
kMCpy: A Python Package to Simulate Transport Properties in Solids with
Kinetic Monte Carlo

Zeyu Deng,1, a) Tara P. Mishra,1, 2 Weihang Xie,1 Daanyal Ahmed Saeed,3 Gopalakrishnan Sai Gautam,4 and
Pieremanuele Canepa1, 2, 5, b)
1)Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore,
117575
2)Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 10-01 CREATE Tower, Singapore,
138602
3)University of California, Berkeley, 2437 Piedmont Avenue, Berkeley, California, United States of America,
94704
4)Department of Materials Engineering, Indian Institute of Science, Bengaluru, India,
560012
5)Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore,
117585

(Dated: 20 December 2022)

Understanding ion transport in functional materials is crucial to unravel complex chemical reactions, improve rate per-
formance of materials for energy storage and conversion, and optimize catalysts. To model ionic transport, atomistic
simulations, including molecular dynamics (MD) and kinetic Monte Carlo (kMC) have been developed and applied to
shed light on intricate materials science and chemistry problems. Typically, kMC simulations are utilized to a lower
extent compared to MD due to a lack of systematic workflows to construct a model for predicting transition rates. Here,
we propose kMCpy, a light-weight, customizable, and modular python package to compute the ionic transport prop-
erties in crystalline materials using kMC that can be combined with a (local) cluster expansion Hamiltonian derived
from first-principles calculations. kMCpy is versatile with respect to any type of crystalline material, bearing any dimen-
sionality, such as 1D, 2D and 3D. kMCpy provides: i) a comprehensive workflow to enumerate all possible migration
events in crystalline systems, ii) to derive transition rates efficiently and at the accuracy of first-principles calculations,
and iii) a robust kMC solver to study kinetic phenomena in materials. The workflow implemented in kMCpy provides
a systematic way to compute highly-accurate kinetic properties, which can be used in high-throughput simulations for
the discovery and optimization of novel functional materials.

I. INTRODUCTION

Quantifying ionic transport properties in materials is crucial
in a wide variety of applications, such as molecular & pro-
tein biology1–3, energy4–6, chemical reactions7,8, and solid
mechanics.9–12 The advancement of computer hardware, theo-
retical models, and suitable software that scale and parallelize
with available computing resources, have enabled the evalu-
ation of ionic transport in solid-state materials.13,14 A widely
used atomistic simulation technique to probe kinetic proper-
ties is molecular dynamics (MD),13,15 which propagates the
state of a given system as a function of time, where indi-
vidual particles (atoms) interact via Newton’s laws of mo-
tion. MD has been implemented in a wide variety of soft-
ware packages16–21, where the accuracy of MD is dependent
on the accuracy of force evaluations. Forces acting on atoms
in a MD simulation is accessed from accurate (but expensive)
first principles calculations, or inexpensive (and less accurate)
interatomic potentials (i.e., force fields).

An alternative to MD is kinetic Monte Carlo (kMC, also
known as dynamic Monte Carlo)22–24, which has been exten-
sively applied to study materials kinetics including, recharge-
able batteries25–28, solid-oxide fuel cells29,30, catalysis31,32,

a)msedz@nus.edu.sg
b)pcanepa@nus.edu.sg

crystal growth33, vacancy diffusion in alloys34,35, thin film
growth36, and fluid flow37. kMC is particularly useful in
quantifying ionic transport in battery materials, as demon-
strated by van der Ven et al. in electrode materials, such as
LixCoO2

25, LixTiS2
38, Li1+xTi2O4

39. Notably, Deng et al.28

used kMC to estimate the conductivity of Na in solid elec-
trolytes: Na1+xZr2Px Si3 – xO12, as a function of Na content and
temperature, eventually sampling a vast compositional, spa-
tial, and temporal scale. kMC can also be used to examine the
structural evolution of nano-particles as well, as demonstrated
by Li et al.35.

kMC is based on a stochastic algorithm which randomly
samples various microstates of a given system, utilizing the
ergodic principle to arrive at statistically-averaged transport
properties. Thus, the chief advantage of kMC over MD is the
ability of kMC to access “long” timescales (∼ms) and “large”
lengthscales (∼ µm) compared to what is usually possible in
MD (∼ µs, ∼nm)40.

Two main kMC algorithms have been proposed: i) kMC
with rejection (r-kMC)41 and ii) rejection-free kMC (rf-
kMC)22. The former algorithm is similar to the Metropolis
algorithm41 which can select or reject a transition event us-
ing a probability estimate. In rf-kMC, a transition event is
always executed based on a “list” of probabilities. Thus, rf-
kMC is computationally efficient compared to r-kMC, espe-
cially when transition rates are low (i.e., event rejection rates
are high). There are several software packages to perform
kMC simulations42–53, including codes that target higher ef-

2

ficiency kMC algorithms54–60, and those that construct novel
models to compute accurate transition rates61–65.

Compared to MD, kMC is a fairly general simulation algo-
rithm which can be applied to coarse grain material properties
and contribute to multi scale modelling efforts66–68. However,
in kMC all transition events should be known a priori, and a
model is typically needed to compute transition rates between
different microstates swiftly. Therefore, using kMC to study
ionic transport usually needs a workflow that is typically “tai-
lored” to a given system. Such a workflow should include
modules to generate all possible transition events, a com-
prehensive model to compute transition rate for each event
(swiftly and accurately), and a robust kMC solver.

Here, we present our python-based code kMCpy69 to sim-
ulate the kinetic properties of materials, with inputs from first
principles calculations. Specifically, we implement a local
cluster expansion (LCE) model25,26 to compute migration bar-
riers in crystalline materials (within the transition state theory
framework), where the model is fitted to calculated barriers
from accurate first principles calculations. kMCpy contains a
rf-kMC solver and related python classes to extract ion trans-
port properties, such as diffusivities, conductivities, etc. In
addition, kMCpy includes the following features:

• kMCpy is fully developed using python70,71.

• Cross Platform: kMCpy supports most “mainstream”
operating systems, such as Windows, macOS, and
Linux, in both x86/64 and ARM architectures.

• Modular Code Structure: kMCpy is written as modulus,
which can be easily modified and ported to any specific
application.

• Ease of Use: All input and output data are supplied
using human-readable JSON format, which is easily
parsed and generated by computers.

• Performance: The computationally-intensive routines
of kMCpy are translated into optimized machine code
at runtime using Numba72, which is a just-in-time (JIT)
compiler desgined to increase computational perfor-
mance of python codes.

The paper is structured as follows: Sec. II deals with
the theoretical background to compute transport properties
in crystalline materials, Sec. III provides an overview of the
kMCpy code, Sec. IV describes the performance of kMCpy, and
Sec. V compiles our concluding remarks and possible future
developments of kMCpy. All nomenclature used through the
manuscript is listed in Sec. A.

II. THEORETICAL BACKGROUND

Ionic transport in solids is a stochastic process, occurring
through a series of correlated/non-correlated migration events
(or ionic ’hops’), which can be effectively modeled using the
kMC formalism. The local energy landscape around the mi-
grating ion determines the ease of migration within the solid.

Quantifying macroscopic ionic transport of a given chemical
species in a given material is usually done in terms of ionic
diffusivities and/or ionic conductivities (see below), both of
which can be evaluated using kMC.25

Before understanding how a typical kMC simulation pro-
gresses, we briefly overview some of the fundamentals of ion
transport in solids. The macroscopic measure of mobility of
a migrating species is determined by the chemical diffusivity
(Dc), which relates to the flux and conductivity of the species
through Fick’s law73,74, as stated in Eq. 1.

J =−Dc∇C (1)

where J is the flux of the migrating species, and C is the com-
position of the mobile species defined as the number of mi-
grating ions per unit volume. The chemical diffusivity of the
migrating ion relates to the jump diffusivity (DJ) through the
thermodynamic factor Θ of Eq. 2.

Dc = DJΘ (2)

Θ measures the deviation of the interaction between migrating
ions from ideal behavior and is given in Eq. 3

Θ =
∂

(
µ

kBT

)
∂ lnx

(3)

where µ is the chemical potential, kB is the Boltzmann con-
stant, and x is the molefraction of the migrating species.

DJ of Eq. 2 is proportional to the mean squared displace-
ment of the center of mass of the mobile species, as mathe-
matically described in Eq. 4.

DJ =
(∑i~ri)

2

2dNt
(4)

where d is the dimensionality of the diffusion process, N is
the number of diffusing species, and t is the time taken for
diffusion. Furthermore, from the square of displacements of
the migrating ions, one can also calculate the tracer diffusivity
(D∗, Eq. 5), which excludes cross-correlation effects between
the migrating ion26.

D∗ =
∑i~ri

2

2dNt
(5)

The ionic conductivity σ can be then computed via the
Nernst–Einstein relationship:

σ =
e2CDJ

kBT
(6)

where C is the number of migrating species per unit volume.
Therefore, the cross-correlation between migrating ions can

be quantified from the ratio of D∗ and DJ , which is called
the Haven’s ratio (HR)75. Note that HR does not measure the
correlation between subsequent hops of a single ion that is
migrating, i.e., the deviation of the trajectory of a single mi-
grating ion from a fully random walk. This deviation from a

3

fully random walk is measured by the correlation factor (f) of
Eq. 7.

f =
∑i~ri

2

Nna2 (7)

where ~ri is the net displacement of a migrating ion after n
hops, while a is the average distance for a single hop. There-
fore, an accurate calculation of the ionic transport properties
requires the sampling of a large-enough number of migration
events, which requires that all mobile species are tracked dur-
ing the simulation.

One of the important parameters required by a kMC simu-
lation are the migration barriers (Ebs), which are the energy
barrierers that the mobile ion must overcome to complete a
successful hop. Eb ultimately determines the probability of
occurrence a given ionic hop. Typically, Ebs are evaluated
using the nudged elastic band (NEB) method in combination
with density functional theory (DFT).76,77. In a NEB calcula-
tion, one performs a constrained relaxation of a specific num-
ber of virtually connected “images”, between the initial and
final positions of a migration event, along a guessed minimum
energy pathway (MEP). The relaxation is constrained to main-
tain a uniform spacing between the images (i.e., as uniform
as possible), through the addition of fictitious spring forces.
Other tools, such as force fields and machine-learned inter-
atomic potentials, can also be used to determine Eb instead of
DFT, and kMCpy is also compatible with such tools.

Note that Eb in solids not only depends on the local en-
vironment of the migrating ion but also the direction of the
hop. Hence, to remove any direction-dependence of a hop,
we resort to the so-called kinetically resolved activation bar-
rier (EKRA) of Eq. 8 proposed by van der Ven et al.25.

EKRA = Eb[i→ j]− 1
2

∆Eend (8)

where Eb[i→ j] is the calculated Eb (e.g., with NEB) for a site
i to site j hop and ∆Eend is the absolute difference between the
computed DFT total energies of the initial and final positions
(i.e., the endpoints).

In principle, the EKRA has to be calculated for all possible
migration events that can occur in a solid (as the local bond-
ing/coordination environment changes for example). How-
ever, calculating Eb for all possible hops via NEB calculations
is computationally intensive and often impractical. One strat-
egy to circumvent the computational obstacles of NEB calcu-
lations is that of the LCE approach. A LCE is normally used
to construct a simplified lattice Hamiltonian, which can gen-
erate approximate Eb quickly (by estimating a EKRA), based
on the local configuration(s) of the moving and non moving
species, which is defined in Eq. 925,78.

EKRA =V0 +∑
α

Vorbitφorbit (9)

where

φorbit = ∏
i ∈orbit

σi (10)

Point terms

Pair terms
Center

Triplet terms

Cutoff

FIG. 1. Example of clusters that are typically encountered in a clus-
ter expansion overlaid over a representative lattice. Within a cutoff
distance from the center of a given lattice site, local orbits are drawn
which extract the different interactions, such as point (red and blue
dots), pair (orange dots), and triplet (grey dots). For each lattice, only
the symmetrically-unique clusters are used to construct the cluster
expansion.

Here, an orbit implies a cluster of sites, which for example,
can be a point, a pair, or a triplet, as depicted in Fig. 1. σ is
the occupation variable of a given site within a cluster, whose
value depends on the basis set used. For example, σ can take
the value of −1 or +1 to indicate the presence or absence
of an atom at a given site. To account for local interactions,
orbits are usually truncated at finite distances from a given
site. In Eq. 9, the terms V0 and Vorbit are the kinetic effective
cluster interactions (KECIs). The values of the KECIs are
determined by fitting Eq. 9 a set of NEB-calculated EKRA.
Note that instead of a LCE, surface models, thin film models,
or coarse grain models66,67 can also be used for estimating Eb.

After determining Vorbit and V0 in Eq. 9, one proceeds
with kMC simulations, whose workflow is shown schemat-
ically in Fig. 2(a). In kMCpy, we have implemented the
rf-kMC method, also known as the Bortz-Kalos-Lebowitz
(BKL) algorithm22. Specifically, we list the set of all possi-
ble migration events in a given solid and their corresponding
probabilities, amongst which one migration event is selected.
Once a hop is selected, the hop is always executed, and sub-
sequently, the list of possible migration events is updated.

The typical procedure for the BKL method is summarized
in the text below and in Fig. 2. Note that Fig. 2 does not
include the equilibration process.

1. Initialization: In this step a representative structure is
generated, which contains a fixed concentration of mo-
bile ions and vacancies (assuming a vacancy-mediated
migration mechanism). These structures can be ob-
tained from canonical Monte Carlo (CMC), grand-
canonical Monte Carlo (GCMC)79 simulations, random
structure generators34, or other structural enumeration
techniques. During the initialization, a tracker is also
set, which keeps track of the migration observables,
such as, the mean squared displacement (MSD) of the
diffusing species, the location of the center of mass, DJ ,

4

Event Proposal

Initilization

Update Event

Update Tracker

Rejection-free Kinetic Monte Carlo

Calculate Properties

Repeat i kM
C

 stepsRe
pe

at
 j

In
iti

al
 S

tru
ct

ur
es

Γ0 Γ1 ... ΓN

Γtot(k)

Γk ...

Γtot

a

b

Load Model, Events and
initialize Tracker

Randomly propose a
event from events axis

Update occupation,
barrier and probability

Update location,
displacement and hop
counter

Calculate DJ, D*, HR and
f etc.

Event Proposal

FIG. 2. a Flow chart of the kMC process. i kMC steps are repeated
with each kMC simulation started from a different initial structure
(i.e., j initial structures in total). b All migration events are listed
on a hypothetical axis, with the solid line representing their hopping
probabilities (Γ). An event no. k is then randomly proposed based
on a random number ρ . Γtot(k) is a cumulative sum of events from
no. 0 to no. k (i.e., Γtot(k) = ∑

k
m=0 Γm). Γtot is the sum of hopping

probabilities of all migration events.

and f .

2. Event proposal: A list of probabilities (Γm) is gener-
ated for all possible migrating paths (m) available for
all mobile ions in the simulation box. This list also in-
cludes hops which may not be feasible. For example,
if both the initial and final sites of a migration path are
occupied by an atom (instead of one of the sites being
vacant), the value of Γm is set to 0. The hopping prob-
ability (Γ) for each migration event is calculated using
the transition state theory80 via Eq. 11.

Γ = ν
∗ exp

(
−Eb

kBT

)
(11)

From Eqs. 8 and 9, it is possible to quickly generate Eb)
for every possible hop. ν∗ is the prefactor and is usually
assumed to be of the order of 1011 to 1013 Hz25,81. T is
the simulation temperature.

Following the generation of the probability list, a mi-
gration event (k) is chosen based on a random number
(0 < ρ < 1), such that it satisfies Eq. 12.

1
Γtot

k−1

∑
m=1

Γm < ρ ≤ 1
Γtot

k

∑
m=1

Γm (12)

where Γtot is the sum of all the individual probabilities
of all migration events. This step is shown schemati-
cally in Fig. 2(b).

3. Update event and tracker: After an event is chosen and
executed, the time step (δ t) is updated by drawing an-
other random number (0 < ζ < 1) as shown in Eq. 13.

δ t =− 1
Γtot

lnζ (13)

Subsequently, the occupation vector, the new event list
and their corresponding probabilities, the displacement
vector(s), the location(s) of the mobile ions, the location
of the center of mass, and the hop counter are updated.

A single kMC pass includes repeating the event proposal,
update event, and update tracker steps the same number of
times as the number of mobile ions in the initialized structure.
Generally, a large number of kMC passes are required to accu-
rately predict transport properties. For example, Deng et al.,
undertook ≈ 106 kMC passes to simulate Na-transport in su-
perionic conductor over a millisecond scale28. After running a
sufficiently large number of kMC passes, properties, such as,
DJ , D∗, HR, and f are estimated. Thus, a collection of kMC
passes for a single initial structure is referred to as a kMC run.
To get a better estimate of the transport properties at a given
composition, kMCpy also calculates the properties as the ini-
tial structure is varied j times (i.e., j kMC runs). This ensures
that the transport properties calculated represent the statistical
estimate that is observed in experiments better.

III. OVERVIEW OF KMCPY

A. Workflow

The workflow of kMCpy is shown in Fig. 3. The specific
python classes for each action are shown as grey boxes on the
right-hand side of Fig. 3. kMCpy contains functions to analyse
crystal structures, construct a LCE model and generate a list
of possible migration events (see Sec. III B and III C). Start-
ing from a list of DFT-NEB computed barriers, kMCpy fits a
LCE model (see Sec. III D). The constructed model and events
are then used to run kMC simulations with input structures
from that are either the thermodynamic ground state(s) or any
other user defined structures (Sec. III E). The trajectory of

5

kMCpy
Kinetic Monte Carlo Simulations with Python

Model Fitting

Model Construction

Kinetic Monte Carlo

Results and Analysis

DFT-NEB Calculation

Structure Enumerator
Initial Structures

NEB Barriers

kmcpy.model

kmcpy.event

kmcpy.event_generator

kmcpy.fitting

kmcpy.kmc

kmcpy.tracker

Thermodynamic Properties

Basis (Clusters)

Fitted Model

FLOW CHART CODE

Events

Trajectories

Structures

Events Generation

Crystal Structure

First Principles Calculations

FIG. 3. Left Workflow of kMCpy package. Right python classes of kMCpy used for each stage of execution. Note that the initial structures
for running kMC simulations are obtained from a structure enumerator. Migration barriers are computed from DFT-NEB calculations (dashed
boxes). In the current version, only the LCE model has been implemented.

each mobile species are stored and analysed with a Tracker
class as implemented in kMCpy (Sec. III F). Examples of in-
put and output files are provided in Sec. III G. All python
classes mentioned in the following sections can be stored in
a human-readable JSON format and can be re-initialized after
each stage.

B. Model Construction

Before running a kMC simulation, a representative lattice
model must be constructed to compute the barriers efficiently

for any local environment, and the current version of kMCpy
uses the LCE framework. However, the modular nature of
kMCpy is such that other lattice models can also be used.

The LCE is implemented in the LocalClusterExpansion
class in kMCpy.model. The local environment in the LCE
model is described using a migration unit (MigrationUnit),
which is defined as a representative collection of sites centered
around a given activated state (AS) where possible migration
events can take place. The migration unit is generated using
the user-specified cutoff radius. As a result, when a local envi-
ronment is imported, an “occupation vector” (see Sec. A) will
be constructed based on the atomic species at each site.

6

Subsequently, all clusters within a migration unit are found
by enumerating all points, pairs, triplets, etc. via a cut-
off radius (specified by the user) for each type of cluster.
All symmetrically equivalent clusters are then grouped as or-
bits, which become elements in the “correlation vector” (see
Sec. A). Clusters and orbits are coded into the kMCpy.model
as the Cluster and the Orbit classes. In addition to the
species and the atomic coordinates, Cluster and Orbit both
have functions to compute “correlation” (see Sec. A) for a
given orbit based on the occupation of sites.

C. Generating Events

A kMC simulation needs a list of all possible migration events
within a given simulation cell prior to its execution. There-
fore, in kMCpy, we handle migration events using the Event
class in kmcpy.event. Event stores the indices of two sites
(e.g., initial and final sites) involved in the migration event, as
well as the indices of all sites within the surrounding migra-
tion unit, i.e., local environment indices. Event also has built-
in functions to compute the correlation vector, the migration
barrier and the hopping probability after an occupation vector
has been assigned.

We enumerate all Event objects prior
to the kMC run using a wrapper function,
event_generator.generate_events(), which receives
the LocalClusterExpansion as input and loops through
all migration units in the whole simulation cell to generate
all possible events. From a given identifier of mobile species
(i.e., the mobile_ion_identifier parameter), two sites
indices involved in the migration event, namely, sites that the
ion hops from and hops into, are identified. Subsequently, the
indices of all sites in the current migration unit are stored for
calculating the migration barrier.

D. Model Fitting

In order to fit DFT-NEB barriers using the LCE model, we
have implemented the Fitting class in kmcpy.fitting.
This function performs fitting by interfacing with the python
package scikit-learn82. kMCpy also stores fitted results
(i.e., the KECIs) in a portable JSON format. The current im-
plementation of kMCpy uses the “LASSO” regression83 to per-
form fitting. Indeed, LASSO limits the selection of orbits in
the fit to the most important ones. LASSO requires a user-
specified α parameter to reduce the total number of selected
orbits. The Fitting class stores the fitting history, e.g. α and
weights used during LASSO regression, for keeping a record
and to fine tune the LCE.

Note that a LCE typically fits the EKRA that is obtained
from NEB calculations. Therefore, the ∆Eend term in Eq. 8
can be computed either from CMC (e.g., by interfacing other
codes, such as "CASM"84) or by fitting a separate LCE model.
kMCpy has the flexibility to adopt either approaches to deter-
mine Eend. In case a LCE is used for fitting Eend also, then the

Eend data extracted from NEB calculations is used as an input
for the fitting process.

E. Kinetic Monte Carlo

The KMC class in kmcpy.kmc can be used to perform kMC
simulations. Multiple (e.g., 50) kMC runs should be done
to eliminate the dependency of the results on the starting
configurations. Initial structures of kMC runs are taken
either from the thermodynamic ground state(s) (e.g., from
CMC or GCMC simulations), or from a structure enu-
merator (see Fig. 3). Auxiliary tools are provided in
kmcpy.tools.gather_mc_data to extract occupation vec-
tors from a structure in the crystallographic information file
(CIF) format.

The general process of rf-kMC is described in Fig. 2, and
an example of a standard output of both the initialization and
the execution processes of kMC is shown in Fig. 4a and b.
The KMC class is firstly initialized using a size specification
of the simulation (super)cell, the initial occupations, the fitted
model, the generated events, and a reference crystal structure.
When the LCE model is used, information about clusters, or-
bits, and the KECIs are provided. kMCpy then “walks“ through
all available migration events and evaluates the occupations,
correlation vectors, and hopping frequencies, given a simula-
tion temperature and a ν∗.

Upon initialization of the kMC, the KMC.run() function is
called to perform the kMC simulation by supplying the to-
tal number of equilibration and sampling steps, respectively.
The equilibration steps are not explicitly shown in Fig. 2a. A
Tracker object is initialized once the equilibration process is
complete (see Sec. III F). As shown in Fig. 2b, for each kMC
step, an event k is randomly proposed using KMC.propose(),
based on Eq. 12.

After the proposed event is executed, the related occu-
pations, correlations, and hopping frequencies are updated.
Since a given site may be involved in multiple migration
events, all events with sites associated with the proposed event
are updated. The number of events that require updation after
a proposed event is defined as the coupling strength of events,
which can influence the computational performance of kMC
(see Sec. IV). We use a pre-computed table (event_kernel)
to quickly identify all events that need to be updated.

F. Tracking Diffusion

To follow the displacements of all mobile species with re-
spect to their original positions and to count the number of
hops of each mobile ion, kMCpy uses a Tracker class in
kmcpy.tracker. This class is activated only after the equili-
bration is complete. The Tracker is initialized with the initial
occupation vectors, a reference crystal structure of the simu-
lation cell, the formal charge on migrating species, the dimen-
sionality of the overall diffusion process, the average hopping
distances (in Å), the simulation temperature, and ν∗. The ini-
tial location of each migrating species is recorded and their

7

Equilibriation

KMC.run()

Tracker

Set simulation condition
Prepare simulation cell

Fitted results

Load initial occupation

Load model

Initialize all Events

Load fitting results

KMC.initialization()

Equilibriation

a b

c

Initializing KMC calculations with structure.cif at ./inputs/structure.cif ...
Supercell Shape:
 [[8 0 0]
 [0 8 0]
 [0 0 8]]
Converting supercell ...

Loading fitting results ...
Loading fitting results (site energy) ...

Loading occupation: [-1 -1 1 ... -1 -1 -1]

Fitted time and error (LOOCV,RMS)
2021-07-23 12:34:27.336356 210.64591136080466 30.33528714975413
Fitted KECI and empty cluster
[0. 16.28445938 0. 0. -24.94004525
 -0. 0. 0. -0. 0.
 -0. 0. 0.79563769 -0. 2.25547574
 9.79857097 6.37690575 11.67337726 14.50420824 0.
 0. 0. 7.8552509 0.] 396.06474385470136
Fitted time and error (LOOCV,RMS) (site energy)
2022-08-19 00:10:40.098416 272.9404874988462 31.646337515383525

Fitted KECI and empty cluster (site energy)
[79.78563015 3.2257346 0. -0. -0.
 -0. -26.28052616 -0. -50.62499038 -0.
 -28.80273864 0. 122.27710059 -0. -0.
 -0. 0. -0. 0. -6.08646117
 -6.82639902 -0. 0. -93.32999035] 116.48692078967917

Loading: ./inputs/local_cluster_expansion.json
Loading: ./inputs/local_cluster_expansion_site.json

Initializing correlation matrix and ekra for all events ...
Loading: ./inputs/events.json
Working at the site_event_list ...
Loading ./inputs/event_kernal.csv

Simulation condition: v = 1E13 T = 573.0

Start running KMC ...

Initial occ_global, prob_list and prob_cum_list

Starting Equilbriation ...

Start runing KMC ...

Initializing Tracker ...

Initial Na locations = [0 1 4 ... 4093 4094 4095]
n_Na = 3789 n_Na_sites = 4096
n_Na% @ Na(1) = 0.20374769068355766
Center of mass (Na): [7.68074689e-02 -2.08304127e-02 8.81927488e+01]
Pass Time MSD D_J D_tracer Conductivity H_R f
0 3.002E-10 1.498E+00 9.551E-08 8.319E-08 4.244E+00 8.709E-01
1 5.898E-10 2.723E+00 1.213E-07 7.694E-08 5.388E+00 6.345E-01

FIG. 4. Screenshots of initialization (KMC.initialization(), in a) and execution (KMC.run(), in b) of kMC. KMC.initialization()
prints the input parameters and KMC.run() shows the computed results. A Tracker object is intialized and subsequently called at the end of
KMC.run(). c shows the graphic user interface (GUI) of kMCpy relying on the python library Gooey.

displacement vectors and counters are set to zero during ini-
tialization. During each kMC step, Tracker.update() up-
dates the displacement vector (taking into account periodic
boundary conditions) and the hopping counter of the migrat-
ing species involved in a proposed event.

Using Eqs. 2-7 in Sec. II, Tracker computes transport
properties, such as MSD, DJ , D∗, σ , f , and HR from the
displacements of all migrating ions. The chemical diffu-
sivity, Dc (Eq. 2) can be computed once Θ is identified for
systems with variable compositions, such as electrodes26.
Tracker.summary() and Tracker.write_results()
routines print and save the simulation results, respectively.

G. Input and Output Files

The inputs required by kMCpy (Fig. 3a) can be prepared
in JSON format, through the use of Jupyter notebooks
for instance. Sample input files are provided in the
input_example folder of our Github repository (https:
//github.com/caneparesearch/kMCpy). Further, there is
a command line wrapper to execute kMCpy from the command
line, which can be found in kmcpy.executable.wrapper.
Users can also customize their own workflow by importing
specific modules, as described in the previous sub-sections.

An example of a standard output of
KMC.initialization() and KMC.run() are shown in

Fig. 4a and b. kMCpy prints the information imported from
the JSON input files and sets the parameters described in
Sec. III E, Sec. III F, and Fig. 2.

kmcpy.executable.gui_wrapper offers a graphical user
interface (GUI) as shown in Fig. 4c, which builds upon the
python library Gooey85. This GUI covers all required and
optional arguments for each step, providing a convenient way
to test different parameters and for educational/demonstration
purposes as well.

A required task in the Actions box must be chosen in the
GUI interface, in accordance to the descriptions in Sec. III B
to Sec. III E. Next, all essential input parameters required for
this task must be provided. For example, if KMCSimulation
is chosen, one must provide: the work directory, the ini-
tial occupation, the original crystal structure, the fitted LCE
model, the generated events, a value of ν∗, and the simula-
tion temperature. The documentation is available via a web-
site (https://kmcpy.readthedocs.io) with details on all
input parameters to run kMCpy86. By clicking the “Start” but-
ton, kMCpy will perform the selected task with the standard
output of the simulation (similar to the command line output
of Fig. 4a and b) displayed in a separate pop-up window.

8

IV. PERFORMANCE OF KMCPY

kMCpy has been developed in python, a high-level, human-
interpretable language that combines flexibility and ease of
programming. Since python is one of the most widely used
programming languages70,71 both in the fields of materials in-
formatics and data science, it provides a set of readily avail-
able tools and libraries that can be used to accelerate the devel-
opment of new codes and libraries. Among them, we utilise a
JIT compiler, Numba72, to increase the computational perfor-
mance of kMCpy. Specifically, Numba translates the most nu-
merically demanding part of kMCpy into optimized machine
code.

We emphasize that kMCpy is a serial code, i.e., a single kMC
run is executed on a single CPU core. However, multiple kMC
runs can be executed simultaneously on a multi-core platform,
such as a high performance computing server or on the cloud.
For example, different initial structures can be generated for a
system and a kMC run for each initial structure can be run in
parallel, thus reducing compute time.

Computationally, the intensive part of kMCpy is evaluating
the correlation vector for each Event. Therefore, the size
of the basis set (i.e., number of clusters and orbits), the total
number events, and the coupling strengths between different
events (see Sec. A) can crucially influence the determination
of the correlation vector and the computational performance.
For example, the basis-set size controls the computational cost
of updating the correlation vector of a single event, whereas
the total number of unique events and the coupling strengths
between events set the total number of events to be updated
during each kMC step. These quantities are usually coupled
with each other, i.e., larger cutoff radii usually lead to larger
basis sets, and in turn, stronger coupling between events, re-
sulting in an increased computational cost of the kMC run.

We benchmarked87 the computational performance of
kMCpy, with the data compiled in Table I, which shows the
time required to prepare inputs and run a very short simu-
lation on a test system88. The process of input preparation
includes construction of the model, fitting of the model, and
events generation, which in total takes less than 10s. 100 kMC
passes (51,200 steps per pass) on this model takes ∼3 min-
utes, indicating that the time required for preparing the input
is generally marginal compared to the kMC simulation itself.

Eq. 14 shows fitted dependencies between the simulation
time and the three major factors:

t ∝ fNumba(Ncell)×N1.16
cluster×N1.01

cell ×N1.10
coupling (14)

where Ncluster, Ncell, Ncoupling are the number of clusters,
size of the supercell, and the coupling strength, respectively.
fNumba denotes the acceleration effect using the Numba rou-
tines on the computational time. The benchmark results are
shown in Fig. 5.

The average simulation time using different cell sizes (indi-
cated by total number of atoms per simulation box) is depicted
in Fig. 5a. Without Numba, the elapsed time per kMC step re-
mains approximately constant ∼ 10−1 s (dashed black line).
Numba accelerates significantly the kMC simulation by factor

of ∼2 (10−3 s, solid black line). The speedup by Numba is
weakened when the simulation cell becomes larger. There-
fore, Numba can enable access to longer and larger scale sim-
ulations with kMCpy28. As 1 kMC pass is just the total number
of available sites within the simulation cell, the run time per
kMC pass grows linearly when the cell size (i.e., number of
atoms) become larger. Fig. 5b and c demonstrate the effect
of the coupling strength between events as well as the basis
set size, which also contribute a quasi-linear increase towards
the run time per kMC pass. These results show that the time
complexity of the implemented kMC algorithm is O(∼ N).

TABLE I. Time (in s) distribution for bootstrapping and running a
kMC simulation of a test model. Details of hardware information and
input model to perform these benchmarks are mentioned in Ref. 87
and 88.

Action Time Spent (s)
Model Generation (212 clusters) 2.1
Model Fitting (19 orbits) 2.6
Events Generation (6,144 events) 1.31
kMC simulation (100 passes/51,200 steps) 168

V. CONCLUSION

In summary, we presented kMCpy, a light-weight open-source
python package to perform kMC simulations of ionic trans-
port in crystalline solids, with inputs from DFT calculations.
kMCpy and its implemented workflow provide a framework to
the scientific community to predict transport properties of any
crystalline solid with high accuracy and performance. The
design of kMCpy should facilitate its use on most available
computational platforms from standard laptops to high per-
formance supercomputers. The modular framework makes it
highly customizable and easily programmable. By utilizing
the JIT compiler – Numba, kMCpy achieves high computational
performance. Both the input and the output files of kMCpy
rely on the human-readable JSON format, which is easy to
distribute. Future developments of kMCpy include: i) utilizing
GPU-based acceleration for better performance, ii) develop-
ing a thermodynamic (CMC/GCMC) module and a structure
enumerator, and iii) adding additional models for the evalua-
tion of EKRA that are alternative to LCE.

Appendix A: Nomenclature

• Site: i ∈ {0,1, ...,N − 1} is a site in a simulation cell
with N sites. i is a unique global index of a site.

• Occupation: in a Chebyshev basis σi has a value of±1
for site i, e.g., occupied (−1) or unoccupied (+1), or
species A (−1) and species B (+1).

• Occupation Vector: ~σ = [σ0,σ1, ...σN−1] is a vector of
occupations in a simulation cell.

9

a b c

0 20000 40000
Total number of atoms

0

50

100

150

Ru
n

tim
e

pe
r k

M
C

 p
as

s
(s

)

0 100 200 300 400
Coupling strength between events

0.0

6.0

12.0

18.0

24.0

30.0

Ru
n

tim
e

pe
r k

M
C

 p
as

s
(s

)

0 5 10 15 20 25
Number of clusters

0

20

40

60

Ru
n

Ti
m

e
pe

r k
M

C
 p

as
s

(s
)

10−3

10−2

10−1

100

Ru
n

tim
e

pe
r k

M
C

 s
te

p
(s

)

without Numba

with Numba
without N

umba

with Numba

×103

FIG. 5. a shows the average computing time, per kMC pass (left y-axis, orange lines) and per kMC step (right y-axis, black lines), as a function
of total number of atoms for kMC simulations of Na1+xZr2Px Si3 – xO12, scaling from 1×1×1 (42 atoms) to 10×10×10 supercells (42,000
atoms). The details of this model can be found in Ref.28. Solid and dashed lines refers to the time consumption with and without Numba,
respectively. The LCE model contains 19 unique orbits and 212 possible clusters, with a coupling strength of 12. b shows the relationship
between the time consumption and coupling strength between events (defined in Section A) performed on a 8× 8× 8 supercell lattice. c
describes the effect of basis set size (number of clusters/orbits in LCE model) on simulation time, using the 8×8×8 supercell.

• Migration unit: M = [i0, i1, ..., im] is a collection of all
sites within a specific cutoff radii around the centre of
a migration unit, where m is the total number of sites
within that migration unit. There are multiple migration
units in the simulation cell.

• Sublattice Site: i ∈ {0,1, ...,n− 1} is a site within a
migration unit with n sites.

• Distance Matrix: D: Distance matrix of a migration
unit is a m×m matrix where m has been defined above.
Matrix elements di j are the Cartesian distances between
site i and j within a migration unit.

• Cluster: [i0, i1, ...in] is a collection of sublattice sites (i)
within a migration unit with a length of n. Presently
there are four types of cluster implemented in the code:

Point: a cluster containing 1 site, n = 1;

Pair: a cluster containing 2 sites, n = 2;

Triplet: a cluster containing 3 sites, n = 3;

Quadruplet: a cluster containing 4 sites, n = 4;

Note, the order-size of these clusters can be easily ex-
tended beyond 4.

• Cluster Function: φα(~σ) = ∏i∈α σi is a product of all
occupations of all sites that belong to a cluster.

• Orbit, [α[0],α[1], ...α[m]] is a collection of symmetri-
cally equivalent clusters with a multiplicity of m within
a migration unit.

• Correlation: φO(~σ) = ∑α∈O φα(~σ) is the summation
of cluster functions of all symmetrically equivalent
clusters within a migration unit that belongs to an or-
bit.

• Correlation Vector:

~φ(~σ) = [φO[0](~σ),φO[1](~σ), ...,φO[n](~σ)] (A1)

is a collection of all correlations for each orbit within a
migration unit with a length of n. This is also the basis-
set size.

• Cluster Expansion Model:

E(~σ) =V0 +∑
α

Vα φα(~σ) (A2)

where E is total energy (typically the DFT total en-
ergy, and V0 and Vα are called effective cluster inter-
actions (ECIs) for each cluster, which are fitted from
first-principles calculations. The summation polynomi-
als are usually truncated to specific cluster size (e.g.,
quadruplet, quintuplet). All clusters belong to the same
orbit shares the same Vα .

• Local Cluster Expansion Model uses a local cluster
expansion model,

EKRA(~σ) = K0 +∑
α

Kα φα(~σ) (A3)

where EKRA is the kinetic resolved activation energy
barrier which is independent of migration directions. K0
and Kα are called kinetic effective cluster interactions
(KECIs), which are fitted from first-principles NEB cal-
culations. The directional dependent activation energy
can further be recovered using

Eb = EKRA(~σAS)+
1
2

∆Eend (A4)

where ~σAS is the occupation vector at the activated state
and Eb is the activation energy barrier from initial to fi-

10

nal images. ∆Eend is the total energy difference between
the final and initial images, respectively:

∆Eend = E(~σfinal)−E(~σinitial) (A5)

• Event is a swap of occupation values between two hop-
ping sites.

• Pass is defined as the total number of mutable sites in
the simulation cell.

• Coupling Strength Between Events is the total num-
ber of events that need to be updated after an event has
been executed.

ACKNOWLEDGMENTS

We acknowledge funding from the National Research Foun-
dation under his NRF Fellowship NRFF12-2020-0012. The
computational work was performed on resources of the Na-
tional Supercomputing Centre, Singapore (https://www.
nscc.sg).

1J. A. McCammon, B. R. Gelin, M. Karplus, Dynamics of folded proteins,
Nature 267 (5612) (1977) 585–590. doi:10.1038/267585a0.
URL http://www.nature.com/articles/267585a0

2M. Karplus, J. Kuriyan, Molecular dynamics and protein function, Pro-
ceedings of the National Academy of Sciences 102 (19) (2005) 6679–6685.
doi:10.1073/pnas.0408930102.
URL https://pnas.org/doi/full/10.1073/pnas.0408930102

3J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, D. E. Shaw, Long-
timescale molecular dynamics simulations of protein structure and
function, Current Opinion in Structural Biology 19 (2) (2009) 120–127.
doi:10.1016/j.sbi.2009.03.004.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0959440X09000372

4S. P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Electrochemical
Windows of Room-Temperature Ionic Liquids from Molecular Dynam-
ics and Density Functional Theory Calculations, Chemistry of Materials
23 (11) (2011) 2979–2986. doi:10.1021/cm200679y.
URL https://pubs.acs.org/doi/10.1021/cm200679y

5Y. Mo, S. P. Ong, G. Ceder, Insights into Diffusion Mechanisms in P2 Lay-
ered Oxide Materials by First-Principles Calculations, Chemistry of Mate-
rials 26 (18) (2014) 5208–5214. doi:10.1021/cm501563f.
URL https://pubs.acs.org/doi/10.1021/cm501563f

6Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder,
Design principles for solid-state lithium superionic conductors, Nature Ma-
terials 14 (10) (2015) 1026–1031. doi:10.1038/nmat4369.
URL https://www.nature.com/articles/nmat4369

7D. R. Herschbach, Molecular Dynamics of Elementary Chemical Reac-
tions(Nobel Lecture), Angewandte Chemie International Edition in English
26 (12) (1987) 1221–1243. doi:10.1002/anie.198712211.
URL https://onlinelibrary.wiley.com/doi/10.1002/anie.
198712211

8I. R. Craig, D. E. Manolopoulos, Chemical reaction rates from ring poly-
mer molecular dynamics, The Journal of Chemical Physics 122 (8) (2005)
084106. doi:10.1063/1.1850093.
URL http://aip.scitation.org/doi/10.1063/1.1850093

9J. F. Lutsko, Stress and elastic constants in anisotropic solids: Molecular
dynamics techniques, Journal of Applied Physics 64 (3) (1988) 1152–1154.
doi:10.1063/1.341877.
URL http://aip.scitation.org/doi/10.1063/1.341877

10F. F. Abraham, D. Brodbeck, W. E. Rudge, X. Xu, A molecu-
lar dynamics investigation of rapid fracture mechanics, Journal
of the Mechanics and Physics of Solids 45 (9) (1997) 1595–1619.

doi:10.1016/S0022-5096(96)00103-2.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0022509696001032

11C. Yang, U. Tartaglino, B. N. Persson, A multiscale molecular dynamics
approach to contact mechanics, The European Physical Journal E 19 (1)
(2006) 47–58. doi:10.1140/epje/e2006-00004-9.
URL https://link.springer.com/10.1140/epje/e2006-00004-9

12H. Rafii-Tabar, H. Shodja, M. Darabi, A. Dahi, Molecular dynamics
simulation of crack propagation in fcc materials containing clus-
ters of impurities, Mechanics of Materials 38 (3) (2006) 243–252.
doi:10.1016/j.mechmat.2005.06.006.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0167663605001043

13D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms
to applications, 2nd Edition, no. 1 in Computational science series, Aca-
demic Press, San Diego, 2002.

14R. W. Balluffi, S. M. Allen, W. C. Carter, R. A. Kemper, Kinetics of mate-
rials, J. Wiley & Sons, Hoboken, N.J, 2005.

15T. Hansson, C. Oostenbrink, W. van Gunsteren, Molecular dynamics
simulations, Current Opinion in Structural Biology 12 (2) (2002) 190–196.
doi:10.1016/S0959-440X(02)00308-1.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0959440X02003081

16A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton,
LAMMPS - a flexible simulation tool for particle-based materials modeling
at the atomic, meso, and continuum scales, Computer Physics Communi-
cations 271 (2022) 108171. doi:10.1016/j.cpc.2021.108171.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0010465521002836

17G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A.
van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF, Journal of
Computational Chemistry 22 (9) (2001) 931–967. doi:10.1002/jcc.
1056.
URL https://onlinelibrary.wiley.com/doi/10.1002/jcc.1056

18J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro,
R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy,
M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux,
A. Aksimentiev, Z. Luthey-Schulten, L. V. Kalé, K. Schulten, C. Chipot,
E. Tajkhorshid, Scalable molecular dynamics on CPU and GPU architec-
tures with NAMD, The Journal of Chemical Physics 153 (4) (2020) 044130.
doi:10.1063/5.0014475.
URL http://aip.scitation.org/doi/10.1063/5.0014475

19E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P.
Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov,
F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca,
D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen,
J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily,
M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G. Dyall, G. I. Fann,
S. A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande,
S. Ghosh, K. Glaesemann, A. W. Götz, J. Hammond, V. Helms, E. D.
Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson,
H. Jónsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Kr-
ishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logs-
dail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-
Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A.
Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la Roza, B. Palmer, A. Pa-
nyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M.
Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein,
D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S.
Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis,
A. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis,
D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woliński, A. T.
Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R. J. Harri-
son, NWChem: Past, present, and future, The Journal of Chemical Physics
152 (18) (2020) 184102. doi:10.1063/5.0004997.
URL http://aip.scitation.org/doi/10.1063/5.0004997

20R. Salomon-Ferrer, D. A. Case, R. C. Walker, An overview of the Amber
biomolecular simulation package: Amber biomolecular simulation pack-

11

age, Wiley Interdisciplinary Reviews: Computational Molecular Science
3 (2) (2013) 198–210. doi:10.1002/wcms.1121.
URL https://onlinelibrary.wiley.com/doi/10.1002/wcms.
1121

21T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald,
F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze,
J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Boršt-
nik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller,
R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter,
A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass,
I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack,
J. Hutter, CP2K: An electronic structure and molecular dynamics software
package - Quickstep: Efficient and accurate electronic structure calcula-
tions, The Journal of Chemical Physics 152 (19) (2020) 194103. doi:
10.1063/5.0007045.
URL http://aip.scitation.org/doi/10.1063/5.0007045

22A. Bortz, M. Kalos, J. Lebowitz, A new algorithm for Monte Carlo
simulation of Ising spin systems, Journal of Computational Physics 17 (1)
(1975) 10–18. doi:10.1016/0021-9991(75)90060-1.
URL https://linkinghub.elsevier.com/retrieve/pii/
0021999175900601

23D. T. Gillespie, A general method for numerically simulat-
ing the stochastic time evolution of coupled chemical reac-
tions, Journal of Computational Physics 22 (4) (1976) 403–434.
doi:10.1016/0021-9991(76)90041-3.
URL https://linkinghub.elsevier.com/retrieve/pii/
0021999176900413

24D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,
The Journal of Physical Chemistry 81 (25) (1977) 2340–2361. doi:10.
1021/j100540a008.
URL https://pubs.acs.org/doi/10.1021/j100540a008

25A. Van der Ven, G. Ceder, M. Asta, P. D. Tepesch, First-principles theory of
ionic diffusion with nondilute carriers, Physical Review B 64 (18) (2001)
184307. doi:10.1103/PhysRevB.64.184307.
URL https://link.aps.org/doi/10.1103/PhysRevB.64.184307

26A. Van Der Ven, Z. Deng, S. Banerjee, S. P. Ong, Rechargeable Alkali-Ion
Battery Materials: Theory and Computation, Chemical Reviews 120 (14)
(2020) 6977–7019. doi:10.1021/acs.chemrev.9b00601.
URL https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.
9b00601

27P. Xiao, G. Henkelman, Kinetic Monte Carlo Study of Li Intercalation in
LiFePO 4, ACS Nano 12 (1) (2018) 844–851. doi:10.1021/acsnano.
7b08278.
URL https://pubs.acs.org/doi/10.1021/acsnano.7b08278

28Z. Deng, T. P. Mishra, E. Mahayoni, Q. Ma, A. J. K. Tieu, O. Guillon,
J.-N. Chotard, V. Seznec, A. K. Cheetham, C. Masquelier, G. S. Gautam,
P. Canepa, Fundamental investigations on the sodium-ion transport proper-
ties of mixed polyanion solid-state battery electrolytes, Nature Communi-
cations 13 (1) (2022) 4470. doi:10.1038/s41467-022-32190-7.
URL https://www.nature.com/articles/s41467-022-32190-7

29R. Pornprasertsuk, T. Holme, F. B. Prinz, Kinetic Monte Carlo Simulations
of Solid Oxide Fuel Cell, Journal of The Electrochemical Society 156 (12)
(2009) B1406. doi:10.1149/1.3232209.
URL https://iopscience.iop.org/article/10.1149/1.3232209

30A. Modak, M. Lusk, Kinetic Monte Carlo simulation of a solid-oxide fuel
cell: I. Open-circuit voltage and double layer structure, Solid State Ionics
176 (29-30) (2005) 2181–2191. doi:10.1016/j.ssi.2005.06.007.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0167273805002614

31M. Andersen, C. Panosetti, K. Reuter, A practical guide to surface kinetic
Monte Carlo simulations, Frontiers in Chemistry 7 (APR) (2019) 1–24,
arXiv: 1904.02561. doi:10.3389/fchem.2019.00202.

32M. Pineda, M. Stamatakis, Kinetic Monte Carlo simulations for heteroge-
neous catalysis: Fundamentals, current status, and challenges, The Journal
of Chemical Physics 156 (12) (2022) 120902. doi:10.1063/5.0083251.
URL https://aip.scitation.org/doi/10.1063/5.0083251

33C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Mechanism of
nucleation and incipient growth of Re clusters in irradiated W-Re alloys
from kinetic Monte Carlo simulations, Physical Review B 96 (9) (2017)
094108. doi:10.1103/PhysRevB.96.094108.

URL https://link.aps.org/doi/10.1103/PhysRevB.96.094108
34A. Evteev, E. Levchenko, I. Belova, G. Murch, Shrinking kinetics by

vacancy diffusion of hollow binary alloy nanospheres driven by the
Gibbs–Thomson effect, Philosophical Magazine 88 (10) (2008) 1525–
1541. doi:10.1080/14786430802213413.
URL http://www.tandfonline.com/doi/abs/10.1080/
14786430802213413

35C. Li, T. Nilson, L. Cao, T. Mueller, Predicting activation energies for
vacancy-mediated diffusion in alloys using a transition-state cluster ex-
pansion, Physical Review Materials 5 (1) (2021) 013803. doi:10.1103/
PhysRevMaterials.5.013803.
URL https://link.aps.org/doi/10.1103/PhysRevMaterials.5.
013803

36X. Han, R. McAfee, J. C. Yang, Development of a Versatile Kinetic Monte
Carlo Code to Simulate Physical Processes in Thin Film Nucleation and
Growth, Multidiscipline Modeling in Materials and Structures 3 (1) (2007)
43–54. doi:10.1163/157361107781360068.
URL https://www.emerald.com/insight/content/doi/10.1163/
157361107781360068/full/html

37M. Apostolopoulou, R. Day, R. Hull, M. Stamatakis, A. Striolo, A kinetic
Monte Carlo approach to study fluid transport in pore networks, The Journal
of Chemical Physics 147 (13) (2017) 134703. doi:10.1063/1.4985885.
URL http://aip.scitation.org/doi/10.1063/1.4985885

38A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda, D. Morgan, Nondilute
diffusion from first principles: Li diffusion in Li x TiS 2, Physical Review
B 78 (10) (2008) 104306. doi:10.1103/PhysRevB.78.104306.
URL https://link.aps.org/doi/10.1103/PhysRevB.78.104306

39J. Bhattacharya, A. Van der Ven, Phase stability and nondilute Li diffusion
in spinel Li 1 + x Ti 2 O 4, Physical Review B 81 (10) (2010) 104304.
doi:10.1103/PhysRevB.81.104304.
URL https://link.aps.org/doi/10.1103/PhysRevB.81.104304

40Y. Gao, T. P. Mishra, S.-H. Bo, G. Sai Gautam, P. Canepa, Design
and Characterization of Host Frameworks for Facile Magnesium Trans-
port, Annual Review of Materials Research 52 (1) (2022) 129–158.
doi:10.1146/annurev-matsci-081420-041617.
URL https://www.annualreviews.org/doi/10.1146/
annurev-matsci-081420-041617

41W. K. Hastings, Monte Carlo sampling methods using Markov
chains and their applications, Biometrika 57 (1) (1970) 97–109.
doi:10.1093/biomet/57.1.97.
URL https://academic.oup.com/biomet/article/57/1/97/
284580

42A. Magna, S. Coffa, L. Colombo, A lattice kinetic Monte Carlo code
for the description of vacancy diffusion and self-organization in Si,
Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 148 (1-4) (1999) 262–267.
doi:10.1016/S0168-583X(98)00798-8.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0168583X98007988

43D. J. Dooling, L. J. Broadbelt, Generic Monte Carlo Tool for Kinetic Mod-
eling, Industrial & Engineering Chemistry Research 40 (2) (2001) 522–529.
doi:10.1021/ie000310q.
URL https://pubs.acs.org/doi/10.1021/ie000310q

44S. X. M. Boerrigter, G. P. H. Josten, J. van de Streek, F. F. A. Hollander,
J. Los, H. M. Cuppen, P. Bennema, H. Meekes, MONTY: Monte Carlo
Crystal Growth on Any Crystal Structure in Any Crystallographic Orien-
tation; Application to Fats, The Journal of Physical Chemistry A 108 (27)
(2004) 5894–5902. doi:10.1021/jp049804h.
URL https://pubs.acs.org/doi/10.1021/jp049804h

45M. Leetmaa, N. V. Skorodumova, KMCLib: A general framework for lat-
tice kinetic Monte Carlo (KMC) simulations, Computer Physics Communi-
cations 185 (9) (2014) 2340–2349. doi:10.1016/j.cpc.2014.04.017.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0010465514001519

46M. J. Hoffmann, S. Matera, K. Reuter, Kmos: A lattice kinetic Monte Carlo
framework, Computer Physics Communications 185 (7) (2014) 2138–2150,
arXiv: 1401.5278 Publisher: Elsevier B.V. doi:10.1016/j.cpc.2014.
04.003.
URL http://dx.doi.org/10.1016/j.cpc.2014.04.003

47J. J. Ramsey, KMCThinFilm: A C++ Framework for the Rapid Devel-

12

opment of Lattice Kinetic Monte Carlo (kMC) Simulations of Thin Film
Growth, Tech. rep., US Army Research Laboratory (2015).

48I. Mitchell, S. Irle, A. J. Page, A global reaction route mapping-based ki-
netic Monte Carlo algorithm, The Journal of Chemical Physics 145 (2)
(2016) 024105. doi:10.1063/1.4954660.
URL http://aip.scitation.org/doi/10.1063/1.4954660

49T. Danielson, J. E. Sutton, C. Hin, A. Savara, SQERTSS: Dynamic
rank based throttling of transition probabilities in kinetic Monte Carlo
simulations, Computer Physics Communications 219 (2017) 149–163.
doi:10.1016/j.cpc.2017.05.016.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0010465517301583

50M. Jørgensen, H. Grönbeck, MonteCoffee: A programmable kinetic Monte
Carlo framework, The Journal of Chemical Physics 149 (11) (2018)
114101. doi:10.1063/1.5046635.
URL http://aip.scitation.org/doi/10.1063/1.5046635

51J. Li, P. Wei, S. Yang, J. Wu, P. Liu, X. He, Crystal-KMC: parallel software
for lattice dynamics monte carlo simulation of metal materials, Tsinghua
Science and Technology 23 (4) (2018) 501–510. doi:10.26599/TST.
2018.9010107.
URL https://ieeexplore.ieee.org/document/8421558/

52K. Li, H. Shang, Y. Zhang, S. Li, B. Wu, D. Wang, L. Zhang, F. Li,
D. Chen, Z. Wei, OpenKMC: a KMC design for hundred-billion-atom sim-
ulation using millions of cores on Sunway Taihulight, in: Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, ACM, Denver Colorado, 2019, pp. 1–16.
doi:10.1145/3295500.3356165.
URL https://dl.acm.org/doi/10.1145/3295500.3356165

53P. Martin, J. J. Gaitero, J. S. Dolado, H. Manzano, KIMERA: A Kinetic
Montecarlo Code for Mineral Dissolution, Minerals 10 (9) (2020) 825.
doi:10.3390/min10090825.
URL https://www.mdpi.com/2075-163X/10/9/825

54T. P. Schulze, Kinetic Monte Carlo simulations with minimal searching,
Physical Review E 65 (3) (2002) 036704. doi:10.1103/PhysRevE.65.
036704.
URL https://link.aps.org/doi/10.1103/PhysRevE.65.036704

55K. Bernacki, B. Hetényi, B. J. Berne, Multiple “time step” Monte
Carlo simulations: Application to charged systems with Ewald
summation, The Journal of Chemical Physics 121 (1) (2004) 44.
doi:10.1063/1.1755195.
URL http://scitation.aip.org/content/aip/journal/jcp/
121/1/10.1063/1.1755195

56F. Shi, Y. Shim, J. G. Amar, Parallel kinetic Monte Carlo simulations
of two-dimensional island coarsening, Physical Review E 76 (3) (2007)
031607. doi:10.1103/PhysRevE.76.031607.
URL https://link.aps.org/doi/10.1103/PhysRevE.76.031607

57L. Xu, G. Henkelman, Adaptive kinetic Monte Carlo for first-principles
accelerated dynamics, The Journal of Chemical Physics 129 (11) (2008)
114104. doi:10.1063/1.2976010.
URL http://aip.scitation.org/doi/10.1063/1.2976010

58A. Slepoy, A. P. Thompson, S. J. Plimpton, A constant-time kinetic Monte
Carlo algorithm for simulation of large biochemical reaction networks, The
Journal of Chemical Physics 128 (20) (2008) 205101. doi:10.1063/1.
2919546.
URL http://aip.scitation.org/doi/10.1063/1.2919546

59A. Chatterjee, A. F. Voter, Accurate acceleration of kinetic Monte Carlo
simulations through the modification of rate constants, The Journal of
Chemical Physics 132 (19) (2010) 194101. doi:10.1063/1.3409606.
URL http://aip.scitation.org/doi/10.1063/1.3409606

60J. Nielsen, M. d’Avezac, J. Hetherington, M. Stamatakis, Parallel kinetic
Monte Carlo simulation framework incorporating accurate models of adsor-
bate lateral interactions, The Journal of Chemical Physics 139 (22) (2013)
224706. doi:10.1063/1.4840395.
URL http://aip.scitation.org/doi/10.1063/1.4840395

61H. Xu, Y. N. Osetsky, R. E. Stoller, Simulating complex atomistic pro-
cesses: On-the-fly kinetic Monte Carlo scheme with selective active
volumes, Physical Review B 84 (13) (2011) 132103. doi:10.1103/
PhysRevB.84.132103.
URL https://link.aps.org/doi/10.1103/PhysRevB.84.132103

62D. Konwar, V. J. Bhute, A. Chatterjee, An off-lattice, self-learning kinetic

Monte Carlo method using local environments, The Journal of Chemical
Physics 135 (17) (2011) 174103. doi:10.1063/1.3657834.
URL http://aip.scitation.org/doi/10.1063/1.3657834

63M. Stamatakis, D. G. Vlachos, A graph-theoretical kinetic Monte Carlo
framework for on-lattice chemical kinetics, The Journal of Chemical
Physics 134 (21) (2011) 214115. doi:10.1063/1.3596751.
URL http://aip.scitation.org/doi/10.1063/1.3596751

64X. Guo, D. Minakata, J. Crittenden, On-the-Fly Kinetic Monte Carlo Sim-
ulation of Aqueous Phase Advanced Oxidation Processes, Environmental
Science & Technology 49 (15) (2015) 9230–9236. doi:10.1021/acs.
est.5b02034.
URL https://pubs.acs.org/doi/10.1021/acs.est.5b02034

65Q. Yang, C. A. Sing-Long, E. J. Reed, Learning reduced kinetic Monte
Carlo models of complex chemistry from molecular dynamics, Chemical
Science 8 (8) (2017) 5781–5796. doi:10.1039/C7SC01052D.
URL http://xlink.rsc.org/?DOI=C7SC01052D

66A. Chatterjee, D. G. Vlachos, Multiscale spatial Monte Carlo simula-
tions: Multigriding, computational singular perturbation, and hierarchi-
cal stochastic closures, The Journal of Chemical Physics 124 (6) (2006)
064110. doi:10.1063/1.2166380.
URL http://aip.scitation.org/doi/10.1063/1.2166380

67S. D. Collins, A. Chatterjee, D. G. Vlachos, Coarse-grained kinetic Monte
Carlo models: Complex lattices, multicomponent systems, and homoge-
nization at the stochastic level, The Journal of Chemical Physics 129 (18)
(2008) 184101. doi:10.1063/1.3005225.
URL http://aip.scitation.org/doi/10.1063/1.3005225

68Z. Deng, V. Kumar, F. T. Bölle, F. Caro, A. A. Franco, I. E. Castelli,
P. Canepa, Z. W. Seh, Towards autonomous high-throughput multiscale
modelling of battery interfaces, Energy & Environmental Science 15 (2)
(2022) 579–594. doi:10.1039/D1EE02324A.
URL http://xlink.rsc.org/?DOI=D1EE02324A

69kMCpy is an open-source code developed under the MIT license and can be
accessed at: https://github.com/caneparesearch/kMCpy.

70F. Pérez, B. E. Granger, J. D. Hunter, Python: An Ecosystem for Scientific
Computing, Computing in Science & Engineering 13 (2) (2011) 13–21,
conference Name: Computing in Science & Engineering. doi:10.1109/
MCSE.2010.119.

71Top Programming Languages 2022, section: Computing (Aug. 2022).
URL https://spectrum.ieee.org/top-programming-languages-2022

72S. K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT com-
piler, in: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC - LLVM ’15, ACM Press, Austin, Texas, 2015, pp.
1–6. doi:10.1145/2833157.2833162.
URL http://dl.acm.org/citation.cfm?doid=2833157.2833162

73A. Fick, V. On liquid diffusion, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 10 (63) (1855) 30–39.
doi:10.1080/14786445508641925.
URL https://www.tandfonline.com/doi/full/10.1080/
14786445508641925

74A. Fick, Ueber Diffusion, Annalen der Physik und Chemie 170 (1) (1855)
59–86. doi:10.1002/andp.18551700105.
URL https://onlinelibrary.wiley.com/doi/10.1002/andp.
18551700105

75G. Murch, The haven ratio in fast ionic conductors, Solid State Ionics 7 (3)
(1982) 177–198. doi:10.1016/0167-2738(82)90050-9.
URL https://linkinghub.elsevier.com/retrieve/pii/
0167273882900509

76H. Jónsson, G. Mills, K. W. Jacobsen, Nudged elastic band
method for finding minimum energy paths of transitions, in: Clas-
sical and Quantum Dynamics in Condensed Phase Simulations,
WORLD SCIENTIFIC, LERICI, Villa Marigola, 1998, pp. 385–404.
doi:10.1142/9789812839664_0016.
URL http://www.worldscientific.com/doi/abs/10.1142/
9789812839664_0016

77G. Henkelman, B. P. Uberuaga, H. Jónsson, A climbing image nudged
elastic band method for finding saddle points and minimum energy paths,
The Journal of Chemical Physics 113 (22) (2000) 9901–9904. doi:
10.1063/1.1329672.
URL http://aip.scitation.org/doi/10.1063/1.1329672

78A. Van der Ven, J. Thomas, B. Puchala, A. Natarajan, First-

13

Principles Statistical Mechanics of Multicomponent Crystals,
Annual Review of Materials Research 48 (1) (2018) 27–55.
doi:10.1146/annurev-matsci-070317-124443.
URL https://www.annualreviews.org/doi/10.1146/
annurev-matsci-070317-124443

79P. Xiao, T. Shi, W. Huang, G. Ceder, Understanding Surface Densified
Phases in Ni-Rich Layered Compounds, ACS Energy Letters 4 (4) (2019)
811–818. doi:10.1021/acsenergylett.9b00122.
URL https://pubs.acs.org/doi/10.1021/acsenergylett.
9b00122

80G. H. Vineyard, Frequency factors and isotope effects in solid state rate
processes, Journal of Physics and Chemistry of Solids 3 (1-2) (1957)
121–127. doi:10.1016/0022-3697(57)90059-8.
URL https://linkinghub.elsevier.com/retrieve/pii/
0022369757900598

81E. Kaxiras, J. Erlebacher, Adatom diffusion by orchestrated exchange on
semiconductor surfaces, Physical Review Letters 72 (11) (1994) 1714–
1717. doi:10.1103/PhysRevLett.72.1714.
URL https://link.aps.org/doi/10.1103/PhysRevLett.72.1714

82F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Ma-
chine learning in Python, Journal of Machine Learning Research 12 (2011)
2825–2830.

83F. Santosa, W. W. Symes, Linear Inversion of Band-Limited Reflection
Seismograms, SIAM Journal on Scientific and Statistical Computing 7 (4)
(1986) 1307–1330. doi:10.1137/0907087.
URL http://epubs.siam.org/doi/10.1137/0907087

84J. C. Thomas, P. Brian, CASM: A Clusters Approach to Statistical Mechan-
ics (Sep. 2022).
URL https://github.com/prisms-center/CASMcode

85C. Kiel, Gooey (2022).
URL https://github.com/chriskiehl/Gooey

86kMCpy Documentation (Aug. 2022).
URL https://kmcpy.readthedocs.io/en/latest/

87All benchmarks were performed on a 2020-year model 13-inch Apple Mac-
Book Pro with a M1 chipset (8 core CPU + 8 core GPU) and 16 GB of
RAM..

88A LCE model for Na ion migration was built with a ∼6 Å cutoff radius
for point, pair and triplet clusters on Na1+xZr2Px Si3 – xO12, yielding a total
of 19 unique orbits and 212 possible clusters. The LCE model was fitted
with data from DFT-NEB calculations. 6144 Na-ion hopping events were
generated in a 8×8×8 supercell lattice.

