
Enhancing hit discovery in virtual screening through accurate
calculation of absolute protein-ligand binding free energies

Wei Chen,1 Di Cui,1 Steven V. Jerome,2 Mayako Michino,3,∗ Eelke B. Lenselink,4,∗ David
Huggins,3 Alexandre Beautrait,1 Jeremie Vendome,1 Robert Abel,1 Richard A. Friesner,5

and Lingle Wang1,∗

1Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, NY 10036, United States
2Schrödinger, Inc., 10201 Wateridge Circle, Suite 220, San Diego, CA 92121, United

States
3Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th Street, New York, NY

10065, United States
4Galapagos NV, Generaal De Wittelaan L11 A3, 2800, Mechelen, Belgium

5Department of Chemistry, Columbia University, New York, NY 10027, United States

∗Corresponding authors: lingle.wang@schrodinger.com, Bart.Lenselink@glpg.com,
mmichino@tritdi.org



Abstract

In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify
initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free energy perturbation
(ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermo-
dynamics and could in principle greatly improve the hit rates in virtual screening. In this work, we describe
an implementation of an accurate and reliable ABFEP method in FEP+. We validated the ABFEP method on
eight congeneric compound series binding to eight protein receptors including both neutral and charged lig-
ands. For ligands with net charges, the alchemical ion approach is adopted to avoid artifacts in electrostatic
potential energy calculations. The calculated binding free energies are highly correlated with experimental
results with the weighted average of R2 of 0.55 for the entire dataset and an overall RMSE of 1.1 kcal/mol
when protein reorganization effect upon ligand binding was accounted for. Through ABFEP calculations
using apo versus holo protein structures, we demonstrated that the protein conformational and protonation
state changes between the apo and holo proteins are the main physical factors contributing to the protein
reorganization free energy manifested by the overestimation of raw ABFEP calculated binding free energies
using the holo structures of the proteins. Furthermore, we performed ABFEP calculations in three virtual
screening applications for hit enrichment. ABFEP greatly improves the hit rates as compared to docking
scores or other methods like metadynamics. The highly accurate ABFEP results demonstrated in this work
position it as a useful tool to improve the hit rates in virtual screening, thus facilitate hit discovery.



Introduction

A primary objective of small molecule drug discovery is to design compounds that can tightly and selec-
tively bind to a target protein. Accurate calculation of protein-ligand binding free energy is therefore of
central importance in computational drug discovery. Benefiting from improved force fields and sampling
algorithms and advanced hardware, rigorous free energy calculation by free energy perturbation (FEP) or
related methods in explicit solvent simulations has dramatically improved the accuracy and begun to play
an increasingly important role in modern computational drug discovery projects.1,2,3 As an example, the
FEP+ implementation of free energy calculations4 has demonstrated a high level of accuracy in relative
protein-ligand binding free energy calculations (RBFEP), with an overall root-mean-square error (RMSE)
of about 1.1 kal/mol over a broad range of protein targets and ligand series.5,6 It also enables the ac-
curate modeling of very complex perturbations including scaffold hopping,7 macrocyclization,8 net-charge
changes,9 fragment linking,10 and linker enumeration.10 The high reliability and accuracy across a broad
range of complex chemical modifications has also been validated in a large number of prospective studies in
active drug discovery projects, positively impacting the projects through faster identification of novel potent
chemical matters.3 However, relative-binding free energy calculation through RBFEP can only be applied
on congeneric series of ligands with similar binding modes and scaffolds, limiting its applications to only the
hit-to-lead and lead optimization stages of drug discovery where the structure of the binding complex of an
initial reference ligand with the target receptor was known.

During the hit discovery stage of drug discovery, a diverse chemical space needs to be explored to
identify initial hits. As the current best practices, empirical scoring functions are used in virtual screening
to dock a large library of compounds. Due to the limited accuracy of empirical scoring functions, the hit
rate in virtual screening is usually very low, about 1-2% on average, with only a few confirmed hits for
most screenings and sometimes not a single hit for challenging targets.11,12 Absolute protein-ligand binding
free energy calculation through free energy perturbation (ABFEP) provides a theoretically more rigorous
description of protein-ligand binding thermodynamics, offering hope to dramatically improve the hit rates by
rescoring the top compounds in virtual screening. However, due to the complexity for the implementation
of ABFEP methods, the difficulty to converge the simulations to a level useful in practical applications, and
the large computational cost associated in these calculations, accurate and reliable calculations of protein-
ligand binding free energies through ABFEP in practical virtual screening settings for hit discovery have not
been reported yet.

The first ABFEP method has been proposed decades ago through the construction of a non-
physical alchemical pathway.13,14,15 The method involves the calculation of the free energy to transfer the
ligand from the solution to the gas phase, and the free energy to transfer the ligand from the protein binding
pocket to the gas phase. The difference in the above two free energies corresponds to the absolute binding
free energy of the ligand. Initial applications of the method have been focused on model systems, such as
fragments binding to T4 lysozyme16,17,18 and FK506-binding protein19 and host-guest systems,20,21 result-
ing in a reasonable accuracy with RMSE between the calculated and experimental binding free energies
of 2-3 kcal/mol, with the goal to showcase the feasibility of the method. Due to the large complexity and
computational cost, over a very long period of time, the majority of ABFEP literature on real protein-ligand
systems only reported calculations of a small number of compounds binding to a handful of protein recep-
tors, including FK506-binding proteins22,23,24 and bromodomain-containing proteins.25,26,27 The accuracies
of the reported calculations varied, with the RMSE between calculation and experiment ranging from 1 to 3
kcal/mol.

Until very recently, with the great increase of computer power, ABFEP calculations on a medium-
to-large number of drug-like compounds for multiple protein targets were reported. In one such study, Li
et al. performed ABFEP simulations on 7 proteins and 101 congeneric ligands and reported surprisingly
high accuracy with RMSEs of 0.6-1.5 kcal/mol and R2 of 0.5-0.9 between calculated and experimental
binding affinities, though the reported high accuracy was partially due to the removal of the systematic dif-
ference between calculated and experimental binding free energies (the RMSEs of the raw data are 0.9-5
kcal/mol).28 In another study, Lin et al. performed ABFEP simulations for 5 proteins and 105 congeneric
ligands, and obtained RMSEs of 3-6 kcal/mol and R2 of 0.6-0.8.29 Another study from Khalak et al. em-
ployed a non-equilibrium method incorporating the apo states of the proteins in the ABFEP calculations,
and obtained RMSEs of 0.8-3 kcal/mol and R2 of 0.02-0.76 on 7 proteins and 128 congeneric ligands.30

In all these studies, ABFEP was applied on congeneric ligands where RBFEP worked better, with the goal
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to validate the implementation. In addition, except for the work of Li et al.28 with a few ligands carrying
a net charge, all the other studies have focused exclusively on neutral ligands. Therefore, it is not clear
how these methods would work in a practical virtual screening setting to score ligands with diverse struc-
tures and binding modes, particularly for ligands with net charges where the finite size effects31 and strong
electrostatic interactions between the protein and ligand are known to be prohibitively difficult to converge.

In this paper, we report an accurate and reliable ABFEP method implemented in the FEP+ pro-
gram.4 We validated the implementation on all the eight protein systems and 199 ligands from our previous
RBFEP paper,5 which was later used as the benchmark systems for free energy calculations by many
groups. Four of the systems contain neutral ligands while the other four include ligands with net charges.
To calculate the binding free energies of the charged ligands, the alchemical ion approach used for the
charge-changing perturbations in RBFEP9 was adopted in ABFEP as well. Using the holo conformation
of the protein receptor, the raw ABFEP calculated binding free energies are systematically more negative
(favorable) than experiment. This is expected since the apo versus holo protein conformational and/or
protonation/tautomeric state changes induced upon ligand binding was not sampled in the relatively short
simulations. This is further verified through ABFEP calculations using the apo conformation of the protein,
where the calculated free energies are slightly more positive than experiment, providing evidence to eluci-
date a long-standing puzzle in the literature regarding how ABFEP calculations should be interpreted for
real protein-ligand systems. After removing the systematic shift between the calculated and experimental
binding free energies to account for the protein reorganization effect, the overall RMSE between calculation
and experiment for the entire dataset is 1.1 kcal/mol with a weighted average R2 of 0.55, comparable with
the RBFEP results on the same dataset (RMSE of 0.9 kcal/mol and R2 of 0.56). Comparing with previous
ABFEP studies,28,29,30 which have reported results on some of the systems, the accuracy of our results is
comparable or better. We further validated the accuracy of our ABFEP implementation through three pilot
applications in virtual screening to improve the hit rates. After docking a large library with millions or even
billions of compounds, a short list with hundreds or thousands of compounds with best docking scores is
generated and ABFEP is used to rescore the compounds in the short list to propose the final buy list.32

On one virtual screening dataset taking from the literature for JAK233 and two virtual screening collabora-
tion datasets for proprietary targets, ABFEP greatly improved the hit rates as compared to docking scores
or alternative methods like metadynamics, to our knowledge the first validation of ABFEP to improve hit
discovery in practical virtual screening settings.
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Methods

Double decoupling method for ABFEP

Figure 1: Thermodynamic cycle for ABFEP. The binding of the ligand to the protein receptor is decomposed
into a few alchemical steps similar to the originally proposed double decoupling scheme.14,15 Starting from
the physical ligand in water, the vdw and electrostatic interactions within the ligand and between the ligand
and water are slowly turned off, i.e., −∆Gint,sol in the cycle; then the relative position and orientation of the
dummy ligand with respect to the protein binding pocket are restrained through a set of cross-link restraints
(∆Grestr,dum); in the third step, the intra-ligand and ligand-environment vdw and electrostatic interactions
for the restrained ligand are slowly turned on in the protein binding pocket (∆Gint,com) followed by relaxing
the cross-link restrains when ligand interactions are fully turned on (−∆Grestr,com). The binding free energy
is the sum of the free energies of these processes. In our protocol, the free energies for the two horizontal
legs, −∆Gint,sol and ∆Gint,com-∆Grestr,com, are calculated through two independent simulations in solvent
and protein complex, respectively, while the free energy of the right vertical leg, ∆Grestr,dum, is calculated
analytically.

Our ABFEP protocol is similar to the originally proposed double decoupling scheme14,15 with the
thermodynamic cycle shown in Fig. 1. The binding of the ligand to the protein receptor is decomposed into a
few alchemical steps. First, starting from the physical ligand in water, the vdw and electrostatic interactions
within the ligand and between the ligand and water are slowly turned off until the ligand becomes dummy;
second, the dummy ligand is attached to the protein binding pocket through a set of cross-link restraints
similar to what was proposed by Boresch et al.;15 in the third step, the intra-ligand and ligand-environment
vdw and electrostatic interactions for the restrained ligand are slowly turned on in the protein binding pocket
and the cross-link restrains are relaxed after that. The free energy to turn on/off the intra-ligand and ligand-
water interactions (−∆Gint,sol) is calculated by one simulation in solvent, the free energy to turn on/off the
intra-ligand and ligand-environment interactions and relaxing the restrain potentials in the protein binding
pocket (∆Gint,com-∆Grestr,com) is calculated by another simulation in the protein binding pocket, and the
free energy to restrain the relative position and orientation of the dummy ligand with respect to the protein
binding pocket (∆Grestr,dum,) is calculated analytically with detailed derivations in the following section. The
absolute binding free energy (∆Gb) is the sum of these terms as follows:

∆Gb = ∆Gint,com −∆Gint,sol + ∆Grestr,dum −∆Grestr,com (1)

Cross-link restraints for ABFEP
The relative position and orientation of the dummy ligand with respect to the protein binding pocket

is restrained by a set of cross-link restrains originally proposed by Boresch et al.15 Three protein atoms (a,
b, and c) and three ligand atoms (A, B, and C) are selected for setting up cross-link restraints (Fig. 2). One
distance raA, two angles θAab and θaAB, and three dihedral angles φbaAB, φAabc and φaABC, are restrained
by harmonic potentials. The free energy difference for adding cross-link restraints can be calculated as

∆Grestr,dum = −kBT ln
ZCL
ZPZL

, (2)
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Figure 2: Cross-link restraints between the protein and ligand for ABFEP. Following the work of Boresch
et al.,15 three protein atoms (a, b, and c) and three ligand heavy atoms (A, B, and C) are selected. A
distance raA, two angles θAab and θaAB, and three dihedral angles φbaAB, φAabc and φaABC are restrained
by harmonic potentials.

where ZP , ZL, and ZCL are the partition functions for the protein, the free dummy ligand, and the dummy
ligand-protein complex with the above cross-link restrains, respectively (right vertical leg in Fig. 1). Since
the dummy ligand does not have interactions with the protein and water except for the cross-link restrains,
an analytical formula for the above free energy can be easily derived:

∆Grestr,dum = −kBT ln
Zr

8π2V
= −kBT ln

Zdistr,aAZ
ang
r,aABZ

ang
r,AabZ

dihed
r,baABZ

dihed
r,AabcZ

dihed
r,aABC

8π2V
, (3)

where

Zdistr =

∫ ∞
0

exp(−βKr(r − r0)2)r2 dr

=
r0

2βKr
exp(−βKrr

2
0) +

√
π

4βKr

√
βKr

(1 + 2βKrr
2
0)(1 + erf(

√
βKrr0),

(4)

Zangr =

∫ π

0

exp(−βKθ(θ − θ0)2)sinθdθ ≈
√

π

βKθ
exp(− 1

4βKθ
)sinθ0, (5)

Zdihedr =

∫ φ0+π

φ0−π
exp(−βKφ(φ− φ0)2)dφ =

√
π

βKφ
erf(π

√
βKφ), (6)

and V is 1660 Å3 for the standard state. In Eqns. 4-6, Kr, Kθ and Kφ are the force constants and r0, θ0
and φ0 are equilibrium values for the distance, angle, and dihedral restraints, respectively.

Structure preparation
The input structures for ABFEP calculations were obtained from the Protein Data Bank (PDB)34

and prepared by the Protein Preparation Wizard35 in Maestro36 with the default settings. For the eight
congeneric series of ligands, the same crystal structures as that used for RBFEP benchmark5 were also
used for the ABFEP calculations: 4DJW37 for BACE1, 1H1Q38 for CDK2, 2GMX39 for JNK1, 4HW340 for
MCL1, 3FLN for P38, 2QBS41 for PTP1B, 2ZFF for Thrombin and 4GIH42 for TYK2. For seven of the
systems, apo protein structures were available in PDB, and the following structures were used for ABFEP
calculations using apo structures: 1SGZ43 for BACE1, 1H2744 for CDK2, 3O17 for JNK1, 6QB345 for MCL1,
1WFC46 for P38, 2CM247 for PTP1B and 3D49 for Thrombin. The binding poses of compounds were taken
from the previous RBFEP work.5
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For the JAK2 virtual screening dataset, crystal structure with PDB ID 4FVR was used.48 The top
ranking poses from Glide SP docking49 in the work of Cutrona et al.33 were used as input for the ABFEP
simulations. One compound (BI-D1870) has two enantiomers, and both of them were modeled. For both
collaborations with the Tri-I TDI and Galapagos, an in-house structure (co-crystalized with a ligand) was
used for the ABFEP rescoring. The structure was prepared using the Protein Preparation Wizard35 in
Maestro36 with the default settings.

Simulation details
OPLS4 force field6 was used for all simulations. In each ABFEP simulation, the protein-ligand

complex was solvated in an orthorhombic SPC50 water box. The buffer width was 5 Å for a neutral ligand
and 8 Å for a charged ligand (a charged ligand was defined as a ligand with a net charge or charged groups).
For charged ligands, the protein ligand complexes were neutralized by counter-ions and additional salt ions
of 150 mM were added to mimic the buffer solution of experimental assay. The systems were then relaxed
by a series of short molecular dynamics (MD) relaxations including: (1)100 ps Brownian Dynamics at 10
K with solute heavy atoms restrained (force constant 50 kcal/mol/Å2) to relieve minor steric clashes; (2)
12 ps NVT simulation at 10 K with solute heavy atoms restrained; (3) 20 ps Grand Canonical Monte Carlo
(GCMC) µVT simulations51 at 300 K with solute heavy atoms restrained to solvate the binding pocket; (4)
20 ps GCMC µVT simulation at 300 K with protein backbone heavy atoms restrained. After relaxation, a
1-ns GCMC µVT simulation at 300 K was performed with protein backbone heavy atoms restrained.

To identify the optimal set of atoms for the protein-ligand cross-link restraints, the interactions be-
tween the protein and ligand during the 1-ns MD relaxation were analyzed and the set of atoms with most
frequent hydrogen bond or salt-bridge interactions in MD were selected to be restrained. In particular, the
hydrogen bond and salt bridge interactions between the protein and ligand occurred in any frame of the
MD trajectories were identified, and their frequencies were collected. The frequencies of atom-based in-
teractions were then summed and assigned to a ligand non-terminal heavy atom-protein residue pair as
follows: (1) any protein atom in an interaction is assigned to the corresponding residue it belongs to; (2)
any ligand atom in an interaction is assigned to a non-terminal heavy atom, which is bonded to at least two
other heavy atoms. Say for example a terminal oxygen atom in a carboxylate group of the ligand forming
a hydrogen bond with the protein is assigned to the carbon atom of the carboxylate group. If multiple lig-
and atom-protein residue pairs have hydrogen bond or salt bridge interaction frequencies of at least 50%,
the ligand atom closest to the centroid of the ligand was selected as one of the atoms for the cross-link
restraints (terminal groups in the ligand like SO2 that can easily flip orientation were excluded). After the
selection of the anchoring atom in the ligand (atom A in Fig. 2), two other ligand heavy atoms that atom
A is bonded to (B and C in Fig. 2), and the three backbone atoms (N, Cα and C) of the protein residue
forming hydrogen bond and/or salt-bridge with atom A (atoms a, b and c in Fig. 2) were selected for the
cross-link restraints. To avoid co-linear geometry leading to the singularity in the dihedral angle restraints,
we limited the set of restrained atoms to those with the four angles (θAab, θaAB, θabc and θABC) between 45
and 135 degrees. If none of the ligand atom-protein residue pairs with interaction frequency of at least 50%
satisfied the above criteria, the ligand heavy atom closest to the centroid of the ligand, two of its bonded
heavy atoms (atoms A, B and C in Fig. 2) and three protein Cα atoms (atoms a, b and c in Fig. 2), which
satisfy the above angle requirement, were selected to be restrained. The force constant was 1 kcal/mol/Å2

for the distance restraint, and 40 kcal/mol/rad2 for the angle and dihedral restraints.
After the MD relaxation and the selection of atoms for the cross-link restraints, a representative

structure from the MD trajectory was used as the input for the following FEP simulations. To select the rep-
resentative structure, the mean value of each rotatable bond in the ligand sampled during the MD trajectory
was calculated, and the representative structure had the ligand torsions closest to the corresponding mean
values. For charged ligands, counter-ions and additional salt ions of 150 mM were again added the same
as that in the MD relaxation, and the same alchemical ion approach introduced for charged perturbation in
RBFEP9 were also adopted for ABFEP. A total of 68 and 108 λ windows were used for neutral and charged
ligands, respectively. Each replica was run for 5 ns. For the solvent leg FEP, the ligand was extracted from
the representative structure selected above and then solvated in a SPC water box with 10 Å buffer width.
Again, counter-ions and additional salt ions of 150 mM were added and the alchemical ion approach was
utilized for charged ligands. 60 λ windows were used for all ligands and each replica was run for 5 ns.

To benchmark the accuracy of ABFEP versus RBFEP on the congeneric series of ligands, we also
performed RBFEP calculations with OPLS4 on the eight congeneric series of ligands taken from Wang et
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al.,5 and the default RBFEP protocol as detailed in that paper was used for the RBFEP calculations. The
RBFEP simulations lasted for 5 ns per replica.

To calculate the pK a’s of aspartic acids in the binding pocket of BACE1, protein residue mutation
FEP52 implemented in FEP+4 was used. The free energy to mutate from the neutral to the charged ASP
was calculated in the protein environment and for an isolated residue in solvent, and the difference corre-
sponds to the shift of pKa due to protein environment, i.e., ∆∆G = RTln10 (pK a- 3.67), where 3.67 is the
pK a of an isolated Asp residue in solvent.53 24 λ windows were used and each replica was run for 20 ns.

Results and Discussion

Large-scale test on congeneric compound series for eight proteins
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Figure 3: Comparison of calculated binding free energies versus experiment for both ABFEP and RBFEP.
Blue circles and red squares are for RBFEP and ABFEP, respectively. The results of the first repeat of the
ABFEP simulation are shown, and the results from the other two repeats were reported in supporting infor-
mation. The raw ABFEP binding free energies were shifted to take into account the protein reorganization
effect as detailed in the main text. Solid diagonal lines indicate the region within 1 kcal/mol of experimental
values, while dashed diagonal lines indicate the region within 2 kcal/mol of experimental values. RMSE and
R2 are labeled.

We tested the ABFEP method on the entire dataset from the previous RBFEP benchmark5 includ-
ing a total number of 199 compounds binding to eight different protein systems. To gauge the convergence
and consistency of the calculations, three replicas of independent ABFEP simulations with different random
seeds were performed for each ligand. The ABFEP performance on these eight systems were presented
in Fig. 3 (the results from the first replica were shown for simplicity, and results from the other two replicas
are shown in Figs. S1 and S2) and summarized in Table I. Four series of ligands binding to BACE1, MCL1,
PTP1B and Thrombin are charged while the other four are neutral. For comparison, the results from the
previously established RBFEP method5 were also shown. The raw ABFEP results for all these systems
were more negative than experimental values, reflecting the miss of the protein reorganization effect for
the structural difference between the apo protein and the holo complex due to limited sampling in the short
ABFEP simulations. For proper comparison between ABFEP results and experiment, the protein reorgani-
zation contribution to the binding free energy for each system was estimated as the difference between the
average of experimental binding free energies for all the ligands in that system and the average of the raw
ABFEP binding free energies for the same set of ligands. The estimated protein reorganization contribution
for each system was added to the raw ABFEP values for the final comparison with experimental data. The
estimated protein reorganization contributions (∆Gprot−reorg) are shown in Table I, and are ranged between
1.22 kcal/mol for CDK2 and 9.97 kcal/mol for PTP1B.

Taking protein reorganization contribution into account, the ABFEP calculated binding free energies
for all systems agree very well with experiment (Fig. 3), with RMSE between calculation and experiment
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Table I: Statistics of ABFEP and RBFEP results for congeneric compound series

Protein # of ligands Ligand charge RBFEP aABFEP with holo-protein bABFEP with apo-protein
RMSE R2 dRMSE R2 c∆Gprot−reorg

dRMSE R2 c∆Gprot−reorg
BACE1 36 +1 1.08 0.47 1.21 ± 0.07 0.44 ± 0.04 2.91 ± 0.28 0.89 ± 0.06 0.26 ± 0.06 e-1.61 ± 0.27
CDK2 16 0 0.93 0.42 0.84 ± 0.06 0.50 ± 0.07 1.22 ± 0.20 1.05 ± 0.06 0.33 ± 0.10 -0.59 ± 0.10
JNK1 21 0 0.84 0.61 0.85 ± 0.13 0.63 ± 0.02 3.50 ± 0.12 0.64 ± 0.09 0.69 ± 0.09 2.72 ± 0.12
MCL1 42 -1 1.03 0.45 0.95 ± 0.06 0.53 ± 0.07 3.65 ± 0.15 1.03 ± 0.06 0.33 ± 0.04 2.48 ± 0.12
P38 34 0 0.87 0.49 1.09 ± 0.10 0.58 ± 0.06 5.27 ± 0.09 1.13 ± 0.07 0.39 ± 0.03 -1.64 ± 0.08

PTP1B 23 -2 0.54 0.84 1.78 ± 0.20 0.55 ± 0.03 9.97 ± 0.21 1.20 ± 0.06 0.50 ± 0.03 -1.12 ± 0.07
Thrombin 11 +1 0.91 0.58 1.01 ± 0.07 0.57 ± 0.07 1.82 ± 0.14 1.03 ± 0.19 0.48 ± 0.12 2.08 ± 0.08

TYK2 16 0 0.54 0.84 0.74 ± 0.02 0.74 ± 0.04 3.54 ± 0.17
ALL 199 0.90 f0.56 1.13 ± 0.03 f0.55 ± 0.003 1.02 ± 0.02 f0.40 ± 0.02

aABFEP simulations using the crystal structures of holo-proteins. bABFEP simulations using the crystal structures of apo-proteins.
c∆Gprot−reorg: protein reorganization contribution estimated as the difference between the average of experimental binding free en-
ergies and the average of the raw ABFEP binding free energies for all ligands in a system. dRMSE was calculated after ∆Gprot−reorg

was added to the raw ABFEP binding free energies. e∆Gprot−reorg for BACE1 using the apo protein structure was calculated after
adding pK a correction of 3.57 kcal/mol (see the main text for details) to raw ABFEP binding free energies. fAverage R2 weighted by
the numbers of ligands in the eight systems for ABFEP with holo-proteins or the seven systems for ABFEP with apo-proteins. The
ABFEP simulations were repeated for three times with different random seeds. The mean and standard deviation among the three
repeats are reported in the table.

ranged between 0.74 kcal/mol for TYK2 system and 1.78 kcal/mol for PTP1B, and R2 ranged between
0.44 for CDK2 and 0.74 for TYK2 (Table I). The overall RMSE and weighted average R2 from ABFEP
for the entire dataset is 1.13 kcal/mol and 0.55, respectively, slightly worse than the RBFEP performance
(overall RMSE and weighted average R2 of 0.90 kcal/mol and 0.56, respectively), due to much larger con-
figurational space to sample in ABFEP. It should be noted that the protein reorganization contribution is a
constant among all the ligands binding to the same protein conformation, thus does not affect the R2 and
rank ordering of the predictions. Our estimate of protein reorganization contribution minimizes the RMSE
between prediction and experiment, but would not affect the prospective usage of ABFEP for compound
selection and prioritization.

Among these eight systems, the protein reorganization contribution for PTP1B system of 9.97
kcal/mol is significantly larger than the other systems (in the range of 1.22 to 3.65 kcal/mol), and the overall
RMSE for PTP1B system of 1.78 kcal/mol is also significantly worse than the others (in the range of 0.74 to
1.21 kcal/mol). To understand the possible reasons leading to the difference in the performance of ABFEP
on PTP1B versus the other systems, we searched for an apo crystal structure of PTP1B (PDB ID 2CM2),47

and compared it with the holo crystal structure (PDB ID 2QBS41) used in the ABFEP simulations (Fig. 4A).
The large conformational changes in the WPD-loop (Thr177-Pro188) of the binding pocket from an open
conformation for the apo protein to the closed conformation for the holo protein47 could potentially explain
the large protein reorganization contribution for this system. To validate this hypothesis, we repeated the
ABFEP simulations for the PTP1B ligands using the apo conformation of the receptor, and the resulting
calculated binding free energies were more positive than experiment values by about 1 kcal/mol (Table I).
This again is expected as the closed WPD-loop conformation is preferred in the presence of ligands but
could not be sampled in the ABFEP simulations using the apo structure of the protein with the WPD-loop in
the open conformation. These results validated our hypothesis that the more negative binding free energies
from the raw ABFEP results using the holo conformation of the protein as compared to experiment is due to
the protein reorganization contribution between the apo and holo conformations of the receptor not sampled
in the ABFEP simulations.

Surprisingly, the RMSE between the ABFEP calculated and experimental binding free energies (af-
ter accounting for the protein reorganization effect) for PTP1B ligands is greatly reduced to 1.2 kcal/mol
using the apo conformation of the receptor (so does the variance of the ABFEP results among three inde-
pendent repeats shown in Table I), suggesting that the simulations with the apo-structure converged much
faster. We attribute the faster convergence of the calculated free energies using the apo structure to the
much weaker hydrogen bond and salt bridge interactions between the two carboxylate groups conserved
in all the ligands and surrounding charged residues in the binding pocket when the WPD-loop is open. In
the holo structure, the two carboxyl groups in the ligands form multiple strong interactions with the protein
including three salt bridges with Arg221 and Lys120, which were persistent in the ABFEP simulations (Fig.
S3). In contrast, the two salt bridge interactions with Arg221 were partially lost in the open conformation of
the WPD-loop in the apo structure when exposed to solvent.

Besides PTP1B, we also investigated the possible physical factors contributing to the protein re-
7



Figure 4: Conformational or protonation state change caused by ligand binding. A. Comparison between
holo- and apo-crystal structures of PTP1B. The holo-crystal structure of PTP1B (red, PDB ID 2QBS41) is
aligned to the apo-crystal structure (blue, PDB ID 2CM247). The WPD-loop (Thr177-Pro188), which has
the largest difference, is labeled. B. Aspartic acids in the binding pocket of BACE1. Two Asps are located
at the binding pocket of BACE1 (PDB ID 4DJW37) and forming salt bridges with the ligand.

organization effects observed for other systems, although the magnitudes are much smaller than that for
PTP1B (Table I). For seven out of the eight systems except for TYK2, we found apo crystal structures of
the proteins from PDB. Repeating the ABFEP simulations using the apo structures, the raw ABFEP results
of all systems except for Thrombin consistently got more positive as compared to that from the holo crystal
structures (Table I), indicating that the conformational differences between the apo and holo structures are
indeed the dominant factors contributing to the observed protein reorganization effects from the ABFEP
calculations. For Thrombin, the apo and holo structures are almost identical, and the ABFEP results were
not affected by the choice of input protein structures. For CDK2 and P38, the P-loop conformations are
slightly different between the apo and holo structures, and similar to PTP1B the raw ABFEP results using
the apo protein structures were slightly more positive than the experimental results. Therefore, the P-loop
conformational changes between the apo and holo structures are fully responsible to the observed protein
reorganization effects for these two systems.

For BACE1, ABFEP binding free energies using the apo protein structure are slightly more positive
than that using the holo protein structure (∆Gprot−reorg is 2.91 and 1.96 kcal/mol for simulations with holo
and apo structures, respectively ), but do not fully explain the protein reorganization effects reflected in the
ABFEP simulations. Inspecting the binding pocket, we notice that two aspartic acids are located at the
BACE1 binding pocket, forming salt bridges with the ligand (Fig. 4B). Because of the strong salt bridge
interactions, the two Asps should be deprotonated in the ligand bound form, which was the state used in
the ABFEP simulations. However, in the apo form without ligand, the two ASPs may prefer an alternative
protonation state. To verify that, we performed protein FEP to calculate pK a’s of the two Asps. The resulting
pK a of Asp93 is 7.6 in the apo form, higher than experimental pH of 5, indicating the protonated form
is preferred in the apo state. The corresponding penalty for the change of the protonation state from
the protonated form in the apo state to the deprotonated form of the ligand bound state, estimated to be
RTln10(pK a- pH) = 3.6 kcal/mol, fully explained the observed protein reorganization effects in the ABFEP
simulations.

For JNK1, MCL1 and Thrombin, ABFEP results using the apo protein structure are still slightly more
negative than the experiments. Except for the conformational and protonation/tautomeric state changes
between the apo and holo structures explored above, other factors could also contribute to the systematic
overestimation of binding free energies from ABFEP as compared to experiment. For example, some
experimental assays measured the IC50 instead of Ki, and the binding free energies converted directly
from the experimental IC50s using ∆G=RTln(IC50) could systematically underestimate the real binding free
energies. For the JNK1 system, the experimental IC50 and Ki were available for six compounds (Table
S1),39 and the differences in the free energies converted from IC50 versus that from Ki can be as large
as 1.9 kcal/mol, comparable to the magnitude of the observed shift between the raw ABFEP results and
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IC50 based experimental free energies (Table I). Post-translational modifications and the different protein
constructs and/or buffer solutions in experiment versus that in the ABFEP simulations could also contribute
to the systematic differences between ABFEP results and experimental measurements.

Several groups have previously reported ABFEP results on some of the systems we tested here.28,29,30

The majority of these earlier studies were focused on the four protein systems with neutral ligands (CDK2,
JNK1, P38 and TYK2), and only one paper reported results on Thrombin with charged ligands. Compar-
ing with these earlier studies (Table II), after taking into account the protein reorganization effect for each
method in the same way as we did above to remove the systematic difference between the raw ABFEP re-
sults and experimental measurements, for the four systems with neutral ligands, our ABFEP yielded RMSEs
of 0.74-1.09 kcal/mol and R2 of 0.5-0.74, while the work of Lin et al.29 gave RMSEs of 0.86-1.11 kcal/mol
and R2 of 0.57-0.68, and the work from Khalak et al.30 resulted in RMSEs of 0.76-1.17 kcal/mol and R2

of 0.19-0.45, both slightly worse than our results. The protein reorganization effects from Khalak et al.30

were very small for three systems, possibly because they incorporated the apo crystal structures into their
ABFEP calculations. However, surprisingly, their raw ABFEP results for TYK2 (no apo crystal structure
was available) were systematic more positive than experiments, which is opposite than expected based
on possible protein conformational changes between apo and holo structures. Li et al.28 reported ABFEP
results on the three systems with neutral ligands (CDK2, JNK1 and TYK2) and one with charged ligands
(Thrombin). Their results for three systems (CDK2, JNK1 and Thrombin) were comparable to ours (RMSEs
of 0.59-0.75 kcal/mol and R2 of 0.47-0.79 versus RMSEs of 0.84-1.01 kcal/mol and R2 of 0.5-0.63 from
ours), but were much worse than ours for TYK2 (RMSE of 1.32 kcal/mol and the R2 of 0.52 as compared
to RMSE of 0.74 kcal/mol and R2 of 0.74 from ours). In addition, their ABFEP results on TYK2 ligands
are more positive than experiment, contradictory to the expected protein reorganization effect between the
apo and holo conformations. Overall, our ABFEP is competitive or slightly better in accuracy than previous
benchmarks on the same systems and cover broader sets of ligands.

Table II: Comparison of ABFEP results with previous studies

Protein ABFEP Work of Lin et al.29 Work of Khalak et al.30 Work of Li et al.28

bRMSE R2 a∆Gprot−reorg
bRMSE R2 a∆Gprot−reorg

bRMSE R2 a∆Gprot−reorg
b RMSE R2 a∆Gprot−reorg

BACE1 1.21 0.44 2.91
CDK2 0.84 0.50 1.22 1.11 0.62 3.50 1.13 0.19 -0.43 0.74 0.79 4.05
JNK1 0.85 0.63 3.50 1.03 0.68 4.61 0.76 0.45 0.32 0.75 0.49 2.97
MCL1 0.95 0.53 3.65
P38 1.09 0.58 5.27 0.86 0.57 6.24 0.95 0.22 -0.03

PTP1B 1.78 0.55 9.97
Thrombin 1.01 0.57 1.82 0.59 0.47 5.02

TYK2 0.74 0.74 3.54 0.87 0.66 3.40 1.17 0.27 -2.59 1.32 0.52 -3.27
a∆Gprot−reorg: protein reorganization contribution estimated as the difference between the average of experimental binding free en-
ergies and the average of the raw ABFEP binding free energies for all ligands in a system. bRMSE was calculated after ∆Gprot−reorg

was added to the raw ABFEP binding free energies.

Applications to hit discovery in virtual screening
Virtual screening (VS) campaigns within drug discovery projects are a natural application of ab-

solute binding free energy calculations. Such campaigns routinely screen massive databases of diverse
compounds efficiently using computational tools. Early enrichment of true binders is a critical measure of
any in-silico screening funnel, given the costs associated with synthesis or purchase and experimental test-
ing of compounds. The availability of accurate and scalable absolute binding calculations is already having
a significant impact on real drug discovery projects within Schrödinger and elsewhere. Recently, Gilson
and coworkers reported a work of improved enrichments using ABFEP to rescore top ranked docking com-
pounds from the DUD-E dataset.54 Here, we report three successful applications of our ABFEP method. In
each case, ABFEP rescoring is performed retrospectively on buylists of compounds initially prioritized by
docking or ligand-based shape screening. Post-processing with ABFEP leads to a dramatic improvement in
the ranking of the confirmed hits, which is reflected in the enrichment statistics. Considering that these lists
of tested compounds represent some of the highest scoring compounds according to the original screen-
ing method, ABFEP rescoring is essentially boosting extremely early enrichment. Results such as these
suggest that ABFEP can reduce the number of compounds that must be purchased and tested in order to
find hits. These cases are meant to be illustrative of the potential for application of absolute binding affinity
calculations in hit discovery. A detailed study of prospective application of ABFEP in VS campaigns along
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with a description of our workflow for integrating these calculations into a larger workflow is planned.

Figure 5: Virtual screening of JAK2. A. Hit enrichment of JAK2 ligands using different scoring methods.
Black line: Glide SP; brown line: Glide XP; maroon line: WScore; red/blue/cyan lines: ABFEP. The results
of Glide SP/XP and metadynamics are from Cutrona et al.33 Three independent ABFEP simulations were
performed with different random seeds. B. Desolvation penalty suppresses inactive score in WScore. WS-
core identifies a blocked charged sidechain (Lys587) upon docking of JAK198. A WaterMap water solvating
this residue is displaced by a ligand aromatic ring without making forming a hydrogen bond to the affected
residue. This results in a 4.0 kcal/mol penalty in the final score. C. Unstable binding of ligand JAK221 in the
ABFEP simulations. Gray: starting structure; green: a structure with the partially dissociated ligand from
the ABFEP simulation. D. Distinct conformation of ligand JAK209 in solvent from that in complex. Gray: a
representative structure in solvent; green: a representative structure in complex.

JAK2. Jorgensen and coworkers reported the results of a virtual screen against the pseudokinase
domain of JAK2 kinase using the Glide SP49 docking program.33 The 27 compounds selected based on
Glide SP and Glide XP scores are all inactive, thus they are even worse than random selection at differen-
tiating the 13 confirmed actives from the inactives (Fig. 5A and Table S2). The authors then conducted a
retrospective analysis comparing several rescoring protocols on this list of 40 experimentally tested com-
pounds, including MM/GBSA with the VSGB solvation model55 and different metadynamics protocols. We
applied our newest docking program, WScore11 and ABFEP independently to this dataset. As seen in
Fig. 5A, rescoring by WScore shows much improved enrichment over Glide SP and Glide XP with AUC of
0.57. ABFEP further improved the enrichment to AUC of 0.8. Three independent ABFEP simulations with
different random seeds gave consistent results, showing robustness of our ABFEP method. We have also
compared performance of WScore and ABFEP to the metadynamics protocol proposed by Jorgensen.33

Metadynamics outperforms WScore docking, however ABFEP rescoring produces the highest enrichment
of confirmed hits on this dataset (Fig. S4 and Table S2).

That WScore rescoring performs considerably better than Glide SP can be rationalized by consid-
ering the additional physics-based information in WScore as compared with Glide. WScore incorporates a
detailed analysis of the binding site water network using a precomputed WaterMap.56 Small movements of
water molecules are sampled simultaneously with the query ligand to optimize the contribution of solvation
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scoring terms to the final score. The concept of explicit water molecules is completely absent from Glide SP.
For example, the compound JAK198 is experimentally inactive. This compound is the top ranked compound
according to the initial Glide SP score. WScore redocking detects a desolvated charged LYS residue (581)
following displacement of a water previously making a hydrogen bond to this residue (Fig. 5B). Burying
a charged residue carries a significant 4 kcal/mol penalty in WScore. Consequently, WScore ranks this
compound at position 14 out of 40 compounds.

While WScore is a notable improvement over Glide SP, this level of performance trails behind the
metadynamics protocol recorded in the original study33 (Fig. S4 and Table S2). Studying the ROC curve
shown in Fig. 5A, we see that there are still a significant number of outranking inactive compounds, particu-
larly in the earliest part of the list. WScore rescoring falls far short of the performance of the metadynamics
protocols reported in the original study.33 The top ranked compound after WScore rescoring is JAK221,
an inactive compound. Fig. 5C shows the pose (gray) predicted by WScore docking. The WScore pose,
which is very similar to the Glide pose, was used as input for ABFEP. The predicted binding mode was
highly unstable in the simulation with the sulfonamide-terminated side of the compound completely moving
away from the pocket in the ABFEP trajectory (one frame of the ABFEP trajectory is shown in green in
Fig. 5C). Consequently, the average ABFEP ranking of this compound (using three independent runs) is
25/40 compared with WScore where it was ranked 1/40. In this case, ABFEP provides insight into the local
stability of the predicted binding mode, addressing a key limitation of docking. Another example is JAK209,
which is inactive but was ranked 3/40 by WScore. In the ABFEP simulation, JAK209 alone in solvent sam-
pled multiple distinct conformations from that in complex. As shown in Fig. 5D, a representative structure
from the solvent simulation of JAK209 (gray), the heterocycle adopts a different puckering state from that in
complex (green). In addition, the dihedral angle between the heterocycle and the benzene ring is different
between solvent and complex simulations. The large ligand strain energy missing in WScore estimation but
accounted for in ABFEP led to the improved scoring accuracy in ABFEP.
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Figure 6: Virtual screening of the Tri-I TDI collaboration target. A. Hit enrichment of Track 1. Blue and red
lines are the results of GPU-Shape and ABFEP, respectively. B. Hit enrichment of Track 2. Blue and red
lines are the results of Glide and ABFEP, respectively. C. Hit enrichment for the combination of Tracks 1
and 2 using ABFEP.

Collaboration with the Tri-I TDI. Schrödinger conducted a joint hit discovery campaign with the
Tri-I TDI against a proprietary target. In this campaign, multiple screening protocols were evaluated as
independent experiments using the Enamine Real database. We focus on the two of these experiments,
known here as Track 1 and Track 2. The protocols comprised the following: Track 1: the database was
screened with GPU-Shape57 and 88 compounds were selected for purchase. Of these 88 compounds,
6 actives were confirmed by functional assay. Track 2: The database was screened with Active-Learning
Glide58 and 93 compounds were selected for purchase. Of these 93 compounds, 1 active was confirmed
by functional assay. Within the purchase list for Track 1, GPU-Shape is not able to effectively distinguish
between inactive and active compounds, where the average rank of the actives was 68 (of 88). Rescoring
with ABFEP produces a dramatic improvement in the ranks of the actives, with the average rank increasing
to 6 (of 88). Fig. 6A shows the ROC curves associated with the original GPU-Shape ranking and the ranking
after rescoring with ABFEP. With Track 2, only a single active was recovered by Glide docking score. Within
the set of 93 tested compounds, the rank of this single hit was 64 (of 93). In contrast, the ABFEP rescoring
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puts this lone hit at the very top of the ranking: 2 (of 93). ROC curves for Track 2 are shown in Fig. 6B.
Finally, we combine the rescoring results from the two tracks to determine the performance using a single
classification threshold in ABFEP. Enrichment for the combined screens is very good with an AUC of 0.95.
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Figure 7: Hit enrichment of compounds identified in virtual screening against the Galapagos evaluation
target. Blue and red lines are the ROC curves of WScore and ABFEP, respectively.

Galapagos software evaluation. Galapagos conducted a VS of the Enamine Real (2020-Q1;
1.2B compounds) database against Target B. The primary goal of this VS was two-fold: 1) to perform a
head-to-head comparison of Glide versus WScore rescoring; 2) To identify novel hits with the desired prop-
erties, for which previous, smaller scale VS campaigns had failed. The compound database was screened
using two different tracks here defined as Track 1 and Track 2. In Track 1, the entire database was screened
first with Active-Learning Glide.58 For Track 2, the database was initially screened with GPU-Shape.57 For
these two tracks, rescoring with Glide SP or WScore was compared. A selection of 200 top compounds by
Glide SP across both tracks were selected for purchase. This was repeated with WScore. Due to overlap in
the lists, a total of 370 compounds were ordered, and 324 delivered and tested using a biochemical assay.
A total of four hits were confirmed by experiment, three from WScore and one from Glide. To further assess
if ABFEP rescoring would have allowed us to purchase fewer compounds, ABFEP calculations were run
on the top 200 compounds from WScore. Additional details concerning the virtual screening procedure
and analysis are left to supporting information. On this set, WScore produces modest enrichment (AUC:
0.5) of the hit compounds. To recover all three compounds, it is necessary to go to position 151 in the
list. The entire purchase list was later rescored by ABFEP, retrospectively. The ranks of the confirmed
hits improve substantially with AUC increasing to 0.94. All three hits are recovered within the first 20 com-
pounds (i.e. top 10%) sorted by ABFEP score. ROC curves comparing WScore and ABFEP enrichment
are shown in Fig. 7. Individual ranks for the hit compounds according to docking and ABFEP are shown
in Table S3. Once again, ABFEP rescoring delivers significantly improved enrichment over even advanced
docking methods like WScore. These results indeed suggest that had ABFEP rescoring been applied prior
to compound scoring, many fewer compounds could have been purchased to identify these hits.
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Conclusions

We reported an implementation of the ABFEP method in the FEP+ program.4 The ABFEP protocol utilizes
the double decoupling scheme (Fig. 1), where the free energy to annihilate the ligand from the protein
binding pocket into a restrained dummy ligand and the free energy to annihilate the ligand in solvent were
calculated separately in two simulations. The translational and orientational entropy due to the restraints
between the dummy ligand and the protein binding pocket (Fig. 2) is calculated by an analytical formula
(Eqn. 3). For ligands with net charges, the alchemical ion approach introduced in the charge-changing per-
turbations in RBFEP9 is adopted to resolve the finite-size effects and more replicas were used to converge
the electrostatic interactions.

We validated our ABFEP protocol on the entire dataset from our previous RBFEP benchmark5

including a total number of 199 ligands binding to eight protein targets. Different from previous ABFEP
publications focusing mainly on the neutral ligands, four of our validation systems have charged ligands.
The overall RMSE between ABFEP calculated and experimental binding free energies on the entire dataset
is 1.13 kcal/mol and weighted average R2 is 0.55, slightly worse than the well established RBFEP method5

with RMSE of 0.9 kcal/mol and R2 of 0.56 (Fig. 3 and Table I). This is expected due to the much larger
configurational space to sample in ABFEP as compared to RBFEP. Comparing with earlier ABFEP pub-
lications,29,30,28 which reported results on some of these systems, our ABFEP results are comparable or
slightly better (Table II).

It should be noted that the raw ABFEP results are in general more negative than the experimen-
tal binding free energies for real protein-ligand systems. This is because the holo complexes with ligands
bound most often have very different conformations and/or protonation states than the apo proteins, and
the conformational and/or protonation state changes upon ligand binding, i.e., the protein reorganization
contribution, can not be sampled in the short ABFEP simulations. We verified this hypothesis by comparing
ABFEP calculations using the holo and apo protein structures and showing that ABFEP calculated binding
free energies are more positive using the apo protein structures than using the holo structures (Table I).
In addition, for four of the systems, with the apo protein structures and after taking into account the pro-
tonation state changes between the apo and holo structures, ABFEP calculated binding free energies are
more positive than experiment, suggesting that the conformational and protonation state changes are the
major factors contributing to the protein reorganization free energy. The hypothesis that the miss of protein
reorganization free energy is the main reason for the systematic difference between ABFEP calculation and
experimental binding free energy was suggested in the past,59 and our calculations are the first attempt to
validate this hypothesis.

Although the ABFEP results are usually more negative than experimental measurement, ABFEP
can still give correct rank ordering of ligand binding considering that the protein reorganization contribution
is a constant for ligands binding to the same protein conformation. In fact, a unique advantage of ABFEP
as compared to RBFEP is its ability to rank order compounds with diverse scaffolds and binding modes,
with the potential application to separate correct binding poses from the decoy poses or selecting actives
from decoys for hit discovery in virtual screening. We tested our ABFEP method on three retrospective
virtual screening datasets to explore its ability to rank order diverse compounds to improve hit rates. In all
three cases, one for the JH2 domain of JAK233 and the other two for proprietary targets in collaboration,
ABFEP was able to dramatically improve the hit rates, with AUC improved to 0.8 or more, significantly better
than empirical Glide or WScore scoring functions or other alternative scoring method like metadynamics
(Figs. 5-7.). Especially for the two collaboration projects, if ABFEP was available at the time these virtual
screenings were run and was used for compound selection, the list of compounds for experimental test
can be reduced by at least a factor of eight without losing any active compounds. These results further
validate the high accuracy and reliability of our ABFEP method, in the challenging cases where diverse
structures and binding modes need to be scored with high accuracy, proven to be extremely difficult for
other methods. This is to our knowledge the first practical application of ABFEP to triage the compound list
in virtual screening.

While the accuracy of ABFEP calculations demonstrated in these validations is exciting, a few
important notes should be considered in prospective applications. First, due to the miss of protein reorga-
nization effect discussed above, the raw ABFEP results usually over-estimate the binding free energies of
the ligands. In the context of scoring ligands in virtual screening where no binding affinity information is
available for any ligand, it should only be used to rank order the ligands. If experimental binding affinities
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are available for a handful of ligands, the difference in the ABFEP results versus experimental data on these
known ligands can be used to estimate the protein reorganization effect. As we demonstrated in the above
validation, the absolute binding free energies of the ligands can be informed after accounting for protein
reorganization effect. Second, due to the large configurational space to sample, ABFEP calculations are
computationally much more expensive than RBFEP. For ranking congeneric series of ligands, RBFEP is
still recommended both for cost benefit and for the superior accuracy. Third, although the convergence of
ABFEP calculations is much improved with our optimized lambda schedules and sampling protocols, lig-
ands with net charges involving strong salt-bridge interactions with the protein may still present challenges
in some cases and further enhancements in the protocol is needed to make it more robust.
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