrapure water, and dried. The chips were then imaged with the 19 ExoView R100 reader using the ExoScan 2.5.5 acquisition software. The data were analyzed 20 using ExoViewer 2.5.0 with fluorescence thresholds set to detect a maximum of 20 events on 21 the isotype control spots.

22

23 In vitro differentiation of THP-1 monocytes into macrophages. We used THP-1 DualTM 24 monocyte cell line (InvivoGen, San Diego, CA, USA), dual reporter cell line which can 25 investigate simultaneous NF-KB signal transduction pathway and IFN pathway via secreted 26 alkaline phosphatase (SEAP) and Lucia luciferase activity, respectively. THP-1 monocytes 27 (InvivoGen, San Diego, CA, USA) were grown with RPMI 1640 (Gibco, Amarillo, TX, 28 USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL 29 Penstrep, 100 µg/mL normocin, 10 µg/mL blasticidin, and 100 µg/mL zeocin. Cells were 30 cultured at 37 °C in humidified cell culture incubator with 5% CO₂. THP-1 macrophages were 31 differentiated from monocytes to using phorbol 12-myristate 13-acetate (PMA) (Sigma, St. 32 Louis, MO, USA). Briefly, 80000 THP-1 monocytes were incubated with 10 ng/mL of PMA 33 for 48 h, where PMA (10 ng/mL) was being replenished after 24 h. After 48 h, THP-1

1 differentiated macrophages were attached to a cell plate and cultured with fresh RPMI media 2 as mentioned above.

3

4 Investigation of inflammatory pathway in vitro in THP-1 monocytes. THP-1 monocytes were 5 grown with supplemented with 10 % heat-inactivated fetal bovine serum (FBS), 100 U/mL 6 penstrep, 100 µg/mL normocin, 10 µg/mL blasticidin, and 100 µg/mL zeocin. Cells were 7 cultured at 37 °C in humidified cell culture incubator with 5% CO₂. Eighty-thousand THP-1 8 monocytes cells were seeded onto a 96-well plate for 24 h and then treated with 9 predetermined concentrations of MoS₂ for 24 h and 72 h. Then, MoS₂ containing medium was 10 removed and cells were rinsed with PBS, followed by centrifugation of 400 g for 5 min. The 11 cells were replenished with complete DMEM media (10 % heat inactivated fetal bovine serum 12 (FBS), 100 U/mL penstrep) for 24 h. The supernatant from the cell plate was utilized for 13 measurement of NFkB and IFN induction. 20 µL of the supernatant was incubated with 180 14 µL of QUANTI-Blue solution per well in a 96 well plate for 3 h at 37 °C. The NFkB 15 induction was determined by measuring SEAP levels using SpectraMax iD3 multimode plate 16 reader (Molecular Devices, CA, USA) at 655 nm. To measure IFN induction, 10 µL of the 17 sample was incubated with 50 µL of QUANTI-Luc solution per well in a 96 well plate 18 (opaque) and the luminescence was measured using SpectraMax iD3 multimode plate reader 19 (Molecular devices, CA, USA) with an integration time of 400 ms.

20

21 Alamar Blue assay. Cell mitochondrial metabolic activity was measured by Alamar Blue 22 assay. THP-1 differentiated macrophages in a 96-well plate were treated with predetermined 23 concentrations of MoS₂ for 24 h. Cells were then washed with fresh PBS followed by 24 incubation with Alamar blue solution (10% v/v) (Thermo Fisher Scientific, MA, USA) in 25 phenol red-free media. After 3-4 h of incubation, the conditioned medium was transferred to a 26 fresh plate for measuring the fluorescence intensity (560/590 nm-excitation/emission). 27 Untreated cells and Triton X (0.3%) served as negative and positive controls respectively. 28 Similarly, Alamar blue assay was performed on THP-1 dual monocytes exposed to different 29 concentrations of MoS₂.

30

31 In vitro cellular assay for measuring oxidative stress. A cell-permeable intracellular ROS

32 probe 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma, St. Louis, MO, USA)

33 that converts to fluorescent DCF in presence of ROS was utilized for the assay. THP-1

34 derived macrophages in a 96-well plate were treated with predetermined concentrations of MoS₂ for 4, 24, 48, and 72 h. Then, cells were washed with PBS to remove MoS₂ followed by
DCFH-DA (100 µM/well) treatment for 40 min in serum-free DMEM media. Then, cells
were washed and, replenished with fresh PBS for 30 min incubation in the cell incubator.
After 30 min, cells were analyzed for DCF fluorescence (485 nm/ 530 nm-excitation/emission
wavelengths). Untreated cells and LPS (100 ng/mL) served as negative and positive controls
for oxidative stress respectively.

7

8 Immunomodulatory effect of BALF EVs on THP-1 dual cells. The inflammatory status of 9 THP-1 monocytes treated or not with BALF EVs was measured. Eighty-thousand THP-1 monocytes were treated with 1×10^9 EVs (particle count measured by NTA) from different 10 BALF groups for 24 h in a 96-well plate. Then the NFkB and IFN induction pathways were 11 12 quantified as mentioned above. Alternatively, THP-1 monocytes were treated with 1×10^9 EVs 13 for 4 h, followed by EVs wash and replenished with culture media supplemented with LPS 14 (200 ng/ml) for 24 h. The cell supernatant was measured for NFkB and IFN induction 15 pathways were quantified as mentioned above. Untreated cells and LPS (200 ng/mL) served 16 as negative and positive controls.

17

18 Liquid-cell scanning transmission electron microscopy. TEM experiments were performed on 19 a double corrected JEOL ARM 200F microscope equipped with a cold field emission electron 20 source and a JEOL 2100F plus microscope with a LaB6 filament source. We used a 200 kV 21 acceleration voltage in both microscopes. For the *in situ* liquid observations, a protochips 22 liquid cell holder (Poseidon Select) was used. The liquid is enclosed at the tip of the holder by 23 two silicon microchips with dimensions of 2×2 mm and 4.5×6 mm, known as bottom and top 24 E-chips respectively. Each E-chip has one 550×50 µm window covered by a 50 nm thick SiN amorphous film.^[70, 71] A dispersion of MoS₂ nanosheets at 1 mg/mL was sonicated for 15 min 25 26 before re-dispersing 10 µL in 100 µL of H₂O₂ 10 mM prepared in DPBS (Dulbecco's 27 phosphate-buffered saline) solution. 1 μ L drop of the MoS₂-H₂O₂-DPBS dispersion was 28 placed over the bottom observation window. Immediately after the cell was closed by the top 29 chip and loaded into the microscope. The solution of 10 mM H₂O₂-DPBS was continuously 30 flushed into the observation chamber at 5 µL/min. After in situ experiments the e-chips were 31 recovered, dry out, and analyzed by energy-dispersive X-ray spectroscopy (EDX), high-32 resolution TEM (HR-TEM), and selected area electron diffraction (SAED). 33

- 55
- 34

1 2

Supporting Information

3

4 Acknowledgements

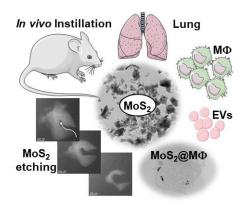
5 We gratefully acknowledge the financial support of the ANR (Agence Nationale de la 6 Recherche) for the project CycLys-18-CE09-0015-01, the French National Research Program 7 for Environmental and Occupational Health of the Anses (Agence nationale de sécurité 8 sanitaire de l'alimentation, de l'environnement et du travail) (2018/1/007). This work was 9 supported by the IdEx Université Paris Cité, ANR-18-IDEX-0001 (IVETh plateform), by the 10 Region Ile de France under the convention SESAME 2019 - IVETh (EX047011) (IVETh 11 plateform), the convention and the convention SESAME E1845 for the JEOL ARM 200F 12 electron microscope installed at the Université Paris-Cité, by the Region Ile de France and 13 Banque pour l'Investissement (BPI) under the convention Accompagnement et transformation des filières projet de recherché et développement N° DOS0154423/00 & DOS0154424/00 14 15 (IVETh platform). This work has benefited from the facilities and expertise of MIMA2 -16 Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France 17 (MIMA2: https://doi.org/10.15454/1.5572348210007727E12). This work was partly 18 supported by the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-19 10-IDEX-0002) within the program Investissement d'Avenir. We wish to acknowledge the 20 Centre National de la Recherche Scientifique (CNRS) and the International Center for 21 Frontier Research in Chemistry (icFRC). The authors wish to thank Shi Guo for helping with 22 the XPS characterization, Cathy Royer from the "Plateforme Imagerie In Vitro de l'ITI 23 Neurostra", CNRS UAR 3156, University of Strasbourg (Strasbourg, France) for TEM 24 analyses, Jean Philippe Herbeuval for providing the THP-1 dual cells, Catherine CAILLEAU 25 from IGPS for technical assistance in animal experiments and Claudie Delomenie from IPSIT 26 for transcriptomic experiments S. Peng is indebted to the Chinese Scholarship Council for 27 supporting her PhD secondment at the University of Strasbourg and K. Cherukula to the 28 Fondation ARC pour la Recherche sur le Cancer for his post-doctoral funding 29 (pdf20190509134). N. Ortiz Peña and K. Cherukula contributed equally to this work. 30 31 Received: ((will be filled in by the editorial staff))

32 Revised: ((will be filled in by the editorial staff))

33 Published online: ((will be filled in by the editorial staff))

- 1 References
- 2 [1] K. Kalantar-zadeh, J. Z. Ou, T. Daeneke, M. S. Strano, M. Pumera, S. L. Gras, Adv.
- *3 Funct. Mater.* **2015**, *25*, 5086–5099.
- 4 [2] Z. Wang, W. Zhu, Y. Qiu, X. Yi, A. Von dem Bussche, A. Kane, H. Gao, K. Koski, R.
- 5 Hurt, Chem. Soc. Rev. 2016, 45, 1750–1780.
- 6 [3] Z. Huang, B. Liu, J.Liu, *Langmuir* **2019**, *35*, 9858–9866.
- 7 [4] S. Karunakaran, S. Pandit, M. De, *ACS Omega* **2018**, *3*, 17532–17539.
- 8 [5] N. Asefifeyzabadi, R. Alkhaldi, A. Z. Qamar, A. A. Pater, M. Patwardhan, K. T.
- 9 Gagnon, S. Talapatra, M. H. Shamsi, ACS Appl. Mater. Interfaces 2020, 12, 52156–52165.
- 10 [6] H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang, C. Zhang, *New J. Chem.* 2015, *39*, 8492–
 11 8497.
- [7] S. Tezuka, T. Seki, T. Ohnishi, H. Noguchi, M. Tanaka, M. Okochi, Y. Hayamizu, 2D
 Mater. 2020, 7, 024002.
- 14 [8] G. Zeng, T. Chen, L. Huang, M. Liu, R. Jiang, Q. Wan, Y. Dai, Y. Wen, X. Zhang, Y.
- 15 Wei, J. Taiw. Inst. Chem. Eng. 2018, 205–213.
- 16 [9] X. Zhang, J. Wu, G. R. Williams, S. Niu, Q. Qian, M.-L. Zhu, Coll. Surf. B,
- 17 *Biointerfaces* **2019**, *173*, 101–108.
- 18 [10] K. Zhang, Y. Zhuang, W. Zhang, Y. Guo, X. Liu, Drug Deliv. 2020, 27, 909–916.
- 19 [11] V. Yadav, S. Roy, P. Singh, Z. Khan, A. Jaiswal, *Small* **2019**, *15*, 1–33.
- 20 [12] M. K. Jana, C. N. R. Rao, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374.
- 21 [13] P. Shah, T. N. Narayanan, C.-Z. Li, S. Alwarappan, Nanotechnology 2015, 26,
- 22 315102.
- 23 [14] J. H. Appel, D. O. Li, J. D. Podlevsky, A. Debnath, A. A. Green, Q. H. Wang, J. Chae,
- 24 ACS Biomater. Sci. Eng. 2016, 2, 361–367.
- 25 [15] J. Hao, G. Song, T. Liu, X. Yi, K. Yang, L. Cheng, Z. Liu, Adv. Sci. 2017, 4, 1600160.
- 26 [16] Z. Wang, A. Von dem Bussche, Y. Qiu, T. M. Valentin, K. Gion, A. B. Kane, R. H.
- 27 Hurt, Environ. Sci. Technol. 2016, 50, 7208–7217.
- 28 [17] B. Domi, K. Bhorkar, C. Rumbo, L. Sygellou, S. N. Yannopoulos, R. Quesada, J. A.
- 29 Tamayo-Ramos, *Nanotechnology* **2020**, *31*.
- 30 [18] M. Cao, R. Cai, L. Zhao, M. Guo, L. Wang, Y. Wang, L. Zhang, X. Wang, H. Yao, C.
- 31 Xie, Y. Cong, Y. Guan, X. Tao, Y. Wang, S. Xu, Y. Liu, Y. Zhao, C. Chen, Nat.
- 32 Nanotechnol. **2021**, *16*, 708–716.
- 33 [19] R. Kurapati, L. Muzi, A. Perez Ruiz de Garibay, J. Russier, D. Voiry, I. A. Vacchi, M.
- 34 Chhowalla, A. Bianco, Adv. Funct. Mater. 2017, 27.

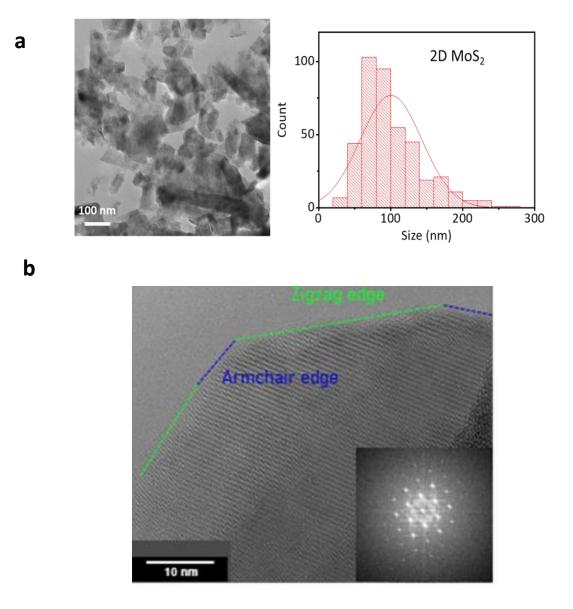
- 1 [20] X. Chen, S. M. Shinde, K. P. Dhakal, S. W. Lee, H. Kim, Z. Lee, J. H. Ahn, NPG Asia
- 2 *Mater.* **2018**, *10*, 810–820.
- 3 [21] X. Chen, Y. J. Park, M. Kang, S. K. Kang, J. Koo, S. M. Shinde, J. Shin, S. Jeon, G.
- 4 Park, Y. Yan, M. R. MacEwan, W. Z. Ray, K. Mi Lee, J. A. Rogers, J. Hyun Ahn, Nat.
- 5 *Commun.* **2018**, *9*, 1–12.
- 6 [22] H. Zhao, W. Wu, X. Zhang, Q. Zhu, J. Tang, H. He, G. Chen, J. Qin, Chemosphere
- 7 **2021**, *269*, 128709.
- 8 [23] I. Marie, J.-F. Gehanno, M. Bubenheim, A.-B. Duval-Modeste, P. Joly, S. Dominique,
- 9 P. Bravard, D. Noël, A.-F. Cailleux, J. Benichou, H. Levesque, J-P. Goullé, Autoimmun. Rev.
- 10 **2017**, *16*, 223–230.
- 11 [24] G. Filler, V. Belostotsky, M. Kobrzynski, S. H. S. Huang, L. Yang, Clin. Nephrol.
- 12 **2017**, *88*, 79–85.
- 13 [25] W. Z. Teo, E. L. K. Chng, Z. Sofer, M. Pumera, *Chem. Eur. J.* **2014**, *20*, 9627–9632.
- 14 [26] E. L. K. Chng, Z. Sofer, M. Pumera, *Nanoscale* **2014**, *6*, 14412–14418.
- 15 [27] J. Fan, Y. Li, H. N. Nguyen, Y. Yao, D. F. Rodrigues, *Environ. Sci. Nano* 2015, 2,
 16 370–379.
- 17 [28] C. D. Austin, X. Wen, L. Gazzard, C. Nelson, R. H. Scheller, S. J. Scales, Proc. Natl.
- 18 Acad. Sci. U. S. A. 2005, 102, 17987–17992.
- 19 [29] N. Luciani, C. Wilhelm, F. Gazeau, *Biomaterials* 2010, 31, 7061–7069.
- 20 [30] L. W. C. Ho, C. K. W. Chan, R. Han, Y. F. Y. Lau, H. Li, Y. P. Ho, X. Zhuang, C. H.
- 21 J. Choi, ACS Nano 2022, 16, 2032–2045.
- 22 [31] I. Marangon, N. Boggetto, C. Ménard-Moyon, E. Venturelli, M. L. Béoutis, C.
- 23 Péchoux, N. Luciani, C. Wilhelm, A. Bianco, F. Gazeau, Nano Lett. 2012, 12, 4830–4837.
- 24 [32] M. Imanbekova, S. Suarasan, T. Rojalin, R. R. Mizenko, S. Hilt, M. Mathur, P.
- 25 Lepine, M. Nicouleau, N. V. Mohamed, T. M. Durcan, R. P. Carney, J. C. Voss, S.
- 26 Wachsmann-Hogiu, *Nanoscale Adv.* **2021**, *3*, 4119–4132.
- 27 [33] M. Pérez, J. Avila, F. Hernández, Front. Neurosci. 2019, 13, 1–7.
- 28 [34] D. Elgrabli, W. Dachraoui, C. Ménard-Moyon, X. J. Liu, D. Bégin, S. Bégin-Colin, A.
- 29 Bianco, F. Gazeau, A. Alloyeau, ACS Nano 2015, 9, 10113–10124.
- 30 [35] A. Balfourier, N. Luciani, G. Wang, G. Lelong, O. Ersen, A. Khelfa, D. Alloyeau, F.
- 31 Gazeau, F. Carn, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 103–113.
- 32 [36] A. K. Andriola Silva, C. Wilhelm, J. Kolosnjaj-Tabi, N. Luciani, F. Gazeau, *Pharm*.
- 33 *Res.* **2012**, *29*, 1392–1403.
- 34 [37] M. Eldh, K. Ekström, H. Valadi, M. Sjöstrand, B. Olsson, M. Jernås, J. Lötvall, PLoS

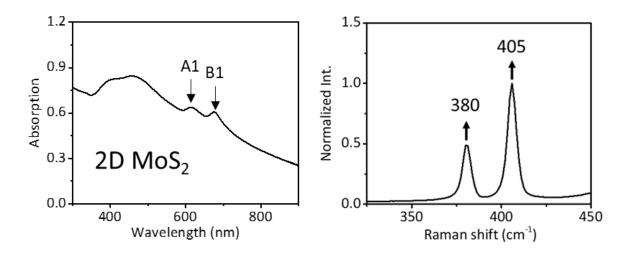

- 1 One **2010**, 5, 1–8.
- 2 [38] M. Saeed-Zidane, L. Linden, D. Salilew-Wondim, E. Held, C. Neuhoff, E. Tholen, M.
- 3 Hoelker, K. Schellander, D. Tesfaye, *PLoS One* **2017**, *12*, 1–24.
- 4 [39] D. K. Ji, Y. Zhang, Y. Zang, J. Li, G. R. Chen, X. P. He, H. Tian, *Adv. Mater.* 2016,
 5 28, 9356–9363.
- 6 [40] C. N. Serhan, S. D. Brain, C. D. Buckley, D. W. Gilroy, C. Haslett, L. A. J. O'Neill,
- 7 M. Perretti, A. G. Rossi, J. L. Wallace, *FASEB J.* **2007**, *21*, 325–332.
- [41] C. T. Robb, K. H. Regan, D. A. Dorward, A. G. Rossi, *Semin. Immunopathol.* 2016, *38*, 425–448.
- [42] C. Busch, J. Favret, L. Geirsdóttir, K. Molawi, M. Sieweke, *Bio-Protocol* 2019, *9*, 1–
 13.
- 12 [43] E. A. Veal, A. M. Day, B. A. Morgan, *Mol. Cell* **2007**, *26*, 1–14.
- 13 [44] C. Lennicke, J. Rahn, R. Lichtenfels, L. A. Wessjohann, B. Seliger, Cell Commun.
- 14 Signal. 2015, 13, 1–19.
- 15 [45] S. H. Song, B. H. Kim, D. H. Choe, J. Kim, D. C. Kim, D. J. Lee, J. M. Kim, K. J.
- 16 Chang, S. Jeon, Adv. Mater. 2015, 27, 3152–3158.
- 17 [46] E. Ji, J. Son, J. H. Kim, G. H. Lee, *FlatChem* **2018**, *7*, 26–33.
- 18 [47] X. Cui, Z. Kong, E. Gao, D. Huang, Y. Hao, H. Shen, C. A. Di, Z. Xu, J. Zheng, D.
- 19 Zhu, Nat. Commun. 2018, 9, 1–7.
- 20 [48] J. Meng, G. Wang, X. Li, X. Lu, J. Zhang, H. Yu, W. Chen, L. Du, M. Liao, J. Zhao,
- 21 P. Chen, J. Zhu, X. Bai, D. Shi, G. Zhang, Small 2016, 3770–3774.
- 22 [49] P. Cao, J. Wu, *Langmuir* **2021**, *37*, 4971–4983.
- 23 [50] Z. Wang, H. H. Wu, Q. Li, F. Besenbacher, X. C. Zeng, M. Dong, M. Nanoscale 2018,
- 24 *10*, 18178–18185.
- 25 [51] C. Y. Xu, J. K. Qin, H. Yan, Y. Li, W. Z. Shao, L. Zhen, Appl. Surf. Sci. 2018, 451–
- 26 456.
- 27 [52] S. L. Xiao, W. Z. Yu, S. P. Gao, Surf. Sci. 2016, 653, 107–112.
- 28 [53] B. Munkhbat, A. B. Yankovich, D. G. Baranov, R. Verre, E. Olsson, T. O. Shegai,
- 29 Nat. Commun. 2020, 11, 4604.
- 30 [54] T. G. Novak, J. Kim, A. P. Tiwari, J. Kim, S. Lee, J. Lee, S. Jeon, ACS Sustain. Chem.
- 31 *Eng.* **2020**, *8*, 11276–11282.
- 32 [55] X. S. Chu, D. O. Li, A. A. Green, Q. H. Wang, J. Mater. Chem. C 2017, 5, 11301-
- 33 11309.
- 34 [56] V. Ruiz, E. Meux, M. Schneider, V. Georgeaud, Ind. Eng. Chem. Res. 2011, 50, 9,

- 1 <mark>5307–5315</mark>.
- 2 [57] L. Dong, S. Lin, L. Yang, J. Zhang, C. Yang, D. Yang, H. Lu, Chem. Commun. 2014,
- 3 <u>50, 15936–15939</u>.
- 4 [58] E. L. Khim Chng, C. K. Chua, M. Pumera, *Nanoscale* **2014**, *6*, 10792–10797.
- 5 [59] S. Qiang, Z. Li, L. Zhang, D. Luo, R. Geng, X. Zeng, J. Liang, P. Li, Q. Fan,
- 6 Nanomaterials **2021**, *11*, 1–12.
- 7 [60] A. M. Dimiev, A. Khannanov, I. Vakhitov, A. Kiiamov, K. Shukhina, J. M. Tour, ACS
- 8 Nano **2018**, *12*, 3985–3993.
- 9 [61] L. Pastor, E. Vera, J. M. Marin, D. Sanz-Rubio, Int. J. Mol. Sci. 2021, 22, 1–21.
- 10 [62] X. Zhu, X. Ji, N. Kong, Y. Chen, M. Mahmoudi, X. Xu, L. Ding, W. Tao, T. Cai, Y.
- 11 Li, T. Gan, A. Barrett, Z. Bharwani, H. Chen, O. C. Farokhzad, ACS Nano 2018, 12, 2922-
- 12 2938.
- 13 [63] C. Moore, A. Harvey, J. N. Coleman, H. J. Byrne, J. McIntyre, 2D Mater. 2020, 7,
- 14 025003.
- 15 [64] Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang, Z. Liu, J. Ren, X. Qu, *Adv. Funct. Mater.*16 **2019**, *29*, 1900518.
- 17 [65] Y. Wei, S. Wu, Z. Liu, J. Niu, Y. Zhou, J. Ren, X. Qu, *Materials Today* 2022, 56, 1618 28.
- 19 [66] X. Wang, N. D. Mansukhani, L. M. Guiney, Z. Ji, C. H. Chang, M. Wang, Y. P. Liao,
- 20 T. Song, B. Sun, R. Li, T. Xia, M. C. Hersam, A. E. Nel, Small 2015, 11, 5079–5087.
- 21 [67] J. H. Lee, M. Kwon, J. H. Ji, C. S. Kang, K. H. Ahn, J. H. Han, I. J. Yu, Inhal.
- 22 *Toxicol.* **2011**, *23*, 226–236.
- 23 [68] J. M. Antonini, M. A. Badding, T. G. Meighan, M. Keane, S. S. Leonard, J. R.
- 24 Roberts, *Environ. Health Insights* **2014**, *8*, 11–20.
- 25 [69] T. Parimon, N. E. Garrett, P. Chen, T. J. Antes, J. Vis. Exp. 2018, 2018, 1–9.
- [70] A. Khelfa, J. Nelayah, H. Amara, G. Wang, C. Ricolleau, D. Alloyeau, D. Adv. Mater.
 27 2021, 33, 1–9.
- [71] A. Khelfa, J. Nelayah, G. Wang, C. Ricolleau, D. Alloyeau, J. Vis. Exp. 2021, 2021,
 1–17.

 MoS_2 nanosheets trigger lung inflammation that is fast recovered although the products derived from their degradation remain in the alveolar macrophages and in the extracellular vesicles up to 30 days. MoS_2 is *in vivo* biotransformation is caused by reactive oxygen species following three mechanisms: scrolling, etching and oxidation, generating molybdate ions and oxide nanoparticles.

Nathaly Ortiz Peña, Kondareddy Cherukula, Benjamin Even, Ding-Kun Ji, Sarah Razafindrakoto, Shiyuan Peng, Amanda K. A. Silva, Cécilia Ménard Moyon, Hervé Hillaireau, Alberto Bianco,* Elias Fattal,* Damien Alloyeau,* Florence Gazeau*


Resolution of MoS₂ nanosheets-induced pulmonary inflammation driven by nanoscale intracellular transformation and extracellular-vesicle shuttles


Supporting Information

Resolution of MoS₂ nanosheets-induced pulmonary inflammation driven by nanoscale intracellular transformation and extracellular-vesicle shuttles

Nathaly Ortiz Peña, Kondareddy Cherukula, Benjamin Even, Ding-Kun Ji, Sarah Razafindrakoto, Shiyuan Peng, Amanda K. A. Silva, Cécilia Ménard Moyon, Hervé Hillaireau, Alberto Bianco,* Elias Fattal,* Damien Alloyeau,* Florence Gazeau*

Figure S1. (a) TEM images and lateral size dimension of 2D MoS_2 nanosheets. (b) HR-TEM structure of a MoS_2 sheet showing armchair and zigzag edges and corresponding fast Fourier transform in inset.

Figure S2. UV-Vis and Raman spectra of 2D MoS₂ nanosheets. Absorbance peaks at 610 and 670 nm are ascribed to the A1 and B1 direct exciton transitions of 2D MoS₂ nanosheets with energy split from the spin–orbital coupling of energy band, respectively (left). The two bands at 405 and 380 cm⁻¹ are characteristics of the A_{1g} (out-of-plane vibration of S) and E^{1}_{2g} (in-plane relative motion between S and Mo) modes of the hexagonal MoS₂ crystal (right).

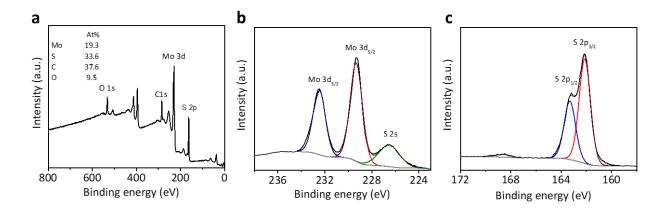
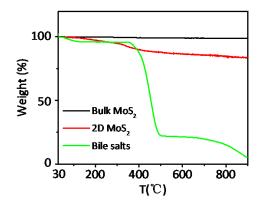
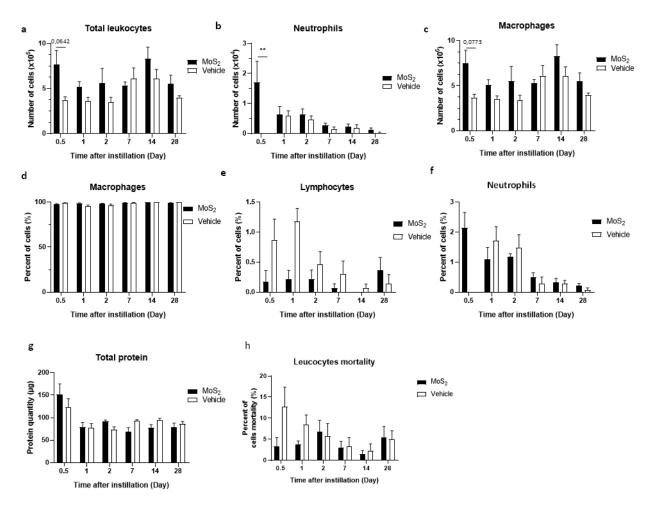
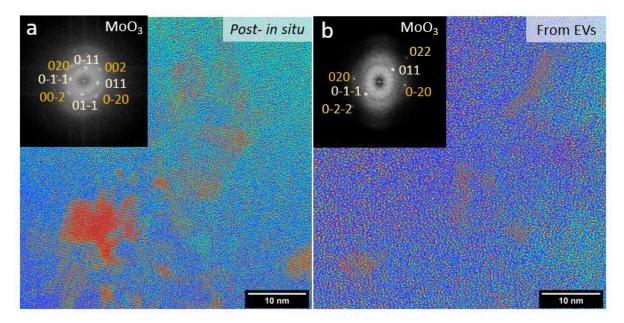
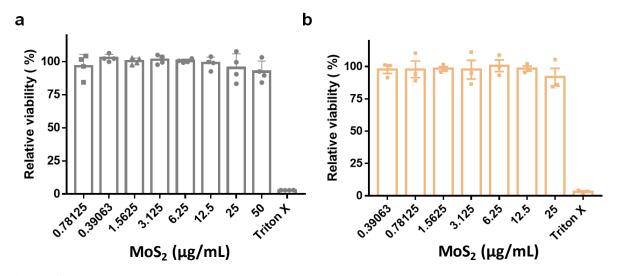




Figure S3. XPS survey (a) and high-resolution Mo 3d (b) and S 2p (c) spectra of MoS₂.


Figure S4. TGA of 2D MoS₂ nanosheets. The weight loss of 2D MoS₂ nanosheets at 600°C is 13%, corresponding to an amount of bile salts of 325 μ mol/g.


Figure S5. Analysis of cells and proteins recovered from BALF of MoS_2 -exposed or vehicleexposed mice. Number of mice: n=3 (0.5 day); n=4 (1, 2, 7, 14 and 28 days). Statistical significance was calculated using one-way ANOVA (Bonferonni's multiple comparisons test). Quantification of total leukocytes (a), macrophages (b) and neutrophils (b) recovered from BALF of MoS₂-exposed or non-exposed (vehicle) mice at different time-points after instillation. Percentage in total BALF cells of macrophages (d), neutrophils (e) and, lymphocytes (f). (g) Protein quantification in BALF. (h) Leukocytes mortality.

			0,5 day		1 day		2 days		7 days		14 days		28 days		
	Vehic														
b	Mos	52													
	0.0	A	В	C	D	E	F	G	Н	1	J	к	L	М	N
ked in	1 ≥ 2	POS	POS	NEG	NEG	BLANK	AxI	BLC (CXCL13)	CD30 Ligand (TNFSF8)	CD30 (TNFRSF8)	CD40 (TNFRSF5)	CRG-2	CTACK (CCL27	CXCL16	Eotaxin-1 (CCL11)
to .	rtically	Eotaxin-2 (CCL24)	Fas Ligand (TNFSF6)	Fractalkine (CX3CL1)	GCSF	GM-CSF	IFN-gamma	IGFBP-3	IGFBP-5	IGFBP-6	IL-1 alpha (IL-1 F1)	IL-1 beta (IL-1 F2)	IL-2	IL-3	IL-3 R beta
s s	b 4			(COCCETT)	SV	16									1 Contraction of the
ibody is sl	×	IL-4	IL-5	IL-6	IL-9	IL-10	IL-12 p40/p70	IL-12 p70	IL-13	IL-17A	KC (CXCL1)	Leptin R	Leptin	LIX	L-Selectin (CD62L)
y is	s 5				IL-9 M-CSF	IL-10 MIG (CXCL9)		IL-12 p70 MIP-1 gamma	IL-13 MIP-2	IL-17A MIP-3 beta (CCL19)		Leptin R PF-4 (CXCL4)	Leptin P-Selectin	LIX RANTES (CCL5)	L-Selectin (CD62L) SCF

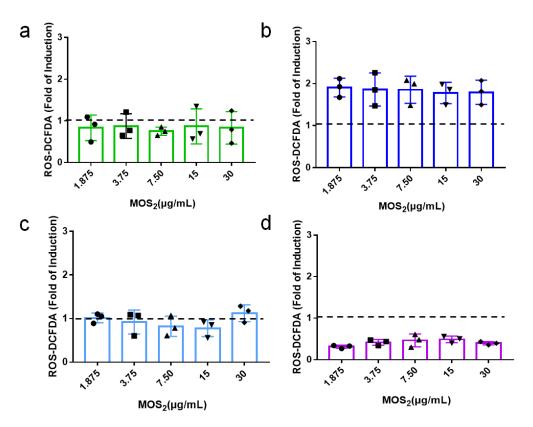

Figure S6. Detection of 62 cytokines in BALF of mice exposed to MoS_2 or vehicle at different time points after exposure. (a) Representative image of cytokine array for each conditions. (b) Array map RayBio® C-Series Mouse Cytokine Antibody Array C3.

Figure S7. (a) HR-TEM of *post-in situ* fragments of the patches displaying oxidation. Inset FFT of the fragments displaying the diffraction patterns of MoO_3 . (b) Fragments showing MoO_3 structure found within extracellular vesicles recovered from ex vivo alveolar macrophages 24 h post-exposure to MoS_2 .

Figure S8. Alamar Blue assay depicting the mitochondrial activity (relative viability compare to non-exposed cells) of THP-1 macrophages. (b) Relative viability of THP-1 Dual monocytes after exposure to MoS_2 at different concentrations in complete medium for 24 h.

Figure S9. Oxidative stress measured after (a) 4 h (b) 24 h (c) 48 h (d) 72 h incubation of MoS₂ at different concentrations with THP-1 macrophages.

Supporting Movies

Movie 1. *In situ* liquid phase STEM recording of MoS₂ sheets in 10 mM H₂O₂-DPBS. Initial stacked MoS₂ sheets started to further disperse and subsequently folded and scrolled as highlighted in Figure 4a. The video has been accelerated from 3fps to 100 fps.
Movie 2. *In situ* liquid phase STEM recording of free-standing MoS₂ patch scrolling in 5 mM H₂O₂-DPBS. The video has been accelerated from 3fps to 100 fps.
Movie 3. *In situ* liquid phase STEM recording of MoS₂ scroll in 5 mM H₂O₂-DPBS unfolding. This observation points how the scrolling seems to be highly dynamic and reversible. The video has been accelerated from 3fps to 100 fps.

Movie 4. *In situ* liquid STEM etching of MoS₂ patches in 5 mM DPBS-H₂O₂ solution. The video has been accelerated from 3fps to 100 fps.

Movie 5. *In situ* liquid STEM displaying internal etching from edge defects of a single MoS₂ sheet in 5 mM DPBS-H₂O₂ solution. The video has been accelerated from 3fps to 100 fps.