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Understanding ion transport in functional materials is crucial to unravel complex chemical reactions, improve rate per-
formance of materials for energy storage and conversion, and optimize catalysts. To model ionic transport, atomistic
simulations, including molecular dynamics (MD) and kinetic Monte Carlo (kMC) have been developed and applied to
shed light on intricate materials science and chemistry problems. Typically, kMC simulations are utilized to a lower
extent compared to MD due to a lack of systematic workflows to construct a model for predicting transition rates. Here,
we propose kMCpy, a light-weight, customizable, and modular python package to compute the ionic transport prop-
erties in crystalline materials using kMC that can be combined with a (local) cluster expansion Hamiltonian derived
from first-principles calculations. kMCpy is versatile with respect to any type of crystalline material, bearing any dimen-
sionality, such as 1D, 2D and 3D. kMCpy provides: i) a comprehensive workflow to enumerate all possible migration
events in crystalline systems, ii) to derive transition rates efficiently and at the accuracy of first-principles calculations,
and iii) a robust kMC solver to study kinetic phenomena in materials. The workflow implemented in kMCpy provides
a systematic way to compute highly-accurate kinetic properties, which can be used in high-throughput simulations for
the discovery and optimization of novel functional materials.

I. INTRODUCTION

Quantifying ionic transport properties in materials is crucial
in a wide variety of applications, such as molecular & pro-
tein biology1–3, energy4–6, chemical reactions7,8, and solid
mechanics.9–12 The advancement of computer hardware, theo-
retical models, and suitable software that scale and parallelize
with available computing resources, have enabled the evalu-
ation of ionic transport in solid-state materials.13,14 A widely
used atomistic simulation technique to probe kinetic proper-
ties is molecular dynamics (MD),13,15 which propagates the
state of a given system as a function of time, where indi-
vidual particles (atoms) interact via Newton’s laws of mo-
tion. MD has been implemented in a wide variety of soft-
ware packages16–21, where the accuracy of MD is dependent
on the accuracy of force evaluations. Forces acting on atoms
in a MD simulation is accessed from accurate (but expensive)
first principles calculations, or inexpensive (and less accurate)
interatomic potentials (i.e., force fields).

An alternative to MD is kinetic Monte Carlo (kMC, also
known as dynamic Monte Carlo)22–24, which has been exten-
sively applied to study materials kinetics including, recharge-
able batteries25–28, solid-oxide fuel cells29,30, catalysis31,32,
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crystal growth33, vacancy diffusion in alloys34,35, thin film
growth36, and fluid flow37. kMC is particularly useful in
quantifying ionic transport in battery materials, as demon-
strated by van der Ven et al. in electrode materials, such as
LixCoO2

25, LixTiS2
38, Li1+xTi2O4

39. Notably, Deng et al.28

used kMC to estimate the conductivity of Na in solid elec-
trolytes: Na1+xZr2Px Si3 – xO12, as a function of Na content and
temperature, eventually sampling a vast compositional, spa-
tial, and temporal scale. kMC can also be used to examine the
structural evolution of nano-particles as well, as demonstrated
by Li et al.35.

kMC is based on a stochastic algorithm which randomly
samples various microstates of a given system, utilizing the
ergodic principle to arrive at statistically-averaged transport
properties. Thus, the chief advantage of kMC over MD is the
ability of kMC to access “long” timescales (∼ms) and “large”
lengthscales (∼ µm) compared to what is usually possible in
MD (∼ µs, ∼nm)40.

Two main kMC algorithms have been proposed: i) kMC
with rejection (r-kMC)41 and ii) rejection-free kMC (rf-
kMC)22. The former algorithm is similar to the Metropolis
algorithm41 which can select or reject a transition event us-
ing a probability estimate. In rf-kMC, a transition event is
always executed based on a “list” of probabilities. Thus, rf-
kMC is computationally efficient compared to r-kMC, espe-
cially when transition rates are low (i.e., event rejection rates
are high). There are several software packages to perform
kMC simulations42–53, including codes that target higher ef-
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ficiency kMC algorithms54–60, and those that construct novel
models to compute accurate transition rates61–65.

Compared to MD, kMC is a fairly general simulation algo-
rithm which can be applied to coarse grain material properties
and contribute to multi scale modelling efforts66–68. However,
in kMC all transition events should be known a priori, and a
model is typically needed to compute transition rates between
different microstates swiftly. Therefore, using kMC to study
ionic transport usually needs a workflow that is typically “tai-
lored” to a given system. Such a workflow should include
modules to generate all possible transition events, a com-
prehensive model to compute transition rate for each event
(swiftly and accurately), and a robust kMC solver.

Here, we present our python-based code kMCpy69 to sim-
ulate the kinetic properties of materials, with inputs from first
principles calculations. Specifically, we implement a local
cluster expansion (LCE) model25,26 to compute migration bar-
riers in crystalline materials (within the transition state theory
framework), where the model is fitted to calculated barriers
from accurate first principles calculations. kMCpy contains a
rf-kMC solver and related python classes to extract ion trans-
port properties, such as diffusivities, conductivities, etc. In
addition, kMCpy includes the following features:

• kMCpy is fully developed using python70,71.

• Cross Platform: kMCpy supports most “mainstream”
operating systems, such as Windows, macOS, and
Linux, in both x86/64 and ARM architectures.

• Modular Code Structure: kMCpy is written as modulus,
which can be easily modified and ported to any specific
application.

• Ease of Use: All input and output data are supplied
using human-readable JSON format, which is easily
parsed and generated by computers.

• Performance: The computationally-intensive routines
of kMCpy are translated into optimized machine code
at runtime using Numba72, which is a just-in-time (JIT)
compiler desgined to increase computational perfor-
mance of python codes.

The paper is structured as follows: Sec. II deals with
the theoretical background to compute transport properties
in crystalline materials, Sec. III provides an overview of the
kMCpy code, Sec. IV describes the performance of kMCpy, and
Sec. V compiles our concluding remarks and possible future
developments of kMCpy. All nomenclature used through the
manuscript is listed in Sec. A.

II. THEORETICAL BACKGROUND

Ionic transport in solids is a stochastic process, occurring
through a series of correlated/non-correlated migration events
(or ionic ’hops’), which can be effectively modeled using the
kMC formalism. The local energy landscape around the mi-
grating ion determines the ease of migration within the solid.

Quantifying macroscopic ionic transport of a given chemical
species in a given material is usually done in terms of ionic
diffusivities and/or ionic conductivities (see below), both of
which can be evaluated using kMC.25

Before understanding how a typical kMC simulation pro-
gresses, we briefly overview some of the fundamentals of ion
transport in solids. The macroscopic measure of mobility of
a migrating species is determined by the chemical diffusivity
(Dc), which relates to the flux and conductivity of the species
through Fick’s law73,74, as stated in Eq. 1.

J =−Dc∇C (1)

where J is the flux of the migrating species, and C is the com-
position of the mobile species defined as the number of mi-
grating ions per unit volume. The chemical diffusivity of the
migrating ion relates to the jump diffusivity (DJ) through the
thermodynamic factor Θ of Eq. 2.

Dc = DJΘ (2)

Θ measures the deviation of the interaction between migrating
ions from ideal behavior and is given in Eq. 3

Θ =
∂

(
µ

kBT

)
∂ lnx

(3)

where µ is the chemical potential, kB is the Boltzmann con-
stant, and x is the molefraction of the migrating species.

DJ of Eq. 2 is proportional to the mean squared displace-
ment of the center of mass of the mobile species, as mathe-
matically described in Eq. 4.

DJ =
(∑i~ri)

2

2dNt
(4)

where d is the dimensionality of the diffusion process, N is
the number of diffusing species, and t is the time taken for
diffusion. Furthermore, from the square of displacements of
the migrating ions, one can also calculate the tracer diffusivity
(D∗, Eq. 5), which excludes cross-correlation effects between
the migrating ion26.

D∗ =
∑i~ri

2

2dNt
(5)

The ionic conductivity σ can be then computed via the
Nernst–Einstein relationship:

σ =
e2CDJ

kBT
(6)

where C is the number of migrating species per unit volume.
Therefore, the cross-correlation between migrating ions can

be quantified from the ratio of D∗ and DJ , which is called
the Haven’s ratio (HR)75. Note that HR does not measure the
correlation between subsequent hops of a single ion that is
migrating, i.e., the deviation of the trajectory of a single mi-
grating ion from a fully random walk. This deviation from a
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fully random walk is measured by the correlation factor ( f ) of
Eq. 7.

f =
∑i~ri

2

Nna2 (7)

where ~ri is the net displacement of a migrating ion after n
hops, while a is the average distance for a single hop. There-
fore, an accurate calculation of the ionic transport properties
requires the sampling of a large-enough number of migration
events, which requires that all mobile species are tracked dur-
ing the simulation.

One of the important parameters required by a kMC simu-
lation are the migration barriers (Ebs), which are the energy
barrierers that the mobile ion must overcome to complete a
successful hop. Eb ultimately determines the probability of
occurrence a given ionic hop. Typically, Ebs are evaluated
using the nudged elastic band (NEB) method in combination
with density functional theory (DFT).76,77. In a NEB calcula-
tion, one performs a constrained relaxation of a specific num-
ber of virtually connected “images”, between the initial and
final positions of a migration event, along a guessed minimum
energy pathway (MEP). The relaxation is constrained to main-
tain a uniform spacing between the images (i.e., as uniform
as possible), through the addition of fictitious spring forces.
Other tools, such as force fields and machine-learned inter-
atomic potentials, can also be used to determine Eb instead of
DFT, and kMCpy is also compatible with such tools.

Note that Eb in solids not only depends on the local en-
vironment of the migrating ion but also the direction of the
hop. Hence, to remove any direction-dependence of a hop,
we resort to the so-called kinetically resolved activation bar-
rier (EKRA) of Eq. 8 proposed by van der Ven et al.25.

EKRA = Eb[i→ j]− 1
2

∆Eend (8)

where Eb[i→ j] is the calculated Eb (e.g., with NEB) for a site
i to site j hop and ∆Eend is the absolute difference between the
computed DFT total energies of the initial and final positions
(i.e., the endpoints).

In principle, the EKRA has to be calculated for all possible
migration events that can occur in a solid (as the local bond-
ing/coordination environment changes for example). How-
ever, calculating Eb for all possible hops via NEB calculations
is computationally intensive and often impractical. One strat-
egy to circumvent the computational obstacles of NEB calcu-
lations is that of the LCE approach. A LCE is normally used
to construct a simplified lattice Hamiltonian, which can gen-
erate approximate Eb quickly (by estimating a EKRA), based
on the local configuration(s) of the moving and non moving
species, which is defined in Eq. 925,78.

EKRA =V0 +∑
α

Vorbitφorbit (9)

where

φorbit = ∏
i ∈orbit

σi (10)

Point terms

Pair terms
Center

Triplet terms

Cutoff

FIG. 1. Example of clusters that are typically encountered in a clus-
ter expansion overlaid over a representative lattice. Within a cutoff
distance from the center of a given lattice site, local orbits are drawn
which extract the different interactions, such as point (red and blue
dots), pair (orange dots), and triplet (grey dots). For each lattice, only
the symmetrically-unique clusters are used to construct the cluster
expansion.

Here, an orbit implies a cluster of sites, which for example,
can be a point, a pair, or a triplet, as depicted in Fig. 1. σ is
the occupation variable of a given site within a cluster, whose
value depends on the basis set used. For example, σ can take
the value of −1 or +1 to indicate the presence or absence
of an atom at a given site. To account for local interactions,
orbits are usually truncated at finite distances from a given
site. In Eq. 9, the terms V0 and Vorbit are the kinetic effective
cluster interactions (KECIs). The values of the KECIs are
determined by fitting Eq. 9 a set of NEB-calculated EKRA.
Note that instead of a LCE, surface models, thin film models,
or coarse grain models66,67 can also be used for estimating Eb.

After determining Vorbit and V0 in Eq. 9, one proceeds
with kMC simulations, whose workflow is shown schemat-
ically in Fig. 2(a). In kMCpy, we have implemented the
rf-kMC method, also known as the Bortz-Kalos-Lebowitz
(BKL) algorithm22. Specifically, we list the set of all possi-
ble migration events in a given solid and their corresponding
probabilities, amongst which one migration event is selected.
Once a hop is selected, the hop is always executed, and sub-
sequently, the list of possible migration events is updated.

The typical procedure for the BKL method is summarized
in the text below and in Fig. 2. Note that Fig. 2 does not
include the equilibration process.

1. Initialization: In this step a representative structure is
generated, which contains a fixed concentration of mo-
bile ions and vacancies (assuming a vacancy-mediated
migration mechanism). These structures can be ob-
tained from canonical Monte Carlo (CMC), grand-
canonical Monte Carlo (GCMC)79 simulations, random
structure generators34, or other structural enumeration
techniques. During the initialization, a tracker is also
set, which keeps track of the migration observables,
such as, the mean squared displacement (MSD) of the
diffusing species, the location of the center of mass, DJ ,
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FIG. 2. a Flow chart of the kMC process. i kMC steps are repeated
with each kMC simulation started from a different initial structure
(i.e., j initial structures in total). b All migration events are listed
on a hypothetical axis, with the solid line representing their hopping
probabilities (Γ). An event no. k is then randomly proposed based
on a random number ρ . Γtot(k) is a cumulative sum of events from
no. 0 to no. k (i.e., Γtot(k) = ∑

k
m=0 Γm). Γtot is the sum of hopping

probabilities of all migration events.

and f .

2. Event proposal: A list of probabilities (Γm) is gener-
ated for all possible migrating paths (m) available for
all mobile ions in the simulation box. This list also in-
cludes hops which may not be feasible. For example,
if both the initial and final sites of a migration path are
occupied by an atom (instead of one of the sites being
vacant), the value of Γm is set to 0. The hopping prob-
ability (Γ) for each migration event is calculated using
the transition state theory80 via Eq. 11.

Γ = ν
∗ exp

(
−Eb

kBT

)
(11)

From Eqs. 8 and 9, it is possible to quickly generate Eb)
for every possible hop. ν∗ is the prefactor and is usually
assumed to be of the order of 1011 to 1013 Hz25,81. T is
the simulation temperature.

Following the generation of the probability list, a mi-
gration event (k) is chosen based on a random number
(0 < ρ < 1), such that it satisfies Eq. 12.

1
Γtot

k−1

∑
m=1

Γm < ρ ≤ 1
Γtot

k

∑
m=1

Γm (12)

where Γtot is the sum of all the individual probabilities
of all migration events. This step is shown schemati-
cally in Fig. 2(b).

3. Update event and tracker: After an event is chosen and
executed, the time step (δ t) is updated by drawing an-
other random number (0 < ζ < 1) as shown in Eq. 13.

δ t =− 1
Γtot

lnζ (13)

Subsequently, the occupation vector, the new event list
and their corresponding probabilities, the displacement
vector(s), the location(s) of the mobile ions, the location
of the center of mass, and the hop counter are updated.

A single kMC pass includes repeating the event proposal,
update event, and update tracker steps the same number of
times as the number of mobile ions in the initialized structure.
Generally, a large number of kMC passes are required to accu-
rately predict transport properties. For example, Deng et al.,
undertook ≈ 106 kMC passes to simulate Na-transport in su-
perionic conductor over a millisecond scale28. After running a
sufficiently large number of kMC passes, properties, such as,
DJ , D∗, HR, and f are estimated. Thus, a collection of kMC
passes for a single initial structure is referred to as a kMC run.
To get a better estimate of the transport properties at a given
composition, kMCpy also calculates the properties as the ini-
tial structure is varied j times (i.e., j kMC runs). This ensures
that the transport properties calculated represent the statistical
estimate that is observed in experiments better.

III. OVERVIEW OF KMCPY

A. Workflow

The workflow of kMCpy is shown in Fig. 3. The specific
python classes for each action are shown as grey boxes on the
right-hand side of Fig. 3. kMCpy contains functions to analyse
crystal structures, construct a LCE model and generate a list
of possible migration events (see Sec. III B and III C). Start-
ing from a list of DFT-NEB computed barriers, kMCpy fits a
LCE model (see Sec. III D). The constructed model and events
are then used to run kMC simulations with input structures
from that are either the thermodynamic ground state(s) or any
other user defined structures (Sec. III E). The trajectory of
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kMCpy
Kinetic Monte Carlo Simulations with Python

Model Fitting

Model Construction

Kinetic Monte Carlo

Results and Analysis

DFT-NEB Calculation

Structure Enumerator
Initial Structures

NEB Barriers

kmcpy.model

kmcpy.event

kmcpy.event_generator

kmcpy.fitting

kmcpy.kmc

kmcpy.tracker

Thermodynamic Properties

Basis (Clusters)

Fitted Model

FLOW CHART CODE

Events

Trajectories

Structures

Events Generation

Crystal Structure

First Principles Calculations

FIG. 3. Left Workflow of kMCpy package. Right python classes of kMCpy used for each stage of execution. Note that the initial structures
for running kMC simulations are obtained from a structure enumerator. Migration barriers are computed from DFT-NEB calculations (dashed
boxes). In the current version, only the LCE model has been implemented.

each mobile species are stored and analysed with a Tracker
class as implemented in kMCpy (Sec. III F). Examples of in-
put and output files are provided in Sec. III G. All python
classes mentioned in the following sections can be stored in
a human-readable JSON format and can be re-initialized after
each stage.

B. Model Construction

Before running a kMC simulation, a representative lattice
model must be constructed to compute the barriers efficiently

for any local environment, and the current version of kMCpy
uses the LCE framework. However, the modular nature of
kMCpy is such that other lattice models can also be used.

The LCE is implemented in the LocalClusterExpansion
class in kMCpy.model. The local environment in the LCE
model is described using a migration unit (MigrationUnit),
which is defined as a representative collection of sites centered
around a given activated state (AS) where possible migration
events can take place. The migration unit is generated using
the user-specified cutoff radius. As a result, when a local envi-
ronment is imported, an “occupation vector” (see Sec. A) will
be constructed based on the atomic species at each site.
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Subsequently, all clusters within a migration unit are found
by enumerating all points, pairs, triplets, etc. via a cut-
off radius (specified by the user) for each type of cluster.
All symmetrically equivalent clusters are then grouped as or-
bits, which become elements in the “correlation vector” (see
Sec. A). Clusters and orbits are coded into the kMCpy.model
as the Cluster and the Orbit classes. In addition to the
species and the atomic coordinates, Cluster and Orbit both
have functions to compute “correlation” (see Sec. A) for a
given orbit based on the occupation of sites.

C. Generating Events

A kMC simulation needs a list of all possible migration events
within a given simulation cell prior to its execution. There-
fore, in kMCpy, we handle migration events using the Event
class in kmcpy.event. Event stores the indices of two sites
(e.g., initial and final sites) involved in the migration event, as
well as the indices of all sites within the surrounding migra-
tion unit, i.e., local environment indices. Event also has built-
in functions to compute the correlation vector, the migration
barrier and the hopping probability after an occupation vector
has been assigned.

We enumerate all Event objects prior
to the kMC run using a wrapper function,
event_generator.generate_events(), which receives
the LocalClusterExpansion as input and loops through
all migration units in the whole simulation cell to generate
all possible events. From a given identifier of mobile species
(i.e., the mobile_ion_identifier parameter), two sites
indices involved in the migration event, namely, sites that the
ion hops from and hops into, are identified. Subsequently, the
indices of all sites in the current migration unit are stored for
calculating the migration barrier.

D. Model Fitting

In order to fit DFT-NEB barriers using the LCE model, we
have implemented the Fitting class in kmcpy.fitting.
This function performs fitting by interfacing with the python
package scikit-learn82. kMCpy also stores fitted results
(i.e., the KECIs) in a portable JSON format. The current im-
plementation of kMCpy uses the “LASSO” regression83 to per-
form fitting. Indeed, LASSO limits the selection of orbits in
the fit to the most important ones. LASSO requires a user-
specified α parameter to reduce the total number of selected
orbits. The Fitting class stores the fitting history, e.g. α and
weights used during LASSO regression, for keeping a record
and to fine tune the LCE.

Note that a LCE typically fits the EKRA that is obtained
from NEB calculations. Therefore, the ∆Eend term in Eq. 8
can be computed either from CMC (e.g., by interfacing other
codes, such as "CASM"84) or by fitting a separate LCE model.
kMCpy has the flexibility to adopt either approaches to deter-
mine Eend. In case a LCE is used for fitting Eend also, then the

Eend data extracted from NEB calculations is used as an input
for the fitting process.

E. Kinetic Monte Carlo

The KMC class in kmcpy.kmc can be used to perform kMC
simulations. Multiple (e.g., 50) kMC runs should be done
to eliminate the dependency of the results on the starting
configurations. Initial structures of kMC runs are taken
either from the thermodynamic ground state(s) (e.g., from
CMC or GCMC simulations), or from a structure enu-
merator (see Fig. 3). Auxiliary tools are provided in
kmcpy.tools.gather_mc_data to extract occupation vec-
tors from a structure in the crystallographic information file
(CIF) format.

The general process of rf-kMC is described in Fig. 2, and
an example of a standard output of both the initialization and
the execution processes of kMC is shown in Fig. 4a and b.
The KMC class is firstly initialized using a size specification
of the simulation (super)cell, the initial occupations, the fitted
model, the generated events, and a reference crystal structure.
When the LCE model is used, information about clusters, or-
bits, and the KECIs are provided. kMCpy then “walks“ through
all available migration events and evaluates the occupations,
correlation vectors, and hopping frequencies, given a simula-
tion temperature and a ν∗.

Upon initialization of the kMC, the KMC.run() function is
called to perform the kMC simulation by supplying the to-
tal number of equilibration and sampling steps, respectively.
The equilibration steps are not explicitly shown in Fig. 2a. A
Tracker object is initialized once the equilibration process is
complete (see Sec. III F). As shown in Fig. 2b, for each kMC
step, an event k is randomly proposed using KMC.propose(),
based on Eq. 12.

After the proposed event is executed, the related occu-
pations, correlations, and hopping frequencies are updated.
Since a given site may be involved in multiple migration
events, all events with sites associated with the proposed event
are updated. The number of events that require updation after
a proposed event is defined as the coupling strength of events,
which can influence the computational performance of kMC
(see Sec. IV). We use a pre-computed table (event_kernel)
to quickly identify all events that need to be updated.

F. Tracking Diffusion

To follow the displacements of all mobile species with re-
spect to their original positions and to count the number of
hops of each mobile ion, kMCpy uses a Tracker class in
kmcpy.tracker. This class is activated only after the equili-
bration is complete. The Tracker is initialized with the initial
occupation vectors, a reference crystal structure of the simu-
lation cell, the formal charge on migrating species, the dimen-
sionality of the overall diffusion process, the average hopping
distances (in Å), the simulation temperature, and ν∗. The ini-
tial location of each migrating species is recorded and their
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Equilibriation

KMC.run()

Tracker

Set simulation condition
Prepare simulation cell
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Initialize all Events
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KMC.initialization()

Equilibriation
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c

Initializing KMC calculations with structure.cif at ./inputs/structure.cif ...
Supercell Shape:
 [[8 0 0]
 [0 8 0]
 [0 0 8]]
Converting supercell ...

Loading fitting results ...
Loading fitting results (site energy) ...

Loading occupation: [-1 -1  1 ... -1 -1 -1]

Fitted time and error (LOOCV,RMS)
2021-07-23 12:34:27.336356 210.64591136080466 30.33528714975413
Fitted KECI and empty cluster
[  0.          16.28445938   0.           0.         -24.94004525
  -0.           0.           0.          -0.           0.
  -0.           0.           0.79563769  -0.           2.25547574
   9.79857097   6.37690575  11.67337726  14.50420824   0.
   0.           0.           7.8552509    0.        ] 396.06474385470136
Fitted time and error (LOOCV,RMS) (site energy)
2022-08-19 00:10:40.098416 272.9404874988462 31.646337515383525

Fitted KECI and empty cluster (site energy)
[ 79.78563015   3.2257346    0.          -0.          -0.
  -0.         -26.28052616  -0.         -50.62499038  -0.
 -28.80273864   0.         122.27710059  -0.          -0.
  -0.           0.          -0.           0.          -6.08646117
  -6.82639902  -0.           0.         -93.32999035] 116.48692078967917

Loading: ./inputs/local_cluster_expansion.json
Loading: ./inputs/local_cluster_expansion_site.json

Initializing correlation matrix and ekra for all events ...
Loading: ./inputs/events.json
Working at the site_event_list ...
Loading ./inputs/event_kernal.csv

Simulation condition: v = 1E13 T =  573.0

Start running KMC ...

Initial occ_global, prob_list and prob_cum_list

Starting Equilbriation ...

Start runing KMC ...

Initializing Tracker ...

Initial Na locations = [   0    1    4 ... 4093 4094 4095]
n_Na = 3789 n_Na_sites =  4096
n_Na% @ Na(1) = 0.20374769068355766
Center of mass (Na): [ 7.68074689e-02 -2.08304127e-02  8.81927488e+01]
Pass    Time            MSD             D_J             D_tracer        Conductivity    H_R             f   
0       3.002E-10       1.498E+00       9.551E-08       8.319E-08       4.244E+00       8.709E-01   
1       5.898E-10       2.723E+00       1.213E-07       7.694E-08       5.388E+00       6.345E-01

FIG. 4. Screenshots of initialization (KMC.initialization(), in a) and execution (KMC.run(), in b) of kMC. KMC.initialization()
prints the input parameters and KMC.run() shows the computed results. A Tracker object is intialized and subsequently called at the end of
KMC.run(). c shows the graphic user interface (GUI) of kMCpy relying on the python library Gooey.

displacement vectors and counters are set to zero during ini-
tialization. During each kMC step, Tracker.update() up-
dates the displacement vector (taking into account periodic
boundary conditions) and the hopping counter of the migrat-
ing species involved in a proposed event.

Using Eqs. 2-7 in Sec. II, Tracker computes transport
properties, such as MSD, DJ , D∗, σ , f , and HR from the
displacements of all migrating ions. The chemical diffu-
sivity, Dc (Eq. 2) can be computed once Θ is identified for
systems with variable compositions, such as electrodes26.
Tracker.summary() and Tracker.write_results()
routines print and save the simulation results, respectively.

G. Input and Output Files

The inputs required by kMCpy (Fig. 3a) can be prepared
in JSON format, through the use of Jupyter notebooks
for instance. Sample input files are provided in the
input_example folder of our Github repository (https:
//github.com/caneparesearch/kMCpy). Further, there is
a command line wrapper to execute kMCpy from the command
line, which can be found in kmcpy.executable.wrapper.
Users can also customize their own workflow by importing
specific modules, as described in the previous sub-sections.

An example of a standard output of
KMC.initialization() and KMC.run() are shown in

Fig. 4a and b. kMCpy prints the information imported from
the JSON input files and sets the parameters described in
Sec. III E, Sec. III F, and Fig. 2.

kmcpy.executable.gui_wrapper offers a graphical user
interface (GUI) as shown in Fig. 4c, which builds upon the
python library Gooey85. This GUI covers all required and
optional arguments for each step, providing a convenient way
to test different parameters and for educational/demonstration
purposes as well.

A required task in the Actions box must be chosen in the
GUI interface, in accordance to the descriptions in Sec. III B
to Sec. III E. Next, all essential input parameters required for
this task must be provided. For example, if KMCSimulation
is chosen, one must provide: the work directory, the ini-
tial occupation, the original crystal structure, the fitted LCE
model, the generated events, a value of ν∗, and the simula-
tion temperature. The documentation is available via a web-
site (https://kmcpy.readthedocs.io) with details on all
input parameters to run kMCpy86. By clicking the “Start” but-
ton, kMCpy will perform the selected task with the standard
output of the simulation (similar to the command line output
of Fig. 4a and b) displayed in a separate pop-up window.
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IV. PERFORMANCE OF KMCPY

kMCpy has been developed in python, a high-level, human-
interpretable language that combines flexibility and ease of
programming. Since python is one of the most widely used
programming languages70,71 both in the fields of materials in-
formatics and data science, it provides a set of readily avail-
able tools and libraries that can be used to accelerate the devel-
opment of new codes and libraries. Among them, we utilise a
JIT compiler, Numba72, to increase the computational perfor-
mance of kMCpy. Specifically, Numba translates the most nu-
merically demanding part of kMCpy into optimized machine
code.

We emphasize that kMCpy is a serial code, i.e., a single kMC
run is executed on a single CPU core. However, multiple kMC
runs can be executed simultaneously on a multi-core platform,
such as a high performance computing server or on the cloud.
For example, different initial structures can be generated for a
system and a kMC run for each initial structure can be run in
parallel, thus reducing compute time.

Computationally, the intensive part of kMCpy is evaluating
the correlation vector for each Event. Therefore, the size
of the basis set (i.e., number of clusters and orbits), the total
number events, and the coupling strengths between different
events (see Sec. A) can crucially influence the determination
of the correlation vector and the computational performance.
For example, the basis-set size controls the computational cost
of updating the correlation vector of a single event, whereas
the total number of unique events and the coupling strengths
between events set the total number of events to be updated
during each kMC step. These quantities are usually coupled
with each other, i.e., larger cutoff radii usually lead to larger
basis sets, and in turn, stronger coupling between events, re-
sulting in an increased computational cost of the kMC run.

We benchmarked87 the computational performance of
kMCpy, with the data compiled in Table I, which shows the
time required to prepare inputs and run a very short simu-
lation on a test system88. The process of input preparation
includes construction of the model, fitting of the model, and
events generation, which in total takes less than 10s. 100 kMC
passes (51,200 steps per pass) on this model takes ∼3 min-
utes, indicating that the time required for preparing the input
is generally marginal compared to the kMC simulation itself.

Eq. 14 shows fitted dependencies between the simulation
time and the three major factors:

t ∝ fNumba(Ncell)×N1.16
cluster×N1.01

cell ×N1.10
coupling (14)

where Ncluster, Ncell, Ncoupling are the number of clusters,
size of the supercell, and the coupling strength, respectively.
fNumba denotes the acceleration effect using the Numba rou-
tines on the computational time. The benchmark results are
shown in Fig. 5.

The average simulation time using different cell sizes (indi-
cated by total number of atoms per simulation box) is depicted
in Fig. 5a. Without Numba, the elapsed time per kMC step re-
mains approximately constant ∼ 10−1 s (dashed black line).
Numba accelerates significantly the kMC simulation by factor

of ∼2 (10−3 s, solid black line). The speedup by Numba is
weakened when the simulation cell becomes larger. There-
fore, Numba can enable access to longer and larger scale sim-
ulations with kMCpy28. As 1 kMC pass is just the total number
of available sites within the simulation cell, the run time per
kMC pass grows linearly when the cell size (i.e., number of
atoms) become larger. Fig. 5b and c demonstrate the effect
of the coupling strength between events as well as the basis
set size, which also contribute a quasi-linear increase towards
the run time per kMC pass. These results show that the time
complexity of the implemented kMC algorithm is O(∼ N).

TABLE I. Time (in s) distribution for bootstrapping and running a
kMC simulation of a test model. Details of hardware information and
input model to perform these benchmarks are mentioned in Ref. 87
and 88.

Action Time Spent (s)
Model Generation (212 clusters) 2.1
Model Fitting (19 orbits) 2.6
Events Generation (6,144 events) 1.31
kMC simulation (100 passes/51,200 steps) 168

V. CONCLUSION

In summary, we presented kMCpy, a light-weight open-source
python package to perform kMC simulations of ionic trans-
port in crystalline solids, with inputs from DFT calculations.
kMCpy and its implemented workflow provide a framework to
the scientific community to predict transport properties of any
crystalline solid with high accuracy and performance. The
design of kMCpy should facilitate its use on most available
computational platforms from standard laptops to high per-
formance supercomputers. The modular framework makes it
highly customizable and easily programmable. By utilizing
the JIT compiler – Numba, kMCpy achieves high computational
performance. Both the input and the output files of kMCpy
rely on the human-readable JSON format, which is easy to
distribute. Future developments of kMCpy include: i) utilizing
GPU-based acceleration for better performance, ii) develop-
ing a thermodynamic (CMC/GCMC) module and a structure
enumerator, and iii) adding additional models for the evalua-
tion of EKRA that are alternative to LCE.

Appendix A: Nomenclature

• Site: i ∈ {0,1, ...,N − 1} is a site in a simulation cell
with N sites. i is a unique global index of a site.

• Occupation: in a Chebyshev basis σi has a value of±1
for site i, e.g., occupied (−1) or unoccupied (+1), or
species A (−1) and species B (+1).

• Occupation Vector: ~σ = [σ0,σ1, ...σN−1] is a vector of
occupations in a simulation cell.
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FIG. 5. a shows the average computing time, per kMC pass (left y-axis, orange lines) and per kMC step (right y-axis, black lines), as a function
of total number of atoms for kMC simulations of Na1+xZr2Px Si3 – xO12, scaling from 1×1×1 (42 atoms) to 10×10×10 supercells (42,000
atoms). The details of this model can be found in Ref.28. Solid and dashed lines refers to the time consumption with and without Numba,
respectively. The LCE model contains 19 unique orbits and 212 possible clusters, with a coupling strength of 12. b shows the relationship
between the time consumption and coupling strength between events (defined in Section A) performed on a 8× 8× 8 supercell lattice. c
describes the effect of basis set size (number of clusters/orbits in LCE model) on simulation time, using the 8×8×8 supercell.

• Migration unit: M = [i0, i1, ..., im] is a collection of all
sites within a specific cutoff radii around the centre of
a migration unit, where m is the total number of sites
within that migration unit. There are multiple migration
units in the simulation cell.

• Sublattice Site: i ∈ {0,1, ...,n− 1} is a site within a
migration unit with n sites.

• Distance Matrix: D: Distance matrix of a migration
unit is a m×m matrix where m has been defined above.
Matrix elements di j are the Cartesian distances between
site i and j within a migration unit.

• Cluster: [i0, i1, ...in] is a collection of sublattice sites (i)
within a migration unit with a length of n. Presently
there are four types of cluster implemented in the code:

Point: a cluster containing 1 site, n = 1;

Pair: a cluster containing 2 sites, n = 2;

Triplet: a cluster containing 3 sites, n = 3;

Quadruplet: a cluster containing 4 sites, n = 4;

Note, the order-size of these clusters can be easily ex-
tended beyond 4.

• Cluster Function: φα(~σ) = ∏i∈α σi is a product of all
occupations of all sites that belong to a cluster.

• Orbit, [α[0],α[1], ...α[m]] is a collection of symmetri-
cally equivalent clusters with a multiplicity of m within
a migration unit.

• Correlation: φO(~σ) = ∑α∈O φα(~σ) is the summation
of cluster functions of all symmetrically equivalent
clusters within a migration unit that belongs to an or-
bit.

• Correlation Vector:

~φ(~σ) = [φO[0](~σ),φO[1](~σ), ...,φO[n](~σ)] (A1)

is a collection of all correlations for each orbit within a
migration unit with a length of n. This is also the basis-
set size.

• Cluster Expansion Model:

E(~σ) =V0 +∑
α

Vα φα(~σ) (A2)

where E is total energy (typically the DFT total en-
ergy, and V0 and Vα are called effective cluster inter-
actions (ECIs) for each cluster, which are fitted from
first-principles calculations. The summation polynomi-
als are usually truncated to specific cluster size (e.g.,
quadruplet, quintuplet). All clusters belong to the same
orbit shares the same Vα .

• Local Cluster Expansion Model uses a local cluster
expansion model,

EKRA(~σ) = K0 +∑
α

Kα φα(~σ) (A3)

where EKRA is the kinetic resolved activation energy
barrier which is independent of migration directions. K0
and Kα are called kinetic effective cluster interactions
(KECIs), which are fitted from first-principles NEB cal-
culations. The directional dependent activation energy
can further be recovered using

Eb = EKRA(~σAS)+
1
2

∆Eend (A4)

where ~σAS is the occupation vector at the activated state
and Eb is the activation energy barrier from initial to fi-
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nal images. ∆Eend is the total energy difference between
the final and initial images, respectively:

∆Eend = E(~σfinal)−E(~σinitial) (A5)

• Event is a swap of occupation values between two hop-
ping sites.

• Pass is defined as the total number of mutable sites in
the simulation cell.

• Coupling Strength Between Events is the total num-
ber of events that need to be updated after an event has
been executed.
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